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Abstract 
Recent advances in molecular modeling of protein structures are changing the field of structural 
biology. AlphaFold-2 (AF2), an AI system developed by DeepMind, Inc., utilizes attention-based 
deep learning to predict models of protein structures with high accuracy relative to structures 
determined by X-ray crystallography and cryo-electron microscopy (cryoEM). Comparing AF2 
models to structures determined using solution NMR data, both high similarities and distinct 
differences have been observed.  Since AF2 was trained on X-ray crystal and cryoEM 
structures, we assessed how accurately AF2 can model small, monomeric, solution protein 
NMR structures which (i) were not used in the AF2 training data set, and (ii) did not have 
homologous structures in the Protein Data Bank at the time of AF2 training.  We identified nine 
open source protein NMR data sets for such “blind” targets, including chemical shift, raw NMR 
FID data, NOESY peak lists, and (for 1 case) 15N-1H residual dipolar coupling data. For these 
nine small (70 - 108 residues) monomeric proteins, we generated AF2 prediction models and 
assessed how well these models fit to these experimental NMR data, using several well-
established NMR structure validation tools. In most of these cases, the AF2 models fit the NMR 
data nearly as well, or sometimes better than, the corresponding NMR structure models 
previously deposited in the Protein Data Bank. These results provide benchmark NMR data for 
assessing new NMR data analysis and protein structure prediction methods. They also 
document the potential for using AF2 as a guiding tool in protein NMR data analysis, and more 
generally for hypothesis generation in structural biology research. 

Highlights 

● AF2 models assessed against NMR data for 9 monomeric proteins not used in training. 
● AF2 models fit NMR data almost as well as the experimentally-determined structures. 
● RPF-DP, PSVS, and PDBStat software provide structure quality and RDC assessment. 
● RPF-DP analysis using AF2 models suggests multiple conformational states.   
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Abbreviations 
AF – AlphaFold; AF2 - AlphaFold2;  AI –  artificial intelligence; BMRB –  BioMagResDataBank; 
CASP – Critical Assessment of Protein Structure Prediction; DL – Deep Learning; FID – Free 
Induction Decay data; GDT – Global Distance Test; NESG - Northeast Structural Genomics 
Consortium; NOE – nuclear Overhauser effect; NOESY – NOE spectroscopy; PAG – 
PolyAcrylamide Gel (stretched); PDB – Protein Data Bank; PEG – Polyethylene Glycol; pLDDT - 
predicted Local Difference Distance Test; PSVS – Protein Structure Validation Software suite; 
RDC – Residual Dipolar Coupling; RMSD – Root Mean Square Deviation; RPF-DP score – 
Recall, Precision, F-measure, and Discrimination Power score. 
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1. Introduction 
Advances in protein structure modeling are having a high impact on the field of structural 
biology [1-5].  AlphaFold-2 (AF2) [2, 6], an AI system developed by DeepMind, Inc, utilizes 
attention-based deep learning to predict models of protein structures, generally with high 
accuracy compared with structures determined experimentally by X-ray crystallography, NMR 
spectroscopy, and cryo-electron microscopy (cryoEM) [1, 7-9].  Advances in attention-based 
machine learning [10, 11] and contact prediction based on sequence covariance [12-17], along 
with the continuing rapid expansion of genomic sequence databases [18] and the growth of the 
open-access Protein Data Bank (PDB) [19], are enabling novel structural biology research. 
These advances are driving the field of deep learning in structural biology. Along with other 
applications, AF2 models have the potential to revolutionize the processes used for NMR data 
and experimental biomolecular structure analysis, including methods for guiding NMR data 
analysis and experimental design. 
 
In recent studies, we assessed models generated by AlphaFold against experimental NMR data 
[7, 8, 20, 21]. In most cases, AF2 models match the experimental Nuclear Overhauser effect 
(NOESY) peak list, chemical shift, and residual dipolar coupling (RDC) data nearly as well, or 
sometimes even better, than models deposited in the PDB based on experimental studies.  
Special cases of discordance appear to result from the presence of multiple conformational 
states of the protein [8] or from errors in the experimental structure determination.  In some 
cases, both NMR and X-ray crystal structures are available for the same protein construct, and 
comparisons with AF2, NMR, and X-ray crystal structure models against the corresponding 
NMR data are also largely consistent [7].   
 
