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ABSTRACT
Sequencing environmental DNA (eDNA) is increasingly being used as an alternative to
traditional morphological-based identification to characterize biological assemblages
and monitor anthropogenic impacts in marine environments. Most studies only assess
eDNA which, compared to eRNA, can persist longer in the environment after cell
death. Therefore, eRNA may provide a more immediate census of the environment
due to its relatively weaker stability, leading some researchers to advocate for the use of
eRNA as an additional, or perhaps superior proxy for portraying ecological changes. A
variety of pre-treatment techniques for screening eDNA and eRNA derived operational
taxonomic units (OTUs) have been employed prior to statistical analyses, including
removing singleton taxa (i.e., OTUs found only once) and discarding those not present
in both eDNA and eRNA datasets. In this study, we used bacterial (16S ribosomal
RNA gene) and eukaryotic (18S ribosomal RNA gene) eDNA- and eRNA-derived data
from benthic communities collected at increasing distances along a transect from an
oil production platform (Taranaki, New Zealand). Macro-infauna (visual classification
of benthic invertebrates) and physico-chemical data were analyzed in parallel. We
tested the effect of removing singleton taxa, and removing taxa not present in the
eDNA and eRNA libraries from the same environmental sample (trimmed by shared
OTUs), by comparing the impact of the oil production platform on alpha- and beta-
diversity of the eDNA/eRNA-based biological assemblages, and by correlating these to
the morphologically identified macro-faunal communities and the physico-chemical
data. When trimmed by singletons, presence/absence information from eRNA data
represented the best proxy to detect changes on species diversity for both bacteria and
eukaryotes. However, assessment of quantitative beta-diversity from read abundance
information of bacteria eRNAdid not, contrary to eDNA, reveal any impact from the oil
production activity. Overall, the data appeared more robust when trimmed by shared
OTUs, showing a greater effect of the platform on alpha- and beta-diversity. Trimming
by shared OTUs likely removes taxa derived from legacy DNA and technical artefacts
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introduced through reverse transcriptase, polymerase-chain-reaction and sequencing.
Findings from our scoping study suggest that metabarcoding-based biomonitoring
surveys should, if funds, time and expertise allow, be assessed using both eDNA and
eRNA products.

Subjects Bioinformatics, Environmental Sciences, Marine Biology, Molecular Biology
Keywords Biomonitoring, Oil and gas activities, Benthic ecology, High-throughput sequencing,
Bacteria (16S), Eukaryotes (18S), Method testing, eDNA, eRNA

INTRODUCTION
Environmental DNA (eDNA) metabarcoding, defined here as the combined use of
universal DNA barcodes and high-throughput sequencing (HTS) to characterize biological
communities from genetic material collected from environmental samples (sediment,
water, etc.), is increasingly being used to assess biodiversity and anthropogenic impacts
in terrestrial (e.g., Yu et al., 2012; Taberlet et al., 2012; Ji et al., 2013; Beng et al., 2016) and
aquatic environments (e.g., Carew et al., 2013; Chariton et al., 2014; Visco et al., 2015;
Dowle et al., 2015; Pochon et al., 2015; Pawlowski et al., 2016a; Pawlowski et al., 2016b;
Abad et al., 2016; Lanzén et al., 2016). Metabarcoding is a cost-effective method that can
rapidly and simultaneously target multiple species to complement traditional ecosystem
biomonitoring approaches (Valentini, Pompanon & Taberlet, 2009 Bourlat et al., 2013; Ji et
al., 2013; Bohmann et al., 2014). It also allows microbiota that are difficult or impossible
to identify morphologically to be characterized. Micro-organisms are at the bottom of the
food chain, have shorter life cycles, and often have a higher diversity and abundance than
macro-fauna. They may therefore be a better proxy for evaluating environmental impacts,
and their use has been advocated for biomonitoring (Bourlat et al., 2013; Pawlowski et
al., 2014; Pawlowski et al., 2016b; Pawlowski, Lejzerowicz & Esling, 2014; Lejzerowicz et al.,
2015; Dowle et al., 2015; Lau et al., 2015).

Most metabarcoding monitoring studies use eDNA to characterize biological
communities. A limited number have also evaluated data from co-extracted eRNA
products (e.g., Pawlowski et al., 2014; Pawlowski et al., 2016a; Visco et al., 2015; Dowle et
al., 2015; Pochon et al., 2015; Laroche et al., 2016). Because RNA deteriorates rapidly after
cell death, eRNA likely provides a more accurate representation of viable communities
(Mengoni et al., 2005). Blazewicz et al. (2013) suggested that the relative concentration
of RNA in the environment provides a robust indication of the growth and adaptation
potential of microbial communities. In general, when environmental metabarcoding
studies have used both eDNA and eRNA they have found slightly stronger correlations
between community data generated from eRNA and environmental conditions (Pawlowski
et al., 2014; Pawlowski et al., 2016a; Visco et al., 2015; Dowle et al., 2015; Pochon et al., 2015;
Laroche et al., 2016). However, working with eRNA adds additional complexities and
expenses related to sampling and laboratory analysis including extra precaution during
sampling, transport and storage to avoid degradation. A greater understanding of the
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potential benefits of using eDNA versus eRNA is therefore desirable prior to incorporating
metabarcoding methods into environmental monitoring programs.

