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A B S T R A C T

Recent research in spatial transcriptomics allows researchers to analyze gene expression without losing spatial 
information. Spatial information can assist in cell communication, identification of new cell subtypes, which 
provides important research methods for multiple fields such as microenvironment interactions and pathological 
processes of diseases. Identifying spatial domains is an important step in spatial transcriptomics analysis, and 
improving spatial clustering methods can benefit for identifying spatial domains. In addition to eliminating noise 
in original gene expression, how to use spatial information to assist clustering has also become a new problem. A 
variety of calculating methods have been applied to spatial clustering, including contrastive learning methods. 
However, existing spatial clustering methods based on contrastive learning use data augmentation to generate 
positive and negative pairs, which will inevitably destroy the biological meaning of the data. We propose a new 
self-supervised spatial clustering method based on contrastive learning, Augmentation-Free Spatial Clustering 
(AFSC), which integrates spatial information and gene expression to learn latent representations. We construct a 
contrastive learning module without negative pairs or data augmentation by designing Teacher and Student 
Encoder. We also design an unsupervised clustering module to make clustering and contrastive learning be 
trained together. Experiments on multiple spatial transcriptomics datasets at different resolutions demonstrate 
that our method performs well in self-supervised spatial clustering tasks. Furthermore, the learned representa
tions can be used for various downstream tasks including visualization and trajectory inference.

1. Introduction

The different functions of biological tissues largely depend on the 
spatial environment in which different types of cells live, and the rela
tive position of gene transcription and expression in tissues is crucial for 
analyzing their biological function and describing biological interaction 
networks [1]. Spatial transcriptomics technologies can not only obtain 
transcriptomic information of the research subject, but also preserve its 
spatial information, providing valuable insights for research and diag
nosis. Spatial transcriptomics technologies are generally classified to 
two types: one is based on in situ hybridization and fluorescence mi
croscopy spatial transcriptomics methods (including seqFISH [2,3], 
seqFISH+ [4], MERFISH [5,6], STARmap [7], and FISSEQ [8]) for 
high-resolution and accurate detection of the spatial distribution of 
transcripts, but they are limited in the total number of detectable RNA 

transcripts; the other is based on next-generation sequencing spatial 
transcriptomics methods, such as ST [9], Slide-seq [10], Slide-seqV2 
[11], HDST [12], and 10x Visium (https://www.10xgenomics.com/), 
which use spatial barcodes to capture mRNA transcripts across tissue 
cross-sections, enabling capture of RNA expressed on the entire tran
scriptome scale in space, but each capture point (radius 10–100 µm), i.e. 
spot, contains multiple cells. These spatial transcriptomics technologies 
make it easier to reveal the complex transcriptome structure of tissues 
and the pathogenesis of disease [13,14]. An important task of spatial 
transcriptomics analysis is to perform unsupervised clustering [15,16], 
which is to assign cells or spots to spatial domains without resorting to 
labels. At the same time, a series of problems such as high-dimensional 
sparsity of gene expression data, frequent drop-out events that introduce 
erroneous zero values during sequencing, difficulty in effectively uti
lizing spatial location information, and differences in spatial 
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transcriptomics data caused by differences in sequencing technologies 
make unsupervised clustering analysis methods for spatial tran
scriptomics more challenging and meaningful [17–19].