Although a few AF2 vs NMR data assessment studies have been carried out using proteins not 
included in the AF2 training data [8], in comparing AF2 models and NMR data for proteins 
available as both NMR and X-ray structure structures, one concern is the potential bias 
introduced if these X-ray crystal structures (or X-ray crystal structure of homologous proteins) 
were in the PDB at the time of the AF2 training, and were used in the AF2 training process.  
Hence, the remarkable performance of AF2 on NMR / X-ray pairs [7] may have been impacted 
by its training data. As NMR structures were not used in the training of AF2 [2], these 
considerations pose the question of how accurately AF2 can model structures of proteins solved 
in solution by NMR methods, and for which structures of homologs were not in the PDB at the 
time of AF2 training.  
 
Here, we test our hypothesis, building on our experiences in our previous studies [7, 8, 20, 21], 
that AF2 structural models are often nearly as accurate, or sometimes even more accurate, than 
published NMR-based structure models of small proteins, even where related protein crystal 
structures were not utilized in AF2 training.  We collected open source NOESY peak list and FID 
data sets for protein NMR structures from the BioMagResDataBank (BMRB) [22] and recent 
literature [23]. We selected nine proteins for which the NOESY peak list data is available in 
standard Sparky [24] or Xeasy [25] format, and for which no X-ray crystal or cryoEM structures 
of homologs (using BLAST E_val < 10-3) are available in the PDB. For these nine proteins, we 
generated AF2 prediction models using the public Google Colab AF2-multimer server [2, 26], 
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and evaluated these models against the corresponding NMR data (NOESY peak list and 
chemical shift data), residual dipolar coupling (RDC) data, and knowledge-based structure 
quality scores (e.g., backbone and sidechain dihedral angle distributions, MolProbity [27] 
packing scores, etc.), using the software packages Protein Structure Validation Server [28], 
PDBStat [29], and RPF-DP [30, 31].  In most of these cases, AF2 models have excellent 
knowledge-based structure quality scores and fit well to these NMR data, sometimes even 
better than the experimental structures deposited in the PDB. Overall, this study demonstrates 
the value of AlphaFold2 for modeling small monomeric protein structures, and supports its 
potential use in guiding analysis of experimental NMR data.  

2. Methods 
Protein structure model validation. 
All structure quality statistical analyses were performed using the Protein Structure Validation 
Software (PSVS) suite version 2.0 [28] (https://montelionelab.chem.rpi.edu/PSVS/PSVS2/). 
PSVS runs a suite of software tools including PDBStat (ver 5.21.6), ProCheck (ver 3.5.4), 
MolProbity (mage ver 6.35.040409), Cyrange [32], and an implementation of the algorithms of 
FindCore2 [33, 34] coded in PDBStat. Procheck and MolProbity structure validation scores were 
used to calculate a normalized Z score relative to the mean values and standard deviations of 
each of these scores obtained for 252 high-resolution X-ray crystal structures [28], with more 
positive Z scores indicating global model quality scores better than the average score (Z = 0) 
across this set of crystal structures. 

RPF-DP scores. 
RPF-DP scores are a set of fast and sensitive structure quality assessment measures that 
evaluate how well a 3D structure model fits with NOESY peak list and resonance assignment 
data. These protein NMR structure quality assessment metrics are described in detail elsewhere 
[8, 30, 31].  Briefly, Recall (R) measures the fraction of NOESY cross peaks that are consistent 
with short distances in query model structures, considering all possible assignments of each 
NOESY cross peak given the chemical shift list. Precision (P) measures the fraction of short 
proton pair distances in the query structure that are supported by a peak in the NOESY peak 
list, weighted by the interproton distance to minimize the impact of not observing weak NOEs 
arising from interproton distances near the edge of the defined distance cutoff [30]. The F-
measure (F) is the harmonic mean of the Recall and Precision. The DP score is a scaled F-
measure that accounts for lower-bound values of the F-measure, which would be expected for a 
random-coil structure (defines as DP = 0), and upper-bound values of F, which are related to 
the completeness of the NOESY data (defined as DP = 1).  The global F and DP scores are 
types of “NMR R factors” that have been observed to be highly correlated with protein structure 
accuracy in several studies [7, 8, 20, 30, 31, 35]. 
 
Two methods were used for averaging DP scores across structural ensembles:  
 

DPavg = ∑ 	!
"#$ #$"
%

           Eqn 1 
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where DPi is the DP score computed for the interproton distance matrix of the i-th conformer in 
the ensemble of N conformers, and 
 

<DP> = DP(<d>)       Eqn 2 
 
Where <d> is a distance matrix for which each element is the average interproton distance 
across the ensemble, and DP(<d>) is the DP score computed using <P>, <R>, and <F> 
determined using this distance matrix.  In our experience, both of these averages are useful 
characterizations of how well the ensemble of conformers fit the NOESY data.  
 