Previous studies assessing eDNA and eRNA extracted from the same environmental
sample have noted differing diversities of operational taxonomic units (OTUs) recovered
from assessment of either molecule. Greater taxon richness derived from eDNA data can be
explained through the detection of DNA from dead organisms as well as extracellular DNA
(free-floating or legacyDNA) that has bound to sediment or other particles. However,many
studies report an important number of taxa only detected from eRNA (e.g., Pawlowski et
al., 2014; Pawlowski et al., 2016a; Pochon et al., 2015; Laroche et al., 2016; Hu et al., 2016).
These OTUs may be the result of PCR/sequencing artefacts or the detection of rare but
very active taxa. To date, most studies, have dealt with this by only retaining the data of
taxa present in both eDNA/eRNA datasets across the entire sample set (Pawlowski et al.,
2014; Pawlowski et al., 2016a;Dowle et al., 2015; Pochon et al., 2015; Laroche et al., 2016), or
within the same sites (Hu et al., 2016).

A further data treatment technique which is commonly applied to datasets, is the use of
minimal DNA sequence read abundance thresholds for each unique taxon (i.e., data related
to any particular OTU is discarded if insufficient numbers of that taxon are detected in
the overall dataset, typically 2–10 reads). This is generally done to reduce sequencing
artefacts (Hunt et al., 2013; Charvet, Vincent & Lovejoy, 2014; Visco et al., 2015). The
methods applied to the pre-treatment of metabarcoding data (i.e., use of a minimum
abundance removal threshold or dataset trimming based on shared-taxa abundances) can
have important implications on the final resolution (number of available DNA sequence
reads and/or taxa), sensitivity (smallest perceptible effect) and accuracy (confidence level)
of the data used to assess anthropogenic impacts.

The aims of this study was to compare the use of co-extracted eDNA and eRNA products
to assess the benthic environment around an offshore oil production platform, and to
determine whether eDNA- or eRNA-derived taxa provide more accurate data for assessing
shifts in bacterial and micro/meio-eukaryotic communities. We also evaluated the effects
of two different trimming methodologies: one using a minimum read abundance threshold
per taxon (i.e., ‘trimmed by singletons’), and one removing all taxa not simultaneously
recovered from both eDNA and eRNA products of the same environmental sample
(i.e., ‘trimmed by shared OTUs’). We hypothesized that: (1) bacterial and eukaryotic
datasets with taxa trimmed by shared eDNA and eRNA products would yield more
significant community shifts in response to the effect of the production platform from
the removal of most irrelevant OTUs; and (2) that the use of eRNA-derived bacterial
and eukaryotic taxa would show stronger correlations with environmental variables
and macro-faunal communities than eDNA-derived taxa, as it mostly depicts the living
community.

MATERIAL AND METHODS
Field sampling
The study area was located 80 km off the west coast of New Zealand’s North Island in the
South Taranaki Bight (latitude: −39.97295◦, longitude: 173.2997◦; Fig. 1A). In this region,
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Figure 1 Site map indicating: (A) The study site situated in the Taranaki Bight (Maari facility, black
circle); (B) The Floating Production Storage and Offloading (FPSO) platform. Sampling stations are in
full circle, with numbers corresponding to the distance to the platform along the major water flow axis.
Modified from Johnston et al. (2014).

the seabed has a fairly uniform muddy texture with water depth ranging between 100 and
125 m. Biological samples (bacterial, micro-eukaryotic and macro-faunal assemblages)
and physico-chemical data were collected along transects radiating to the East–West axis
of one Floating Production Storage and Offloading (FPSO) platform. The FPSO has been
in activity since 2009 and has been processing and storing the well fluids coming from
a wellhead platform (WHP) situated 1.3 km North-West. The main discharges from the
FPSO are production waters (formation water and additives) and operational discharges
(sewage, deck drainage, etc.; (McConnell et al., 2014)). The FPSO site is characterized by
a prevalence of anthropogenic debris (e.g., paint chips, construction material, etc.) and
coarser, hard-packed and dark-coloured sediments in its vicinity (≤250 m), possibly
indicating lower oxygenation level, elevated barium concentrations radiating away from
the production water and drilling discharge point, and differences in the structure of
macro-faunal assemblages on the east transect, between the near field station (≤250 m)
and far-field stations (>250 m; Johnston, Elvines & Newton, 2015).

The sampling methodology was based on the Offshore Taranaki Environmental
Monitoring Protocol (OTEMP; Johnston et al., 2014), which consisted of a distance-graded
sample station allocation. Sampling stations were overlaid along the major flow axis with
the FPSO located at the center (Fig. 1B). The East–West axis constitutes the main trajectory
along which the deposition of drilling mud and cuttings occurs, with the strongest currents
usually flowing in a westward direction at a mean speed of 0.12 ms−1 (McConnell et al.,
2014). Six stations were sampled at approximately 250, 500 and 1,000 m from the FPSO.

Sediment samples were collected in triplicate at 6 stations for a total of 18 samples, on the
15th and 16th of March 2015 (Table S1). Samples were collected with a modified stainless
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steel double van Veen grab as described in Laroche et al. (2016). To avoid creating a bow
wake effect on the seafloor, the grab sampler was deployed at a constant rate of 0.3 m/s.
Recovery of the sampler was similarly processed to avoid displacing superficial sediments.
Once retrieved, the top sediment layer was inspected and samples only taken when the
surface was undisturbed. The full content of the first grab compartment was sieved (500
µm) and preserved in 70% ethanol for analysis of macro-faunal communities. Subsamples
(2 g) of undisturbed surface sediment (approximately 1 cm depth) were collected from
the second grab for eDNA/eRNA metabarcoding. These samples were placed in Life
GuardTM Soil Preservation Solution (5 mL; MoBio, New York, NY, USA) to preserve
microbial and environmental RNA in stasis, using disposable gloves and spatulas. Samples
were stored on ice during transportation to the laboratory and kept frozen (−20 ◦C) until
further processing. The second grab compartment was subsampled for physicochemical
analyses of sediment as described in Johnston, Elvines & Newton (2015).