Currently, many research methods have considered incorporating 
spatial information into clustering analysis and have developed different 
methods for identifying spacial domains. BayesSpace and Giotto use 
statistical method to increase the resolution of spot-resolution spatial 
transcriptomics data through spatial neighbors [20,21]. However, these 
probabilistic-based models cannot effectively learn the latent represen
tations of cells or spots. Therefore, methods based on deep learning have 
been introduced. SEDR [22] learns latent gene representations through 
Auto-Encoder and reconstructs the spatial structure through Variational 
Graph Auto-Encoder. SpaGCN [23] uses histopathological images and 
spatial locations to build relationships between spots and uses graph 
convolutional network (GCN) [24] to learn latent representations. 
STAGATE [25] combines cell location and gene expression to learn node 
representations through Graph Attention Auto-Encoder, adaptively 
learns the similarity between adjacent nodes. CCST [26] uses the DGI 
[27] model to maximize mutual information and uses the GCN encoder 
to aggregate features of adjacent nodes. As deep learning develops, 
contrastive learning methods have attracted researchers’ attention due 
to their ability to extract advanced semantic features from data. 
Contrastive learning is a discriminative learning method in which 
similar samples learn similar representations, while dissimilar samples 
learn representations away from each other. The initial design of 
contrastive learning was to train a representation extraction model by 
constructing positive pairs and negative pairs[28]. For each sample, the 
positive samples are obtained by this sample through data augmenta
tion, and the negative samples are the other samples. These models aim 
to learn representations by maximizing the similarity between positive 
pairs and minimizing the similarity between negative pairs. ConST [29]
extracts the morphological features of each spot from histopathological 
images through pre-trained Masked Autoencoder model [30], and then 
integrates gene expression and pre-extracted morphological features to 
feature vectors, which are input to GCN to learn latent representations. 
GraphST [31] designs a contrastive learning strategy that captures both 
the local and global context of nodes. ConGI [32] also introduces his
topathological images and designs three contrastive loss functions. 
However, existing methods use data augmentation to construct positive 
pairs and negative pairs, and commonly used data augmentation 
methods for graph structures and gene expression matrices, such as 
adding and removing edges, randomly masking and shuffling, inevitably 
destroy the biological meaning contained in the original structure which 
makes positive pairs can not be constructed effectively. Spatial tran
scriptomics has great prospects for development [33–35], and technical 
methods are constantly being updated on various platforms. Differences 
in technology across platforms can result in differences in data, while the 
ability of existing methods to be compatible with data from different 
platforms is not outstanding.

Based on the issues mentioned above, we propose a self-supervised 
contrastive learning model AFSC for spatial clustering. Existing 
methods all follow the common contrastive learning process based on 
data augmentation, which ignore the particularity of spatial tran
scriptomics data. Our method without data augmentation can effectively 
improves the shortcomings of existing methods in this regard, which can 
more play the advantages of contrastive learning in spatial clustering 
tasks. By integrating spatial positions and gene expression, we learn 
latent representations using a contrastive learning model with a specific 
positive pairs selection strategy. We introduce a clustering loss in the 
unsupervised clustering module to guide the training process, along with 
the contrastive loss, which makes the learned latent representations can 
be optimized for clustering tasks. In order to demonstrate the perfor
mance of our method, we conducted multiple experiments on seven 
datasets at spot and single-cell resolution. We’ve selected evaluation 
metrics to evaluate from different perspectives. Specifically, we use 
Adjusted Rand index (ARI) [45], Normalized Mutual Information (NMI) 

[46], Fowlkes-Mallows index (FMI) [47] and Jaccard index [48,54] to 
evaluate datasets with manual annotation, as well as Silhouette Coeffi
cient (SC) [49] and Davies-Bouldin index (DBI) [50], to evaluate data
sets without manual annotation. We also conducted experiments on 
runtime and max RAM usage of GPU on two datasets as shown as in the 
Supplementary Material Table S1. Experiments and comparative anal
ysis on multiple datasets indicate that our method performs well in 
identifying spatial domains, and overall, our method is more universal 
for different datasets. Moreover, the representations learned from our 
model can also be applied to downstream tasks such as visualization and 
trajectory inference.

2. Datasets and materials

2.1. Dataset description

To evaluate and test the performance of our model, we collect seven 
datasets from multiple public platforms, including 12 slices of the 
human dorsolateral prefrontal cortex (DLPFC) acquired with 10x Visium 
(https://www.10xgenomics.com/), the breast invasive carcinoma 
(BRCA) acquired with 10x Visium, the anterior of the mouse brain tis
sues (MBA) acquired with 10x Visium, the mouse olfactory bulb (MOB) 
dataset from Stereo-seq [41], and the mouse hypothalamic preoptic area 
acquired with MERFISH [6], the mouse cortex subventricular zone 
(cortex_SVZ) and mouse olfactory bulb (OB) independent tissues ac
quired with seqFISH [51]. We choose datasets covering different reso
lutions, large variations in gene numbers, normal and disease tissues. We 
treat the processing of cells and spots equally for the two different res
olution datasets, which also shows the excellent versatility and flexi
bility of our model.