Well-defined residue ranges.  
For the structure ensembles, the ranges of residues that are “well-defined”, were determined by 
standard conventions instantiated in the programs Cyrange [32] and FindCore2 [33].  Residues 
were used in superimpositions and structure quality assessment only if they are both “well-
defined” in the NMR and AlphaFold2 ensemble and “reliably predicted” (pLDDT > 80%) based 
on AlphaFold2 accuracy predictions.  
  
Residual dipolar coupling (RDC) analysis.  
15N-1H residual dipolar couplings, Dcalc, were calculated for individual model structures by single-
value decomposition of the Saupe matrix [36] using PDBStat [29], called from PSVS, and 
plotted against the experimental values, Dexp. Linear correlation coefficients r2 are also reported 
for these plots.  Residual dipolar coupling quality (Q) scores were analyzed by PDBStat using 
both of the following two methods. The most commonly used RDC-fit score Q1, described by 
Cornilescu et al [37]) is 
 

𝑄1 = $&"#$
! (#",&'((#".*+,*)-

&"#$
! (#",&'()-

      Eqn 3 

 
where Dexp and Dcalc are the measured and calculated values of the RDC, and N is the number 
of RDCs assessed.  In addition, we also assessed models using RDC-fit score Q2, described by 
Clore et al [38] and used by the DC: Servers for Dipolar Coupling Calculations 
(https://spin.niddk.nih.gov/bax/nmrserver/dc/svd.html). 
 

𝑄2 = &&"#$
! (#",&'((#".*+,*)-

%[#+-(+,-..
-)/0]

      Eqn 4 

 
where Da is the axial component, and Rh is the rhombic component of the orientation tensor.  
The Q2 factor is preferable in case of a limited RDC sampling over all possible orientations [38]. 
Regions of the protein structure with suspected flexibility, including not-well-defined regions and 
surface loops, were excluded from the RDC analysis.    
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AlphaFold2 modeling. 
AlphaFold2 modeling was carried out on the Google ColabFold AF2-multimer server 
“AlphaFold2.ipynb”  [2, 26]. This AI platform was trained using the PDB database of April, 2018 
and did not use any NMR structures in the training data [2].  Modeling was done using default 
settings for generating multiple sequence alignments. No structure templates were used as 
input. The AF2 models were then relaxed with the amber_minimize.py protocol using OpenMM, 
which adds hydrogen atoms to the AF2 models, and reduces atomic clashes by minimizing 
conformational energy as defined by the Amber99sb [39] force field.   
 
Global Distance Test (GDT-TS) scores. 
GDT_TS scores were computed using backbone Cα atoms within the Comparison Residue 
Ranges, using the representative medoid model [29, 40] of the NMR model ensemble and the 
first-ranked AF2 model from the set of prediction models, by the method of Zemla [41], using the 
TMScore program [42] (downloaded from https://zhanggroup.org/TM-score/), as  
 

𝐺𝐷𝑇_𝑇𝑆 = ($$,$-,$/,$0)
+

                      Eqn 5 
 
Here, P1, P2, P4, and P8 are the percent of residues with backbone Cα RMSD’s < 1 Å, < 2Å, < 
4 Å, and < 8 Å, respectively, for consensus reliably modeled / well-define residue ranges of the 
superimposed structure pairs. GDT_TS = 100% would mean that all reliably-modeled residues 
superimpose with backbone Cα RMSD < 1 Å; while GDT_TS of 50% corresponds to an average 
backbone RMSD of about 4 Å.  For brevity, GDT_TS scores are referred to throughout this 
paper as GDT scores, and are reported as real numbers between 0 (0%) and 1.0 (100%).  
 
RDC measurements.   
Samples for RDC measurements were prepared in 20 mM NH4OAc buffer, pH 4.5. containing 
0.02 % NaN3, 10 mM DTT, 5 mM CaCL2 100 mM NaCL, 10 % D2O, 50 𝜇M DSS, 1 X Proteinase 
Inhibitor, at a protein concentration of 0.8  mM.  15N-1H RDC data were measured on samples 
partially aligned in polyacrylamide stretched gels (PAG) and polyethylene glycol (PEG) 
alignment media, as described previously [43]. 