Laboratory analyses
Sample processing
The macro-fauna was morphologically identified to the lowest practical taxonomic level
and enumerated at the Cawthron Institute (Nelson, New Zealand). Sediment texture
and chemical analyses were also performed at Cawthron Institute, following the protocol
described in Johnston et al. (2014). A summary of all analytical methods used and their
detection limit for characterizing the physicochemical parameters of sediment is provided
in supplementary information (Table S2 ).

Total DNA/RNA co-extractions were conducted using the PowerSoilTM Total RNA
Isolation Kit and the DNA Elution Accessory Kit (MoBio, New York, NY, USA). Prior to
cDNA synthesis, RNA samples were given two consecutive DNase treatments as described
in Langlet et al. (2013). To verify the complete elimination of trace DNA, Polymerase
Chain Reaction (PCR) amplifications of 50 cycles were performed using the bacterial
forward primers S-D-Bact-0341-b-S-17: 5′-CCT ACG GGN GGCWGC AG-3′ and reverse
primers S-D-Bact-0785-a-A-21: 5′-GAC TAC HVG GGT ATC TAA TCC-3′ (Klindworth
et al., 2013), and the eukaryotic forward primers Uni18SF: 5′-AGG GCA AKY CTG GTG
CCA GC-3′and reverse primers Uni18SR: 5′-GRC GGT ATC TRA TCG YCT T-3′ (Zhan
et al., 2013). These primers produce amplicons of ca. 450 bp and were chosen for their
ability to capture most bacterial and eukaryotic (especially protist) phyla. Complementary
DNA (cDNA) synthesis from single-stranded RNA was performed using random hexamer
primers and the SuperScript R© III reverse transcriptase (Thermo Fisher Scientific Inc.,
Waltham, MA, USA), all according to the manufacturer’s manual.

PCR amplification and high-throughput sequencing
PCR amplifications were performed once for each biological replicate. Total bacterial 16S
rRNA (V3 and V4 region) and total eukaryote 18S rRNA (V4 region) were amplified
using PCR with the same primers descripted above. The primers were modified to include
IlluminaTM overhang adaptors forward: 5′-TCG TCG GCA GCG TCA GAT GTG TAT
AAG AGA CAG-3′ and reverse: 5′- GTC TCG TGG GCT CGG AGA TGT GTA TAA GAG
ACA G-3′, as described in Kozich et al. (2013). For bacteria, PCR consisted of 20 µL of
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AmpliTaq Gold R© 360 PCR Master Mix (Life Technologies, Carlsbad, CA, USA), 8 µL of
double-distilled water (ddH2O), 1 µL of each primer (10 µM), 5 µL of GC enhancer to
increase yield, 2 µL (1 µg/ µL) of Bovine Serum Albumin (BSA), and 3 µL of template
eDNA (1.58–3.96 ng/µL) or 1 µL of cDNA (10 ng/ µL). Reaction cycling conditions were:
94 ◦C for 3 min, followed by 30 cycles of 94 ◦C for 30 s, 52 ◦C for 30 s, 72 ◦C for 1 min, with
a final extension step at 72 ◦C for 5 min. For eukaryotes, PCR reactions were performed
in a reaction mixture containing 25 µL of AmpliTaq Gold R© 360 PCR Master Mix (Life
Technologies, Carlsbad, CA, USA), 13 µL of ddH2O, 1 µL of each primer (10 µM), 7 µL of
GCenhancer, 3µLof BSA, and 3µLof template eDNA(1.58–3.96 ng/µL) or 1.5µLof eRNA
(10 ng/µL). Reaction cycling conditionswere: 95 ◦C for 5min, followed by 35 cycles of 94 ◦C
for 30 s, 54 ◦C for 30 s, 72 ◦C for 45 s, with a final extension step at 72 ◦C for 7 min. All PCR
amplifications included negative controls (no template samples) to check amplification of
uncontaminated products. Amplicons were purified with Agencourt R© AMPure R© XP PCR
Purification beads (Beverly, MA, USA) following the manufacturers’ instructions. Purified
products were quantified using a Qubit R© Fluorometer (Life Technologies, Carlsbad, CA,
USA), and diluted to 3 ng/ µL using ddH2O. Each product was individually indexed
using the NexteraTM DNA library Prep Kit (Illumina, San Diego, CA, USA), pooled into
two libraries (eDNA and eRNA) and sequenced on a MiSeqTM Illumina platform using
a 2 × 250 base pair paired-end protocol at the New Zealand Genomics Ltd. (Auckland,
New Zealand). A sample containing 20 µL of ddH2O was used as a negative control
for the multiplexing and sequencing steps in each library. Internal sequencing quality
control was also ensured by including DNA samples from three previously isolated marine
species (i.e., Sabella spallanzanii, Ciona savignyi and Perna perna (Pochon et al., 2013))
that were PCR amplified, purified and quantified following the eukaryote DNA protocol
described above. These species were pooled at equimolar concentration and included in
each sequencing run. The raw sequencing reads are publicly available in the Sequence Read
Archive (SRA) under the accession numbers SRR5215546–SRR5215617. Additionally,
the filtered sequence dataset is available for download on FigShare at the following link:
https://figshare.com/articles/Laroche_et_al_2017_Maari/4600174.