2.2. Dataset preprocessing

From the obtained spatial transcriptomics data, we extracted the 
required information, including gene expression and spatial co
ordinates. First, a raw gene expression matrix is constructed based on 
gene expression, with cells (spots) and gene expression being the row 
and column, respectively. The raw gene expression matrix contains a lot 
of noise, and therefore data preprocessing is necessary. To deal with the 
high-dimensional sparsity of gene expression, we first remove genes that 
were expressed in less than three cells (spots) and then normalize and 
standardize the data with Scanpy package [36]. Finally, principal 
component analysis (PCA) is used to obtain the feature matrix X. Since 
our model is based on the graph constructed by the cells (spots) for 
graph self-supervised clustering, a graph that can better exhibit the re
lationships between the cells (spots) should be constructed based on 
spatial locations. We treat the cells (spots) as nodes, and used spatial 
coordinates to calculate the distances between all cells (spots). We add 
edges to each cell (spot) with its k nearest neighbors, and obtain an 
adjacency matrix. Then, we use all the distances between each node and 
its k nearest neighbors to get the distance distribution (Fig. 1a). The 
threshold is set up based on the distribution to make sure some farther 
neighbors won’t be selected. We weight the edges based on the distances 
to obtain a weighted adjacency matrix A. Finally, the feature matrix X is 
treated as the attribute of nodes, and we obtain a weighted adjacency 
graph, where nodes represent all cells (spots), and edges represent 
neighbour relationships between all cells (spots).

We set the dimension of PCA as 100 for MERFISH dataset and 1000 
for the other datasets since only 160 genes were captured in MERFISH. 
We set k = 10for k nearest neighbors as default. The median of distance 
distribution is set to be the default of threshold. All these parameters can 
be easily adjusted accordingly to meet the requirements of specific 
datasets.
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3. Model and implementation

3.1. Overview of AFSC

Our model is based on contrastive learning, using a Siamese network 
to learn embeddings, selecting the positives sets of nodes to define the 
contrastive loss [37], and introducing the clustering loss to construct the 
total loss function. As shown in Fig. 1, after the preprocessing described 
above, we obtain a weighted adjacency matrix A and feature matrix X, 
which are respectively input into the two encoders fξ and fθ of the Sia
mese network. The two encoders learn the node embedding Hξ and Hθ, 
respectively, and the learned embeddings along with spatial locations 
are used to select the positives set Pi of each node. Then, Hθ is passed 
through the predictor to obtain Zθ, and the contrastive loss Lcon is 
designed by Zθ and Hξ. The loss function is to close the cosine distance 
between each node and its positives, achieving the goal of contrastive 
learning without data augmentation or negative pairs. At the same time, 
Hθ is used to calculate the clustering loss Lcluster and to perform clus
tering. The overall loss is calculated to guide the training, and the final 
clustering result is obtained after training. The learned embedding Hθ 

can be applied to other downstream tasks.

4. Contrastive learning model

Siamese network learning latent representations.
As mentioned in the Introduction, data augmentation used by cur

rent contrastive learning methods will destroy the biological meaning 
contained in the original graph structure and gene expression matrix, 
such as adding and removing edges, randomly masking and shuffling 
gene expression matrix. Gene expression feature of cells are significant 
for distinguishing cell types, and due to the technical limitations, there 
are inevitably noises in gene expression data. In this case, data 
augmentation methods of gene expression matrix can seriously damage 
the feature of cells, which makes it impossible to construct high-quality 

positive samples. Therefore, we design a contrastive learning method 
that does not require data augmentation or negative pairs, which means 
each node only need to learn from its positives. In traditional contrastive 
learning frameworks, negative examples are the driving force behind 
model learning, because if the objective function only pulls the features 
of the sample and its positive samples closer, the model will easily 
collapse and the features of all samples will become the same. BYOL [44]
was able to successfully design a contrastive learning model without 
negative samples for Computer Vision, which shows that it is possible to 
discard negative samples if positive samples can be similar yet diverse 
with each sample. Inspired by this, we use a Siamese network to make 
sure that each node can learn similar yet diverse representations with 
their positives.