Superimpositions and molecular visualization. 
Molecular visualization for figures was done using PyMol [44]. The NMR and AF2 ensembles 
are shown using N, C𝛼, C’ backbone atoms. A darker color is used for well defined regions, with 
a lighter color for not-well-defined regions. Medoid conformers for NMR ensembles were 
identified, using PDBStat, as the conformer providing lowest RMSD to all other models in the 
ensemble [40]. The selected medoid was then trimmed to the appropriate comparison range 
from Table 2 and used as reference for superimposing the conformational ensemble. 
 
Software accessibility.   
All software used in this study and developed by the Montelione laboratory are available under 
open source licenses in a public GitHub site: https://github.rpi.edu/RPIBioinformatics or as on-line 

.CC-BY-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted January 22, 2023. ; https://doi.org/10.1101/2023.01.22.525096doi: bioRxiv preprint 

https://doi.org/10.1101/2023.01.22.525096
http://creativecommons.org/licenses/by-nd/4.0/


 
 

 7 

servers. Software packages developed by third-parties are publicly available from the url’s 
provided here and/or in the original references cited.  

3. Results 
Experimentally-determined protein structure coordinates and NMR data were initially considered 
for 100 small, monomeric proteins utilized in a recent study using ARTINA, an artificial 
intelligence and CYANA-based program for automated peak picking, resonance assignment, 
and structural modeling [23].  Most of these protein NMR structures and data were deposited in 
the public PDB by the Northeast Structural Genomics Consortium (NESG) [45], and the 
corresponding NMR data was downloaded from the BMRB.  
 
Relatively few NMR structure depositions include NOESY FID and peak list data needed for the 
model assessment methods utilized in this study. This is because such raw NMR data 
deposition is not required or fully supported by the BMRB and PDB. Here, we focused on small 
(< 110 residues) monomeric protein NMR structures that (i) have not also been determined 
using X-ray crystallography or cryoEM, (ii) have publicly-available NOESY FID and NOESY 
peak list data, and (iii) were not used in the AF2 training [2]. This selection process is outlined in 
Figure 1.    
 
We began by considering the 100 protein NMR data sets collated by Kluwkoski et al [23].   First, 
seventeen (17) data sets lacking NOESY FID data were removed from this collection. Next, 
sixty-two (62) protein targets for which NOESY FID data is available, but the NOESY peak list 
data was not deposited by the spectroscopist, were also culled. As these targets do have 
NOESY FID data, it would be possible to process and peak pick these NOESY spectra for 
future studies; however in this study we wanted to use exactly the same NOESY peak lists used 
by the spectroscopist in their final experimental structure analysis as deposited in the BMRB. 
Lastly, a filtered search for homologs on known 3D structure utilizing the Gapped BLAST tool 
integrated in the RCSB PDB server (https://www.rcsb.org/) was executed (on July 25, 2022).  
Using an E-value of < 10-3, a generous cutoff for removing remote homologs of known structure, 
twelve (12) of the remaining twenty-one (21) targets were found to have 3D structures in the 
PDB that may have been used in training of AF2, and were removed from the study target set. 
The resulting nine (9) monomeric protein targets and NMR data sets were then identified as 
“blind” targets, not used in AF2 training, suitable for this study.   
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Figure 1. Target Selection Flowchart.  

These nine “blind” protein NMR targets are summarized in Table 1, along with their Uniprot ID, 
NESG Target ID, PDB ID, PDB entry DOI, BMRB ID, PDB Release Date, Residue Range (and 
number of residues), and PDB entry author list. Of these, only 1 (Uniprot ID Q7P141 (residues 
175-257); PDB ID 2KZV) has 15N-1H residual dipolar coupling (RDC) data (for two orientation 
media) deposited in the PDB that are suitable for this assessment study. Interestingly, due to 
the nature of the data sets organized by Kluwkoski, et al. [23], which ideally included NOESY 
and triple-resonance NMR FID data sets together with spectral processing scripts, the final set 
of 9 data sets were all from the NESG research program. Aside from deposition in the PDB, 
none of these NMR structures have been previously published. NMR data (including raw FID 
data), NMR-based structure models, and AF2 structure prediction models for these nine protein 
targets, together with key input and output files and analysis results needed to reproduce this 
study, were then organized in a public GitHub Site to provide a resource for future studies 
(Supplementary Material).  
 