Bioinformatics analysis
Using VSEARCH (Rognes et al., 2016), raw FASTQ reads were truncated from the first base
where the Q score dropped below 3, and paired-end assembled with a minimum merge
length of 200 reads. Merged reads with more than one base-pair error were discarded and
the remaining demultiplexed. The bacteria and eukaryote data were concatenated into one
file each (bacteria.fasta, eukaryote.fasta) and dereplicated. Unique sequences of bacterial
16S rRNA were compared to the Ribosomal Database Project (RDP; Cole et al., 2014),
and unique sequences of eukaryotic 18S rRNA mapped against the Protist Ribosomal 2
database (PR2; Guillou et al., 2013) for chimera detection. Prior to clustering reads into
operational taxonomic units (OTUs) with a 97% similarity, representative sequences were
sorted by abundance so that the most important sequences would be at the start of the
file and used as seed for the clustering. Taxonomy was assigned using the QIIME package
(Caporaso et al., 2010) and the uclust assigner. By default, the program performs a search
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to record reference sequences matching a minimum of 90% of each query entry (OTU),
and assign the most specific taxonomic label according to a minimum consensus fraction
(0.51 by default) of the matches. This approach enabled taxonomic assignment of poorly
represented taxa in reference databases. Operational taxonomic units with no match were
discarded.

Rarefaction curves were generated in QIIME using the Chao1 and Shannon metrics
(Fig. S1). This analysis demonstrated that approximately 2,500 reads per sample for both
bacteria and eukaryote datasets were required to adequately capture the diversity within
each sample. Samples with <2,500 reads (one for bacterial eDNA and one for eukaryote
eDNA and eRNA samples) were discarded from subsequent analyses (Table S1). To enable
robust comparisons between eDNA and eRNA datasets, an equivalent number of samples
were kept per station for each type of molecule, resulting in the additional removal of one
bacterial eRNA sample (Table S1).

For the remaining data manipulation and analysis, three datasets were used for both
bacteria and eukaryotes: (1) containing all OTUs (referred to as ‘untrimmed’); (2) only
containing OTUs with at least two unique sequence reads present within the whole dataset
(referred to as ‘trimmed by singletons’); and (3) including only the OTUs found in both
DNA and RNA compartments from each sample (referred to as ‘trimmed by shared
OTUs’).

Data analysis and statistics
Samples were grouped into near-field (≤250 m of the FPSO) and far-field (>250 m)
stations from each side of the FPSO. To visualize the effect of trimming by singletons and
by shared OTUs, the number of reads and OTUs in each dataset were compared. The
OTUs removed from the shared OTUs trimming method were further investigated by
displaying bar plots of the relative abundance of the ten most important classes for bacteria
and phyla for eukaryotes using the R package ‘phyloseq’ (McMurdie & Holmes, 2013), and
by performing a Mann–Whitney U test with 999 permutations on these taxa to detect
significant abundance differences between the near- and far-field stations.

Prior to further analysis, read counts were normalized among samples. The large
discrepancy in read abundance among samples (up to five times) prevented the use of
typical normalization techniques such as variance stabilization (R package DESeq2; Love,
Huber & Anders, 2014) or cumulative sum scaling (R package metagenomeSeq; Paulson
et al., 2013), and a subsampling-based normalization strategy was employed following
the method described in Aguirre de Carcer et al. (2011). Briefly, multiple rarefactions (100
times) based on the median number of reads among all samples were performed, followed
by a rarefaction to the lowest number of reads among all samples. Since a large number of
singletons may represent PCR or sequencing artefacts (Majaneva et al., 2015; Brown et al.,
2015), these were removed prior to statistical analysis.

Using normalized data kept after the two different trimming techniques, observed
OTUs and the Shannon diversity index were analyzed for each sample. To test for the
effect of the FPSO on the bacterial and eukaryotic alpha-diversity of eDNA/eRNA datasets,
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a nonparametric t -test using 999 permutations was performed between near and far-
field stations. To determine whether the eDNA or eRNA dataset contained the most
abundant number of OTUs significantly affected by the FPSO activity, a non-parametric
t -test with 999 permutations was conducted on OTUs present in at least three samples,
between the near- and far-field station groups. Differences in beta-diversity between and
within the near- and far-field stations were tested using an Adonis and PERMDISP tests
with 999 permutations on Bray-Curtis distance matrices, using square root transformed
data. Non-metric multidimensional scaling plots were obtained using the R package
‘phyloseq’ (McMurdie & Holmes, 2013). Correlations between bacterial and eukaryotic
eDNA/eRNA OTUs and macro-fauna beta-diversities, and with environmental variables
were investigated using a Mantel test based on 999 permutations. The tests were performed
on square root transformed data using Bray-Curtis distance matrices for biological data,
and an Euclidean distance matrix for environmental data. For the later, only variables
showing a significant change between the near-field and far-field stations were used (i.e.,
barium and AFDW; Johnston, Elvines & Newton, 2015), and square root transformed prior
to the distance matrix computation. Except for the bar plots and nMDS, all analyses
mentioned above were computed using the QIIME pipeline (Caporaso et al., 2010).

RESULTS
High-throughput sequencing output
Each of the 18 sediment samples collected in this study were co-extracted for both eDNA
and eRNA and PCR-amplified for total bacteria and eukaryotes, resulting in the total
production of 72 PCR-amplicons (36 for bacteria and 36 for eukaryotes; Table S1). The
no template PCR controls remained negative in all PCR trials. All 72 amplicons were
sequenced on an IlluminaTM MiSeq instrument, yielding a total of 2,134,982 and 1,040,624
eDNA and eRNA sequence reads, respectively. The water blank negative controls (ddH2O
sample) contained a total of 524 raw reads (130 for bacteria and 494 for eukaryotes) in the
eDNA library, and 405 raw reads (234 for bacteria and 171 for eukaryotes) in the eRNA
library, of which none remained after quality filtering. The positive controls were assigned
at 99.9% to the three target taxa. After removal of unmatched and low-quality reads, a
total of 883,155 reads and 33,995 OTUs were obtained for bacteria (eDNA: 25,100; eRNA:
22,211), and a total of 768,374 reads and 11,854 OTUs (eDNA: 7,045; eRNA: 8,059) for
eukaryotes. Removal of samples with insufficient diversity coverage led to the removal of
one bacterial eDNA and eRNA sample (FE250b), and one eukaryotic eDNA (FE250b) and
eRNA (FE250c) sample (Table S1).