Siamese network refers to two networks with the same structure, but 
their parameters are different. In this case, teacher encoder fξ and stu
dent encoder fθ. fξ and fθ are both one-layer GCN with the same structure 
and randomly initialized separately. The parameters θ of fθ are updated 
via gradient descent, while the parameters ξ of fξ are updated by θ via a 
momentum update coefficient τ as follows: 

ξ←τξ+(1 − τ)θ (1) 

The update of ξ is slower and smoother, which effectively prevents 
the collapse phenomenon that may occur during the learning process, 
where the model cannot learn meaningful representations. After input
ting the weighted adjacency matrix A and feature matrix Xobtained from 
preprocessing, the two encoders fξ and fθ respectively learn node rep
resentations Hξ and Hθ as follows: 

Hξ = fξ(X,A) (2) 

Hθ = fθ(X,A) (3) 

The i-th row of Hξ and Hθ, i.e., hξ
i and hθ

i , are the different embed
dings of node vi ∈ V learned by different encoders. For any node vi, its 
positives set Pi is determined by hξ

i and hθ
i . qθ is a predictor defined as a 

Fig. 1. A The overall architecture of AFSC. This figure shows how we obtain a weighted adjacency graph G(X,A) = (V,E) from spatial transcriptomics using raw 
gene expression and spatial locations. The feature matrix X is obtained after preprocessing the raw gene expression and the weighted adjacency matrix A is obtained 
based on the distances between cells(spots) to describe their spatially relations. (b) Contrastive learning model. This figure shows the contrastive learning model 
based on a Siamese network. fξ and fθ are two encoders of this network, and qθ is a predictor. Hξ and Hθ are used to design the positive set Pi of any node vi, and Zθ 

and Hξ are used to calculate contrastive loss Lcon. (c) Strategy for selecting positives sets. This figure shows nodes distribution on representation space, and existing 
edges show node relationships on the adjacency graph G. (d) Unsupervised clustering. This figure shows the introduced clustering loss Lcluster is the Kullback-Leibler 
Divergence of two distributions. High-resolution images are available for viewing at https://github.com/bioszhr/AFSC/tree/main/results/figures.
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multi-layer perceptron (MLP) with batch normalization, and Zθ is ob
tained by applying the predictor to Hθ, where zθ

i is the predicted value of 
hθ

i , as follows: 

Zθ = qθ
(
Hθ) (4) 

The difference between Zθand Hξcan be further enlarged by the 
feature transformation through the predictor. Considering that the dif
ference between Zθ and Hξ generated by the teacher encoder fξ above has 
been further enlarged. At this point, for node vi ∈ V, the two features zθ

i 

and hξ
i have been similar yet diverse. Based on this, we define the 

contrastive loss function Lcon as Eq. 5, aiming to minimize the cosine 
distance between each node and its positives, i.e., to minimize the cosine 
distance between zθ

i and hξ
j as much as possible, where vj is any node in 

Pi. 

Lcon = −
1
N

∑N

i=1

∑

vj∈Pi

zθ
i h

ξ
j
T

⃦
⃦zθ

i

⃦
⃦
⃦
⃦
⃦hξ

j

⃦
⃦
⃦

(5) 

Strategy for selecting positives set.
The model above can only ensure that the samples can learn similar 

yet diverse features from their positive samples, the strategy for select
ing positives set is crucial for contrastive learning. For a query node vi, 
the cosine distance between vi and all other nodes, i.e., the cosine sim
ilarity between hθ

i and hξ
j is calculated: 

sim
(
vi, vj

)
=

hθ
i • hξ

j
⃦
⃦hθ

i

⃦
⃦
⃦
⃦
⃦hξ

j

⃦
⃦
⃦
, ∀vj ∈ V (6) 

Given the similarity information, we calculate the k-nearest neigh
bors set Ni of each node vi. Nodes in Ni are adjacent to vi in the repre
sentation space, making the set Ni a reasonable choice for positives set of 
vi. However, just considering the nearest neighbors in the representation 
space may not only ignore the local semantics of the graph which means 
neighbors of nodes in the adjacency graph, but also ignore the global 
semantics of the graph which means the possible clustering results. 
Based on this, we design Local Positives Li and Global Positives Gi to 
capture the positives set of node vi in local and global semantic contexts, 
respectively (Fig. 1c). 

Li = Ni

⋂
Ai (7) 

where Ai refers to the neighbors of vi in the adjacency graph G. Li con
siders local semantic context between nodes based on Ni. 