In comparing atomic coordinates for experimental and predicted protein structures, it is critical to 
account for the fact that some parts of the protein structure are not reliably modeled by the 
experimental method, the prediction method, or by both methods. Failure to account for the 
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“not-well-defined” regions of these structures can result in erroneous conclusions, as the 
superimposition can be dominated by the diverse conformations in these regions of unreliably- 
modeled  structure, resulting in poor superimposition of the well-defined regions.   For the 
experimental NMR ensembles, well-defined vs. not-well-defined structure regions were 
determined by the consensus of three commonly used methods and conventions: the backbone 
dihedral angle order parameter analysis introduced by Hyberts and Wagner [46], the Cyrange 
method developed by Kirchner and Güntert [32], and the FindCore2 method developed by 
Snyder, Montelione and co-workers [33, 34], each implemented in the PSVS ver 2.0 server.  
The well-defined residue ranges reported for each of these methods are summarized in 
Supplementary Table S1 for NMR structure ensembles of the 9 targets, along with consensus 
well-defined residue ranges.  Generally, the three methods are in very good agreement. For 
AF2 models, results of the same “well defined regions” analysis, using the top 5 conformers 
generated by the AF2 server, are also reported in Supplementary Table S1, along with residue 
ranges predicted by AF2 to have “high modeling confidence” (i.e. pLDDT > 80) [2]. For these 
AF2 models, the well-defined residue ranges are also consistent across these four methods, 
and are also reported in Supplementary Table S1, together with corresponding Consensus 
Residue Ranges. Comparing the consensus well-defined ranges for the NMR and AF2 
ensembles allows identification of structure Comparison Residue Ranges; i.e. the subset of 
residues for which modeling is judged to be “well defined” in both the NMR and AF2 ensembles 
(Table 2).  These Comparison Residue Ranges were then used for structure superimposition 
and computation of GDT scores and backbone root-mean-square-deviations (RMSDs), also 
summarized in Table 2.  As a standard convention, we used the medoid conformation of the 
NMR ensemble (conformer most like the other conformers) and the top ranked (AF2 Model 1) 
conformer of the AF2 ensemble (most confident prediction) to compute GDT scores comparing 
the NMR and AF2 models. Additionally, a full length GDT_TS score, including all residues in the 
superimposition, is reported to demonstrate the significant impact of including not-well defined 
regions in these structural comparisons. 
 
Considering the Comparison Residue Ranges, excluding one outlier (PDB ID 2KIW), the NMR 
(medoid) and AF2 (rank 1) models are in excellent agreement, with GDT scores (backbone 
rmsd) ranging from 0.92 - 0.97 (0.65 - 1.08 Å), and average GDT score for 8 targets of 0.95 
(and backbone rmsd 0.88 Å) (Table 2).  These structural differences between the NMR and AF2 
models are within the experimental uncertainty of the NMR models.  The one outlier in Table 2 
is target PDB_ID 2KIW, with GDT = 0.81 (backbone rmsd = 1.90 Å). These structural 
superimpositions are shown graphically in Figure 2. Note that considering also the not-well-
defined regions of these 8 targets results in much poorer superimpositions (e.g. GDTs ranging 
from 0.49 - 0.88, Table 2), as these inaccurate regions of the NMR and/or AF2 models 
negatively impact these structural superimpositions.  This illustrates the importance of using 
well-defined residues when assessing NMR structures against prediction models. 
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Figure 2. NMR and AF2 ensemble backbone structure comparisons. For each target: left – NMR 
ensemble [green]; center – AF2 ensemble [blue]; right – NMR medoid conformer [green] superimposed 
on AF2 Model 1 conformer (blue), for Residue Comparison Range superimposition.  The not-well-defined 
regions of the NMR or AF2 ensembles are shown in light brown in the ensemble representations. Only 
residues in the Comparison Residue Ranges are shown in the ribbon representations. 
 
In order to assess the energetics of both backbone and sidechains in these NMR and AF2 
models, the structures were also analyzed using the metrics of ProCheck-bb (backbone dihedral 
angle distributions) [47], ProCheck-all (backbone and sidechain dihedral angle distributions) 
[47], MolProbity atom packing scores [27], and Richardson backbone Ramachandran statistics 
[48], as implemented in the PSVS server [28]. These results, reported as Z-scores relative to 
high-resolution (< 1.8 Å) X-ray crystal structures [28], are summarized in Table 3. More positive 
Z scores are more energetically-favorable.  Generally, Z scores > -3 are typical of good quality 
NMR structures. While all of the NMR and AF2 models satisfy this criterion, the AF2 models 
generally exhibit better MolProbity packing scores than the NMR structures, with values typical 
of very good quality core sidechain structures. For some targets, ProCheck-bb and ProCheck-all 
scores are better for the NMR models, and for other targets they are better for the AF2 models. 
In most cases, these structure quality Z scores are either better, or no more than one standard 
deviation (𝛥Z = -1) poorer, for the AF2 structures compared with the corresponding NMR 
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structure. The Richardson Ramachandran statistics (Table 3) are generally better for the NMR 
models. 
 