Effect of trimming methodologies
For the bacterial dataset, the removal of singletons (i.e., OTUs present only once across
the entire eDNA/eRNA datasets) resulted in a 1% loss of total reads and 37% loss of OTUs
(Table 1). Similar results were observed for eukaryotes where 0.4% of reads and 29% of
OTUs were removed. Trimming OTUs that did not occur in both eDNA/eRNA amplicons
of the same sample resulted in a total reduction in OTUs of 78%, and total read reduction of
27%. For eukaryote data, trimming by shared OTUs had a larger impact on OTU and read
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Table 1 Number of operational taxonomic units (OTUs) and reads per dataset. Brackets show portion of reads removed by each technique from
the raw dataset.

Trimming
technique

Reads OTUs

Total eDNA
dataset

eRNA
dataset

Total eDNA
dataset

eRNA
dataset

Raw data 87,1557 52,9180 34,2377 33,746 25,114 21,840
Trimmed by
singletons

85,8919 (1%) 52,2630 33,6289 21,108 (37%) 18,564 15,752
Bacteria

Trimmed by shared
OTUs

63,3643 (27%) 34,8860 28,4783 7,505 (78%) 7,505 7,505

Raw data 76,7855 41,4271 35,3584 11,844 7,025 8,058
Trimmed by
singletons

76,4392 (0.4%) 41,2625 35,1767 8,381 (29%) 5,379 6,241
Eukaryotes

Trimmed by shared
OTUs

55,3651 (28%) 30,8285 24,5366 2,317 (80%) 2,317 2,317

Notes.
SD, Standard deviation; eDNA, environmental DNA, and; eRNA, environmental RNA.

removal, discarding an additional 51% of OTUs for a total reduction of 80%, and reducing
the total read abundance by 28%. The mean number of reads (counts) per removed OTUs
was of 3.1 and 8.6 for bacteria and eukaryotes respectively.

Figure 2 summarizes the total number of bacterial and eukaryotic OTUs that were either
shared between both eDNA and eRNA data of the whole datasets, shared between eDNA
and eRNA from the same sample, or those that were restricted to one dataset type following
the two distinct data treatments. The percentage of shared OTUs between the eDNA and
eRNA bacterial datasets increased from 22% to 36% after singleton removal (Table 1). For
eukaryotes, removing singletons improved the percentage of shared OTUs in the eDNA
and eRNA datasets from 20 to 28%. The percentage of unshared OTUs were highest in
the eDNA dataset for bacteria, while in the eukaryotic dataset most of the unshared OTUs
were in the eRNA.

After trimming by singletons, the bacterial datasets (kept OTUs) were mainly composed
of Gammaproteobacteria (eDNA 57.2%, eRNA 77.9%), Deltaproteobacteria (eDNA 12%,
eRNA 8%) and Alphaproteobacteria (eDNA 8.5%, eRNA 4.8%; Table S3). Metazoa
composed the large majority of eukaryote OTUs (eDNA 84.6%, eRNA 85.5%), followed
by Dinophyta (6.2%) and Radiolaria (2.8%) in eDNA, and by Cercozoa (7.4%) and
Cilliophora (3.5%) in eRNA (Table S3).

Trimming by shared OTUs slightly changed the relative abundance of each taxa of
the kept data, but did not change their decreasing order (Table S4 ). The majority of
bacterial OTUs removed from trimming by shared OTUs were Proteobacteria belonging to
Deltaproteobacteria (eDNA 19%, eRNA 30.4%) and Gammaproteobacteria (eDNA 22.7%,
eRNA 28.2%; Fig. 3, Table S3). In eDNA, the taxonomic groups Planctomycetia (9.6%),
Alphaproteobacteria (7.1%) and Verrucomicrobiae (5.7%) also accounted for a substantial
part of the trimmed OTUs. Most of the eukaryote OTUs removed were Metazoa (eDNA
60.5%, eRNA 42.8%), followed by Dinophyta (13.9%) and Apicomplexa (10.1%) in eDNA,
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Figure 2 Venn diagrams displaying shared and unshared operational taxonomic units (OTUs) among
environmental DNA (eDNA) and RNA (eRNA) amplicons of the bacteria (A, B) and eukaryote (C, D)
datasets.Untrimmed data are represented in (A) and (C) datasets, with the removed singletons shown in
(B) and (D)).

and by Ciliophora (19.7%) and Cercozoa (19.7%) in eRNA (Table S3). Among all these
groups, only eDNA Verrucomicrobiae (T -stat= 2.39, P-value= 0.03; Table S6) and eRNA
Planctomycetia (T -stat=−2.78, P-value= 0.03; Table S6) expressed a significant relation
with distance from the platform, both being more abundant in the near-field stations.

Comparison of bacteria and eukaryotes eDNA and eRNA datasets
Alpha-diversity
Non-parametric t -tests on alpha-diversity metrics of the eDNA dataset trimmed by
singletons (kept OTUs) showed that there was no significant difference between the near-
and far-field stations for bacteria or eukaryotes (Table 2). The same was observed with
the equivalent eRNA bacterial data, and eRNA eukaryote data. When using the ‘trimmed
by shared OTUs’ method, significant differences between the near- and far-field stations
for the observed OTUs metric were observed with bacterial eDNA (p-value = <0.01) and
with eukaryotic eDNA (p-value = 0.04), and for the Shannon index with bacterial eDNA
(p-value = <0.01).
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Table 2 Non-parametric t -tests on alpha-diversity metrics observed Operational Taxonomic Units (OTUs) and Shannon index between near
field stations (≤250 m) and far field stations (>250 m), on the data kept after the different trimmingmethodologies.