Gi = Ni

⋂
Ci (8) 

where Ci refers to the nodes that are clustered by K-means and are in the 
same class as vi. Ci considers global semantic context based on Ni. 
Finally, the positives set Pi of node vi is designated as follows: 

Pi = Li

⋃
Gi (9) 

4.1. Unsupervised clustering loss

Since the graph clustering task is unsupervised, it is impossible to 
provide feedback during training on whether the learned representa
tions has been optimized well. In order to make the generated node 
embedding better serve the clustering task, our model incorporates 
clustering into the training based on DAEGC [38], optimizing the 
training of the encoder through clustering loss. Using the embedding Hθ 

as Eq.3, k-means is first applied to initialize the clustering. This algo
rithm generates several clusters and obtains centroid of each cluster, and 
the embedding of the centroid of cluster u denotes as μu. One way to 
solve unsupervised learning tasks is to generate "soft" labels and then use 
these labels to supervise training. Here, soft clustering distribution qiu 

and auxiliary distribution piu are defined, and the KL divergence is used 
to narrow the distance between the two distributions, simultaneously 
optimizing clustering and embedding: 

Lcluster = KL(P ‖ Q) =
∑

i

∑

u
piulog

piu

qiu
(10) 

Firstly, based on the t-distribution, we use qiu to measure the simi
larity between the embedding zi of node vi and the centroid μu of a 
cluster. Then, we can calculate the probability that node vi belongs to 
cluster u, which can be regarded as the soft clustering distribution of 
each node: 

qiu =

(
1 + ‖zi − μu‖

2
)− 1

∑
k

(
1 + ‖zi − μk‖

2
)− 1 (11) 

Furthermore, we need to force each node to be closer to its corre
sponding cluster centroid, i.e., minimize intra-cluster distance and 
maximize inter-cluster distance. Therefore, we define the auxiliary dis
tribution piu to refine clustering: 

piu =
q2

iu∕
∑

iqiu
∑

k
(
q2

ik∕
∑

iqik
) (12) 

In the auxiliary distribution, squaring can achieve an “emphasis” 
effect to highlight the role of high-probability “confident” nodes. During 
the training, the distribution actually acts as labels. Finally, we use 
Eq.10 to fit the difference between the two probability distributions to 
reach the goal of unsupervised clustering. Eq.10 also guides the entire 
training as the clustering loss Lcluster.

4.2. The overall goal of the model

The embedding Hθ and the contrastive loss Lcon are obtained in the 
contrastive learning module, where Hθ is used in the unsupervised 
clustering module to obtain the clustering loss Lcluster, which together 
with Lcon form the total loss function Lall as follows: 

Lall = Lcon + Lcluster (13) 

After training is done, based on the soft clustering distribution qiu, we 
obtain the estimated label si for each node, which is the clustering result: 

si = argmax
u

qiu (13) 

5. Experiment results

5.1. Experimental setups

5.1.1. Evaluation criteria
To validate the performance of clustering, we use internal metrics, 

ARI, NMI and FMI, to measure the similarity between clustering results 
and manual annotation, as well as external metrics, SC and DBI, to 
measure the overall clustering performance without manual annotation. 
The brief conceptual explanations of each metric are showed in Sup
plemental Material.

5.1.2. Baseline methods
Several baseline methods were selected to evaluate our model on 

different datasets, including Seurat [39], Louvain, stLearn [52], SEDR, 
SpaGCN, Giotto, BayesSpace, Stardust [53], CCST, conST, conGI, 
GraphST and ConSpaS [42]. These methods cover probability models 
based on early machine learning, graph neural network models based on 
deep learning, and recent models based on contrastive learning. As for 
Seurat, stLearn, SEDR, SpaGCN, Giotto, BayesSpace, Stardust, CCST, 
conST, ConSpaS, we use default parameters and settings in the whole 
program. As for Louvain, we use our preprocessing method and then use 
Louvain in clustering. As for conGI and GraphST, we use Louvain 
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algorithm [40] in clustering and default parameters and settings in other 
parts of the program.

6. Main results

6.1. Application to spatial clustering at spot resolution

We first evaluate spatial clustering performance of our model on the 
spatialLIBD human dorsolateral prefrontal cortex (DLPFC) 
(https://www.10xgenomics.com/). This dataset includes 12 tissue sli
ces, each depicting four or six neuronal layers and white matter (WM). 

The number of spots in each slice ranged from 3460 to 4789, with 
33,538 genes captured. Boxplots were created for ARI, NMI, and FMI 
(Fig. 2a) to compare results of the 12 slices. AFSC achieve the highest 
median ARI and FMI values and the second highest median NMI value. 
We also visualize the results of tissue slice 151508 (Fig. 2b & Supple
mental Figure S1), and CCST, conGI, and AFSC restore a clear tissue 
structure matching the structure of manual annotation.