In addition to the knowledge-based structural quality scores summarized in Table 3, the 
PDBStat software was used to check for other irregular structure quality issues in the NMR and 
AF2 models The scripts used for this analysis are presented in Supplementary Material.  
Unusual trans peptide bond dihedral angles 𝜔, defined as values outside the range of 180 ± 40 
deg, were observed in several AF2 models, but not in any of the NMR structure models.  For 
target PDB ID 2MAF, all five AF2 models have cis peptide bonds at Gln24-Pro25, which is 
consistent with the NMR data.  For target PDB ID 2KZV, one AF2 model (ranked 2ed) has a non-
proline cis peptide bond at residue His89, which is not consistent with the NMR data.  None of 
the NMR or AF2 models have mirror image D-amino acid residues. 
 
RPF-DP scores, comparing models with chemical shift and NOESY peak list data, were 
calculated in the RPF web server (https://montelionelab.chem.rpi.edu/rpf/)  [31], using the 
chemical shift list downloaded  from the BMRB, the PDB coordinate file, and the NOESY peak 
list data provided with the PDB deposition. RPF-DP scores compare interproton distances in a 
model against NOESY peak list and chemical shift data, and are sensitive to the accuracy of 
both the backbone and the buried sidechains of the protein structure.  For each method, DPmin 
(the lowest DP score across all of the models), DPmax (the highest DP score across all of the 
models), DPavg, <DP>, <R>, <P>, and <F> were calculated. Generally, good NMR structures 
have DPavg > 0.60 and <DP> > 0.70 [49], although for very good NOESY data sets and 
accurate, relatively-rigid structures these values can be > 0.90.   These results are summarized 
in Table 4.  The AF2 structures have DPavg ranging from 0.61 to 0.78, and <DP> ranging from 
0.65 to 0.80. These ranges are similar to those of the NMR structures (0.57 - 0.77 and 0.71- 
0.84, respectively).  For the DPmin, DPmax, and DPavg metrics, the AF2 models generally have 
better scores than the NMR models, while for <DP> metric the experimental NMR models 
generally provide somewhat better scores. Even though the NMR structures are modeled using 
distance restraints based on these NOESY data, the AF2 models often fit these NMR data as 
well, or sometimes even better, than the experimental NMR structures deposited in the PDB.  In 
some cases, these DP scores are lower for the AF2 models than the experimental NMR 
structures, indicating that more accurate modeling (i.e. models that better fit the data) is 
possible. 
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As 15N-1H RDC data for two alignment media, polyethylene glycol (PEG) and stretched 
polyacrylamide gels (PAG), were deposited in the PDB for target PDB ID 2KZV, we also 
compared these observed data with RDC values calculated for the corresponding AF2 and 
NMR models.  These results, generated with PDBStat, are shown in Figure 3, and the 
corresponding linear correlation coefficients (r2) and RDC  Q scores are summarized in Table 5.  
In both media, both the NMR and AF2 models are a reasonably good fit to these RDC data; with 
linear correlation coefficients r2 of 0.90 and 0.81 for AF2 Model 1, and 0.95 and 0.86 for NMR 
medoid structures, in PAG alignment media and PEG alignment media, respectively. Similarly 
RDC Q1 scores are 0.19 vs. 0.26 (PAG), and 0.35 vs. 0.40 (PEG) for NMR medoid conformer 
and AF2 Model , respectively. Q2 scores show similar trends (Table 5). The similarity of these 
scores between NMR and AF2 models is remarkable considering that the NMR  structures were 
in fact determined using these RDC data.  However, the NMR structures are indeed a better fit 
to the RDC data, suggesting again that further improvement of the AF2 model accuracy is 
possible. 
 