Datasets Observed OTUs Shannon index

Near-field Far-field t -stat p-value Near-field Far-field t -stat p-value

eDNA 2,306 2,348 −0.33 0.71 9.6 9.83 −1.07 0.32
Trimmed by singletons

eRNA 1,274 1,495 −2.08 0.06 7.86 8.05 −0.82 0.43
eDNA 807 1,356 −6.24 <0.01 7.56 8.63 −5.04 <0.01

Bacteria
Trimmed by shared
OTUs eRNA 958 1,111 −1.57 0.13 7.25 7.42 −0.79 0.44

eDNA 550 572 −0.30 0.77 6.75 7.06 −0.77 0.48
Trimmed by singletons

eRNA 686 830 −1.91 0.07 7.05 7.47 −1.05 0.29
eDNA 277 415 −2.16 0.04 5.78 6.45 −1.62 0.13

Eukaryotes
Trimmed by shared
OTUs eRNA 326 432 −1.42 0.17 5.67 6.42 −1.56 0.14

Notes.
eDNA, environmental DNA; eRNA, environmental RNA.
Significant p-values are in bold.
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RNA (eRNA) of bacteria and eukaryotes. NF, near-field; FF, far-field.

Significant OTUs, beta-diversity and correlation to environmental variables
The non-parametric t -test analysis identified OTUs significantly associated with the near-
or far-field station groups, by comparing their frequencies across samples groups. For both
taxa, these OTUs were more abundant in eDNA than eRNA (Table S7). Trimming by
shared OTUs reduced the number of significant OTUs by 52 (eDNA) and 26 (eRNA) in
bacteria, and by 99 (eDNA) and 86 (eRNA) in eukaryotes (Table S7).

Non-metricmultidimensional scaling plots (Fig. 4) demonstrated that near- and far-field
stations tended to cluster separately for both taxa. Our distance-based test for homogeneity
of multivariate dispersion (Permdisp) indicated that communities within the near- and
far-field stations groups were homogeneous in all datasets (Table S8). However, significant
variance between replicates were observed for bacterial eDNA (p-value = 0.03) and eRNA
(p-value= 0.04) data of the trimmed by singleton dataset, and for bacterial eDNA (p-value
= 0.03) of the trimmed by shared OTUs dataset (Table S9).

When comparing the correlation of bacterial eDNA/eRNA beta-diversity matrices
between near- and far-field stations, eDNA provided stronger correlations and/or lower
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Table 3 Adonis andMantel tests. Analysis of the strength and statistical significance of sample groupings among datasets, and correlations be-
tween beta-diversity matrices of micro (bacteria and eukaryotes) and macro-fauna, and with distance matrix of selected environmental variables.

Datasets Adonis Mantel test

Near-field
VS Far-field

Correlation
with macro-fauna

Correlation
with env. variables

Correlation
DNA/RNA

R2 p-value r p-value r p-value r p-value

eDNA 0.07 0.01 −0.53 <0.01 0.52 <0.01Trimmed by single-
tons eRNA 0.07 0.21 −0.06 0.78 0.04 0.82

−0.05 0.80

eDNA 0.10 <0.01 −0.51 <0.01 0.58 <0.01
Bacteria

Trimmed by shared
OTUs eRNA 0.07 0.01 −0.08 0.73 0.08 0.63

0.31 0.08

eDNA 0.08 0.04 −0.35 0.05 0.52 <0.01Trimmed by single-
tons eRNA 0.12 <0.01 −0.14 0.48 0.24 0.09

0.47 0.02

eDNA 0.10 0.02 <0.01 0.99 0.32 0.02
Eukaryotes

Trimmed by shared
OTUs eRNA 0.11 <0.01 −0.09 0.67 0.18 0.30

0.89 <0.01

Notes.
eDNA, environmental DNA; eRNA, environmental RNA.
Significant p-values are in bold.

p-values (Table 3). This trendwas also observedwith correlations to the distancematrices of
macro-fauna and environmental variables (Table 3). For eukaryotes however, this tendency
was not always observed as eRNA showed slightly stronger correlations andmore significant
results between the near- and far-field stations, but weaker correlations with macro-faunal
assemblages and with environmental variables. Overall, correlations between eDNA and
eRNA beta-diversities were stronger for the trimmed by shared OTUs datasets, and only
significantly positive among the eukaryote datasets (Table 3). For bacteria, the trimmed by
singletons datasets demonstrated particularly weak correspondence (r =−0.05; p-value =
0.8) between eDNA and eRNA.

DISCUSSION
The aims of this study were to assess whether high-throughput sequencing (HTS) data
obtained from eDNA and/or eRNA provide the best proxy for evaluating environmental
impacts and to explore how data processing steps may influence these results. We focused
on benthic habitats at bathysmal depth, within close proximity to an offshore oil production
platform.