Next, we analyze the breast invasive carcinoma (BRCA) and the 
anterior of the mouse brain tissues (MBA) from 10x Visium 
(https://www.10xgenomics.com/). The BRCA dataset consists of 20 
regions and the number of spots is 3798, with 36,601 genes captured. 

Fig. 2. Spatial domains detected in datasets at spot resolution. (a) Boxplots of ARI, NMI and FMI scores of methods applied to the 12 DLPFC slices. (b)Visu
alization results of manual annotation and methods applied to the tissue slice 151508 of DLPFC dataset. High-resolution images are available for viewing at https:// 
github.com/bioszhr/AFSC/tree/main/results/figures.
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The MBA dataset consists of 52 regions and the number of spots is 2695, 
with 32,285 genes captured.

On the BRCA dataset, AFSC achieve the highest ARI, NMI and FMI 
values. We also conduct visualization experiments on this dataset 
(Fig. 3a & Supplemental Figure S2) and provide the visualization results 
of the manual annotation for comparison. The visualization results show 
AFSC can restore clear organizational structures. Taking both clustering 
metrics and visualization results into consideration, AFSC outperforms 
other baselines on this dataset. On the MBA dataset, all methods perform 
bad (Fig. 3b & Supplemental Figure S3), perhaps due to the complex 

structure of this dataset, making it challenging to learn effective repre
sentations. Nevertheless, AFSC achieve the highest ARI and FMI values 
and the second highest NMI value. Overall, AFSC is proved to be more 
effective on these datasets at spot resolution.

In addition to these datasets, we also conduct experiments on MOB 
dataset [41] from Stereo-seq without manual annotation. This dataset 
consists of 7 regions and the number of spots is 19,109, with 14,376 
genes captured. AFSC achieve the highest SC value and the best DBI 
value (Fig. 4), and the visualization results show that SEDR and AFSC 
can restore structure of mouse olfactory bulb tissue.

Fig. 3. Visualization results of datasets at spot resolution. (a) Visualization results of manual annotation and methods applied to the BRCA dataset. (b) Visu
alization results of manual annotation and methods applied to the MBA dataset. High-resolution images are available for viewing at https://github.com/bioszhr/A 
FSC/tree/main/results/figures.
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Application to spatial clustering at single-cell resolution.
In order to validate the versatility of AFSC, experiments are also 

conducted on the datasets that reach single-cell resolution. The MER
FISH dataset [6] includes multiple slices, and we choose animal No.18 
and bregma= 0.11, which is divided into 15 regions. The number of cells 
is 4975, with 160 genes captured. The seqFISH dataset [50] includes the 
mouse cortex subventricular zone (cortex_SVZ), which is divided into 26 
regions, and the mouse olfactory bulb (OB) independent tissues, which is 
divided into 25 regions. The cell number of cortex_SVZ dataset is 913 
and the cell number of OB dataset is 2050, both with 10,000 genes 
captured.

On the MERFISH dataset, due to technical limitations, expression 
counts for only 160 genes were collected, most models could not learn 
effective representations. On the MERFISH and two seqFISH datasets, 
AFSC achieves the second best SC value and DBI value (Fig. 5). Although 
CCST achieves the highest value, it is obvious that CCST couldn’t restore 
the structure of mouse hypothalamic preoptic region from visualization 
results of MERFISH dataset (Fig. 5a). Consider metrics and visualization 
results together, AFSC performs well on dataset at single-cell datasets 
which indicates that AFSC has good universality and generalization 
compared to other methods, and will not be greatly affected by the 
technology. This demonstrates that our handling of spatial positions and 
gene expression is reasonable, and even in datasets with extremely few 
genes and unclear tissue structure, we can still learn effective repre
sentations without being greatly affected by data noise.

Latent representations learned from AFSC being applied to down
stream tasks.

Our model is based on deep learning, where the module for learning 
latent representations is a critical component. We aim to learn effective 
latent representations from spatial locations and raw gene expression, 
which not only affect clustering performance but also greatly impact 
other downstream tasks.

To demonstrate that the latent representations learned by our model 
can be effectively applied to different downstream tasks, we visualize 
the learned high-dimensional representations using uniform manifold 
approximation and projection (UMAP) [43] and construct trajectory 
inference graphs using the partition-based graph abstraction (PAGA) 
algorithm in the Scanpy package. We compare our model with baselines 
based on deep learning. The latent representations learned from our 

model are obtained after the whole training progress, including the Si
amese network and unsupervised clustering.