 
 
Figure  3.  RDC analysis for target PDB id 2KZV.  Experimentally-measured (RDC exp)  vs calculated 
(RDCcalc) 15N-1H RDCs for NMR medoid conformer, PAG (violet +); NMR medoid conformer, PEG (blue 
*); AF2  Model 1, PAG (green X); and AF2 Model 1, PEG (orange box). Linear correlation coefficients r2 
for these four plots are presented in Table 5.  
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4. Discussion 
AF-NMR studies. 
In this study, we identified 9 solution NMR protein structures which were not used in AF2 
training (defined here as “blind” structures), and for which NOESY FID and peak list data are 
available in the public BMRB archive.  Although additional data sets from the NESG and other 
groups may be useful for extending such analysis, these nine are sufficient to document our 
principal conclusion that for small, monomeric proteins not used in the training of AF2 and 
lacking any structural templates, AF2 models generated with the publicly-accessible AF2 CoLab 
server [26] have conformations that fit well to experimental data, and are very similar to models 
generated from extensive experimental analysis of NMR resonance assignments and NOESY 
data. 
 
The Critical Assessment of Protein Structure Prediction, an experiment which has been in 
progress for more than 30 years, has traditionally made good use of experimental NMR 
structures for assessment of structure prediction methods.  In CASP13 (in 2018), a NMR guided 
component of CASP explored the impact of sparse experimental or simulated NMR data, like 
that obtained for perdeuterated protein samples, on model prediction accuracy.  In this 
experiment, it was observed that while most CASP prediction methods could not use such data 
reliably, a few methods could use such sparse NMR data to provide more accurate models 
(relative to blind reference structures) than conventional NMR structure determination methods 
[20].  More significantly, it was observed that in about half the target proteins studied, an early 
version of AlphaFold (AF1), using no experimental data, could predict protein structure models 
closer to the reference structures than any NMR structure modeling method tested that used 
these experimental data [20]. 
 
In CASP14 (in 2020), where AF2 had outstanding performance in predicting blind structures 
determined by X-ray crystallography and cryoEM [1], its performance on 2 of the 3 NMR targets 
was underwhelming.  The AF2 models matched well to the NMR structure of CASP target 
T1055 (GDT = 0.90), but not to the experimental reference structures for CASP targets T1027 
(GDT = 0.67) and T1029 (GDT = 0.47).  Careful analysis of these results, and assessment 
against chemical shift, NOESY, and RDC data revealed highly instructive features of these two 
outlier NMR structures [8].  For CASP target T1027, the NMR models were found to fit most of 
the NMR NOESY and chemical shift data better than the AF2 prediction models.  However, 
some of the NOESY data, which could not be explained by the NMR models, could be 
explained by the AF2 model.  The distinct structural features of the NMR and AF2 structures of 
T1027, involving packing of helices into the core of the protein structure, are mutually exclusive, 
and these results suggest that this protein adopts multiple conformations in solution, where 
some NOE data fit best to the reported NMR structure and other data in the same spectra fit 
best to the AF2 model.  This hypothesis was subsequently supported by nuclear relaxation 
studies on target T1027 [50], indicating intermediate exchange between two or more 
conformations in regions of the structure that differ between the NMR and AF2 structures. For 
the third CASP14 target, T1029,  it was observed that the reported NMR reference structure 
was actually a poor fit to the NOESY peak list data (DP = 0.27).  When this structure was re-
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determined by the original authors using more complete NOESY data, the NMR and AF2 
models were observed to be in excellent agreement (GDT = 0.90) [8]. 
 
Since AF2 was made broadly available in the spring of 2021, several additional studies have 
examined the accuracy of structure predictions against structures determined by NMR methods.  
Zwecksetter compared AF2 models of three small proteins, GB3, DinI, and ubiquitin, generated 
using the Google Colab server, and reported excellent fits of the resulting models to 
experimental RDC data. However, these proteins have corresponding X-ray crystal structures 
that may have been used in the training of AF2.  It was also not clear in this study if homologous 
proteins were excluded as input structural templates. Robertson, Bax and co-workers compared 
AF2 models against experimental RDC and NOESY data for the SARS CoV-2 main protease 
(Mpro), and observed excellent concordance [51].  In this case, the analysis was done both with 
and without structural homologs as templates; however as there were many X-ray crystal 
structures of corona virus Mpro homologs in the PDB at the time of AF2 training, the possibility 
that these specific training structures significantly impacted AF2 performance on SARS CoV-2 
Mpro cannot be excluded.  Tejero et al, compared AF2 models, NMR structures, NOESY data, 
and RDC data for 6 proteins which had been solved by both NMR and X-ray crystallography 
methods [7].  These AF2 models, generated without homologous structure templates, had 
excellent agreement with both the NMR and X-ray structures, and also with the NMR data. They 
also generally had better agreement with the solution NMR structures than the corresponding X-
ray crystal structures.  However, the possibility that these X-ray crystal structures were used in 
AF2 training, and hence bias the modeling of the corresponding NMR structures, again cannot 
be excluded. AF2 models have also been extensively compared with NMR structures using the 
protein NMR structure assessment tool ANSURR [52]; this analysis included both targets with 
homologous X-ray crystal structures used in AF2 training, and others which may in fact be blind 
targets for which no homologs were available for training. However, the modeling performance 
on these two classes of targets was not compared.  While for certain applications it is certainly 
appropriate to apply AF2 or other deep learning methods to model homologs (and complexes) 
of proteins used to train the AI and/or to use homologous protein structures as input templates 
for such modeling, in this study we set out to identify “blind” NMR data sets for protein domain 
families not used in AF2 training, and to assess prediction performance against these NMR data 
rather than against the atomic coordinates generated by conventional modeling methods. 
 