High-throughput sequencing outputs
In our datasets, the number of bacterial eDNA OTUs (Table 1) was slightly higher than
eRNA. Environmental DNA is more resistant to posthumous degradation, and may persist
several years in marine sediment (Dell’Anno, 2005). Analysis of the eukaryote data showed
a differing pattern with more eRNA OTUs compared to eDNA. The proportion of OTUs
found only in eDNA or eRNA datasets varies substantially among previous investigations.
For example, Dowle et al. (2015) found more bacterial eRNA than eDNA OTUs in their
datasets, and Hu et al. (2016) and Laroche et al. (2016) obtained more protist eRNA than
eDNA OTUs, while Pawlowski et al. (2014) and Pochon et al. (2015) detected more protist
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eDNA than eRNA OTUs. It is possible that many of the unshared eRNA OTUs represent
PCR artefacts, especially from the reverse transcription of RNA to cDNA, and sequencing
errors (Egge et al., 2013; Ficetola et al., 2015). The RNA conversion to complementary DNA
(cDNA) requires the use of a reverse transcriptase which, as opposed to DNA polymerase,
lack proof reading activity, creating point mutations in some of the cDNA sequences
(Svarovskaia et al., 2003; Houseley & Tollervey, 2010). Reverse transcriptase also frequently
‘jump’ from one template to another during the transcription process. Known as template-
switching, this action can lead to two different outcomes: (1) production of chimeric cDNA
sequences from intermolecular template switching, and (2) creation of shortened isoform
sequences from intramolecular template switching (Cocquet et al., 2006); the latter being
more problematic as it is unlikely to be detected during bioinformatics analysis. Finally,
the use of random hexamer primers for cDNA synthesis is known to introduce nucleotide
bias at the beginning of the 5′-end of sequence reads (Hansen, Brenner & Dudoit, 2010).
Because the pre-mentioned artefacts are subsequently augmented by the gene-specific PCR
amplification, they would become integrated into the HTS library and potentially not
be removed during bioinformatics filtering processes. The incertitude linked to potential
intrinsic error rates from reverse transcription limits accurate comparison of eDNA and
eRNA datasets. The use of a RNA control (e.g., synthetic oligomers) and technical (PCR)
replicates could help identifying these artefacts and improve concordance between the
eDNA and eRNA profiles. Trimming OTUs by their shared presence in eDNA and eRNA
represents an alternative way of discarding reverse transcription artefacts.

In this study, bacterial and eukaryote RNAs were treated using the same protocol during
the reverse transcription process. However, eukaryote cDNA required more PCR cycles (35
instead of 30 for bacteria) to amplify sufficient material, potentially producing more false
transcripts and explaining the differences observed between the two taxonomic groups
(Fig. 2). Another possibility could be the presence of rare but highly active eukaryote OTUs
which were not detected in the eDNA dataset because of their low abundance. Particularly
high activity and growth from some of the rare biota has been previously reported for
both bacteria (Campbell et al., 2011;Hugoni et al., 2013) and microbial eukaryotes (Logares
et al., 2014).

Effect of trimming methodologies
Trimming OTUs not simultaneously present in both eDNA and eRNA assemblages from
the same samples resulted in twice as many OTUs being removed compared to discarding
singletons only, and removed 27-fold (bacteria) and 70-fold (eukaryotes) more reads.
However, further investigation suggested that it mostly resulted in the removal of legacy
DNA, DNA deposited from the water column, and technical artefacts. This improved the
sensitivity and accuracy of our environmental metabarcoding analysis (Tables 2 and 3)
and enabled the detection of differences between the effects of the production platform on
near- and far-field stations. In particular, it allowed us to disclose the divergence between
beta-diversities of near-field and far-field stations, and improved the correlations between
the beta-diversity and environmental variables distance matrices (Table 3).
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Removal of single sequence detection (singletons) to reduce PCR and sequencing
artefacts is a controversial practice. Although many of these detections are true errors
(Parada, Needham & Fuhrman, 2016), some may constitute real OTU occurrences. In
studies not particularly interested by the rare biota, the trade-off of producing false
negatives to remove false positives is usually accepted (Majaneva et al., 2015; Bálint et
al., 2016). Systematic inclusion or exclusion of singletons is arbitrary and not necessarily
adapted to all situations. For example, the likelihood of retaining false positives increases
with the sequencing depth of HTS libraries (Ficetola, Taberlet & Coissac, 2016). Some
researchers have therefore suggested the use of a read detection threshold based on
sequencing depth (Bálint et al., 2016). However, Ficetola, Taberlet & Coissac (2016) and
Lahoz-Monfort, Guillera-Arroita & Tingley (2016) strongly discouraged systematic removal
of taxa based on an abundance threshold, unless high detection probability of realOTUs and
sufficient biological or technical replicates are available to identify false positives. Instead,
they propose the application of site occupancy-detection modelling (SODM) methods
which take into account false positive and negative detection probabilities, and which
have proven to work well with few replicate samples (Schmidt et al., 2013; Lahoz-Monfort,
Guillera-Arroita & Tingley, 2016).

In our study, we used co-extracted DNA and RNA to segregate real OTUs from artefacts.
This approach allows for an informed elimination of artefactual OTUs while also discarding
data from legacy DNA. However, trimming data by shared OTUs between co-extracted
eDNA and eRNA material is particularly stringent and may result in the removal of a
substantial number of false negatives. As an alternative, biological or technical replicates
could be used in parallel to discriminate genuine and false detections. For example,
biological replicates could be pooled together prior to trimming by shared OTUs, and
subsequently demultiplexed to allow evaluation of within station variability. It is worth
mentioning that the application of unsupervised oligotyping methodologies such as the
one proposed by Eren et al. (2015), could further improve sensitivity of environmental
metabarcoding monitoring studies by discriminating closely related taxa, and will likely
gain in popularity as tools are being developed.

Operational taxonomic units not shared between both
eDNA and eRNA datasets
Among the bacterial datasets, most of the removed OTUs (i.e., those not simultaneously
found in both eDNA and eRNA) belonged to Gammaproteobacteria andDeltaproteobacte-
ria, which also constituted the main classes of the singleton trimmed dataset. This suggests
that most OTUs removed by the shared OTUs trimming method may have arisen from
PCR or sequencing errors originating from highly abundant unique sequences which
subsequently associated to these classes (Huse et al., 2010; Quince et al., 2011). Another
possibility could be that these abundant taxa have more polymorphisms. In such cases,
removal of these rare variants would produce false negatives. Nonetheless, their small
contribution to weighted (abundance-based) analyses, as demonstrated in the present
study, would unlikely affect results.
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Most of the eukaryotes which were removed during the trimming procedure were
Metazoa, Dinophyta and Apicomplexa in eDNA, and Ciliophora and Cercozoa in eRNA
(Fig. 3, Table S5). These phyla are also the most abundant in the datasets trimmed by
singletons (Table S3). None of these showed a significant correlation with distance from
the platform (Table S6). Just as for bacteria, the important abundance of these phyla in the
discarded eDNA/eRNAOTUs is likely a consequence of PCR/sequencing errors originating
from the most abundant unique sequences. This is further supported by the fact that the
decreasing order of relative abundance of the most important taxa is the same between the
datasets of kept OTUs and removed OTUs resulting from the shared OTUs trimming.