We first perform UMAP visualization and PAGA trajectory inference 
on the tissue slice 151676 of DLPFC dataset, as shown in Fig. 6. We also 
conduct experiments on the mouse olfactory bulb (OB) independent 
tissues at single-cell resolution, as shown in Supplemental Figure S4. 
This dataset has more regions and a more complex tissue structure than 
the DLPFC dataset. Compared with the UMAP visualizations of the other 
methods, AFSC can clearly distinguish most of the spots, while some 
methods exhibit mixed spots from different clusters. We further generate 
PAGA graphs on tissue slice 151676, which displays clear layer structure 
of human dorsolateral prefrontal cortex. CCST and AFSC generate clear 
PAGA graphs that show the developmental trajectories between 
different layers with some correlation between adjacent layers. Results 
of these experiments indicate that our model can learn effective latent 
representations on different types of datasets.

6.2. Ablation study

We design a set of ablation study on the tissue slice 151676 of the 
DLPFC dataset (Table 1). τ = 0 sets the momentum update coefficient 
of the Siamese network to 0, i.e., keeping parameters of the teacher 
encoder and the student encoder identical during training. τ = 1 sets 
the momentum update coefficient of the Siamese network to 1, i.e., 
keeping parameters of the teacher encoder frozen after random initial
ization. w/ SGD allows parameters of the teacher encoder in the Siamese 
network to be updated with gradient descent. random_pos randomly 
selects k positives for each node. knn_pos selects the k-nearest neighbors 
on the representation space of each node as positives. w/o L_cluster 
removes the clustering loss and only uses the contrastive loss to train the 
contrastive learning model, and the trained Hθ is directly used for K- 
means clustering.

The experimental results show that all incomplete models have 
significantly decreased in three indicators, indicating that each 
component of our model plays an indispensable role, some of them are 
considerable for our model. The first three experiments are all related to 
the Siamese network model, indicating that if the representations 
learned by teacher encoder and student encoder are completely the 
same, the result of contrastive learning will be poor, and if the difference 

Fig. 4. Visualization results of MOB datasets. Visualization results of methods applied to MOB dataset. High-resolution images are available for viewing at htt 
ps://github.com/bioszhr/AFSC/tree/main/results/figures.
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of representations is too large, it will also affect the model’s perfor
mance. Evidently, our model can make the difference between the 
representations of nodes and their positives just right to maximize the 
advantages of contrastive learning. random_pos decrease the most 
among all models, indicating that the positives sets are crucial in our 
contrastive learning design. Using contrastive loss based on random 
positives can result in collapse phenomenon during training. knn_pos is 
the model with the smallest decrease in performance, indicating that the 
neighbors of nodes in the representation space can be used as positives 
sets, although there is some noise in it. Our strategy for designating 
positives sets can effectively eliminate these redundant nodes and 
improve the performance of the model. w/o L_cluster indicates that 
introducing clustering loss into training can improve clustering. 
Clustering-oriented training will be more effective than training with 
only contrastive loss.

7. Conclusion and discussion

Unsupervised clustering methods for identifying accurate spatial 
domains is critical for researching organizational functions of organ
isms. In this paper, we propose a new self-supervised spatial clustering 
method AFSC, which integrates spatial information and gene expression 
to learn latent representations without negative pairs or data 

augmentation. We also introduce a clustering loss, which allows the 
learned latent representations to be optimized for the clustering task, to 
guide training together with the contrastive loss. Multiple experiments 
demonstrate the versatility and validity of our method on different 
datasets in the task of self-supervised spatial clustering. Moreover, the 
finally learned representations from the model can also be used in other 
downstream tasks, such as visualization and trajectory inference.

Despite of good performance of AFSC, there is still room for 
improvement. Since many datasets do not provide histopathological 
images, we did not introduce images to ensure the versatility of the 
model. While existing studies have demonstrated that histopathological 
images are effective for spatial clustering, and as technology continues 
to evolve, it is likely that more datasets will provide images. Our work 
has been shown to outperform some methods using histopathological 
images, and in subsequent work, we will introduce histopathological 
images to further improve our model and adapt our methods to keep up 
with the trend of technology updates.
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