Comparison between eDNA and eRNA
When performing alpha-diversity on the trimmed by singletons datasets, differences were
observed between eDNA and eRNA, with the latter mainly showing stronger dissimilarities
between the near-field and far-field stations. This is not surprising as eDNA can contain
genetic information of past and current communities, inflating alpha-diversity and
potentially masking the present effects of the platform (Corinaldesi, Danovaro & Dell’Anno,
2005; Dell’Anno, 2005).

Beta-diversity analysis of the singleton trimmed data showedmore significant differences
between the near- and far-field stations with bacterial eDNA, while only small differences
could be observed between eukaryote eDNA and eRNA. Relationships between micro-
eukaryotic and the macro-faunal assemblages and environmental variables were also much
stronger than with eDNA. This suggest that while eRNA may represent a better proxy for
assessing ongoing anthropogenic effects on species diversity, eDNA seems more reliable for
assessing effects on community composition. This is especially true for bacteria where no
correlation could be observed between eRNA data andmacro-fauna, or with environmental
variables (Table 2). These results contrast with other similar studies (Pawlowski et al., 2014;
Visco et al., 2015;Dowle et al., 2015; Pochon et al., 2015; Laroche et al., 2016;Hu et al., 2016)
where eRNA always out-performed eDNA when correlating microbial and macro-faunal
assemblages, or when correlating these assemblages with environmental conditions.
Nonetheless, these studies used a less stringent OTU filtering method prior to statistical
analyses, removing only those not present in both eDNA/eRNA compartment of their
whole dataset. Consequently, an important number of OTUs from legacy DNA may
have subsisted in their datasets, decreasing the observed sensitivity to local conditions of
the eDNA-derived communities. Also, the relationship between eRNA concentrations and
activity does not always align. Differences such as life history, life strategies and non-growth
activity between organisms play an important role in RNA production (Blazewicz et al.,
2013). Ribosomal eRNA such as those targeted in this study (16S and 18S) can have a much
wider range of expression (over 3 orders of magnitude) than ribosomal eDNA (ca. 1 order
of magnitude; (Fegatella et al., 1998)). Fluctuation in DNA copy number between taxa and
in RNA expression may account for the strong variability observed among the bacterial
eDNA and eRNA replicates (Table S8). This variability increases confidence intervals,
reduces statistical power, and increases the risk of not identifying impacts (Type II errors;
Underwood, 1993).
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For accurate assessment of false positive and negative OTU occurrences, and sufficient
evaluation of within station biological variability, optimal number of replicate samples is
often a compromise between available funds and time, and the desired level of precision and
sensitivity. Parameters such as targeted taxa, the choice of primer set and the sequencing
depth of HTS libraries all play an important part in taxa detection probability, which
in turn, dictates the optimal replication level (Ficetola et al., 2015). In studies assessing
whole communities, the number of replicates should ideally depend on the taxa with the
lowest detection probability. Ficetola et al. (2015) give an example where a taxon with a 0.5
probability would normally require a minimum of eight replicates to ensure detection. For
routine monitoring surveys of benthic communities however, where the non-detection of
rare biota is unlikely to change the outcomes of studies, the replication level does not have
to be as high. In such cases, the number of replicates may be more influenced by the level
of heterogeneity found within stations.

An important consideration when using single-time sampling designs over a
contamination gradient is that it assumes that natural factors equally influence communities
among samples (Wiens & Parker, 1995). This bias can be particularly problematic with
small and short-lived organisms like bacteria. In low impacted environments, such as those
explored in this study, biological interactions may supplant the effect of environmental
factors, increasing spatial variability (Schafer, 2000), and creating stronger discrepancies
among biological replicates. In this situation, collecting more biological replicates per
stations should be favoured over technical replicates, in order to mitigate the effect of
micro-patchiness.

CONCLUSION
The resolution, sensitivity and accuracy of metabarcoding techniques used to measure
anthropogenic impact on microbial communities can be substantially affected by whether
eDNA or eRNA is used and by the choice of pre-analysis data treatmentmethod. Disparities
in results may also occur between eukaryote and bacterial eDNA/eRNA, that should be
considered before analyzing environmental metabarcoding monitoring data. Our study
showed that when OTUs are solely trimmed by singletons, eRNA represents a better
proxy for alpha-diversity as it is more likely to contain living biota only. Nonetheless, read
abundance information from eDNA data was, for bacteria, superior to its counterpart
for assessing environmental impacts on beta-diversity. In weakly impacted environments,
this may be even more important as eRNA concentration can be highly dependent and
sensitive to temporal interactions from restricted local conditions that can be unrelated
to the anthropogenic activity. For this reason, read abundance information from bacterial
eDNA seems more suited for assessing the effect of oil and gas drilling and production
operations, where closest monitored stations are located far from the pollution source (ca.
250 m). Overall, trimming OTUs not shared in both DNA and RNA compartments of
each sample improved the sensitivity and accuracy of our results. While this is true for our
study site, further investigations will be needed to evaluate the extent of these findings.
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