Distance restraint violations.  
PSVS uses PDBStat to provide an extensive and rigorous model vs distance restraint analysis 
[29].  NOE-based distance restraints, however, are software- (or user-) dependent 
interpretations of the NOESY data, involving a process for assigning NOESY cross peaks to 
specific interproton interactions, and calibration of interproton distances based on certain 
assumptions. Due to spectral degeneracy, an apparently single NOESY cross peak may arise 
from multiple interproton interactions, which may not be properly accounted for in creating 
restraints.  Violated restraints are sometimes even deleted by certain software in the structure 
analysis process.  RPF-DP scores consider all possible assignments for each NOESY cross 
peak and are less subjective than restraint violation analysis.  For these reasons, the restraint 
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violation analyses of AF2 vs NMR models are viewed as unreliable metrics of protein structure 
model accuracy and are not included in this study. 
 
Concordance and outliers.  
For 8 blind targets, the GDT between NMR (medoid) and AF2 (Model 1) models range from 
0.97 - 0.92 (backbone RMSD 0.65 - 1.08 Å) and the DP scores indicate good agreement of both 
backbone and buried sidechain positions with the NMR data. For target PDB ID 2KIW the 
corresponding comparison has GDT = 0.81 (backbone rmsd 1.90 Å) (Table 2); the poorest 
agreement between NMR and AF2 structure models. This outlier is a 103-residue four-helical 
bundle domain from the DNA-binding integrase of Staphylococcus haemolyticus. The reported 
NMR structure has significantly better Procheck-bb, Procheck-all, and Ramachandran statistics 
compared to the corresponding AF2 model. The global NMR DP scores do not distinguish which 
model set fits the NOESY data better; the AF2 model has better DPavg (0.61) and the NMR 
structure has better <DP> (0.74). The NMR structure 2KIW has significant differences between 
DPavg (0.57) and <DP> (0.74), and between DPmin (0.50) and DPmax (0.61) (Table 4), which can 
arise from conformational dynamics, as discussed below.  
 
Comparing NMR and AF2 models against RDC data.   
Although RDC data are a rigorous method for assessing structure models, there are challenges 
in interpreting RDC Q scores for models that have been refined against these data [53]. Even 
incorrect structures may have apparently good RDC Q scores; for example the CASP14 target 
T1029 refined against extensive 15N-1H, 13C𝛼-C’, and C𝛼-H𝛼 RDC data (in a single alignment 
medium) has a reasonably good Q score for these same RDC data. However, redetermination 
of the T1029 structure using more complete NOESY data and these same RDC data resulted in 
significantly different structures with excellent agreement with the more complete NOE data, 
and even better RDC Q scores [8].  For this protein, the significant inaccuracies of the original 
structure were not evident from RDC Q scores for models that were refined against the RDC 
data, suggesting the need for some cross-validation when using RDCs for experimental 
structure determination [53].  However, RDC assessments are not biased in this way when they 
are used to evaluate prediction models, which are generated without any sample-specific 
experimental RDC data.  The observation that the Q scores for the NMR structure of target 
2KZV, which was refined against these RDC data, are only 10 - 30% better than the models 
generated with AF2 demonstrate the remarkably good accuracy of the AF2 modeling of this 
protein structure, as well as the potential to improve the model prediction accuracy. 
 
Representation of solution NMR structures. 
Solution NMR structures are generally deposited in the PDB as an ensemble of conformations.  
In most cases, this ensemble is not meant to represent the distribution of conformations actually 
present in the sample, but rather to provide information about the convergence of the structure 
modeling calculations.  Each conformer is considered an equally good fit to the data, within the 
uncertainty of the data. Accordingly, the locations of well-defined and not-well-defined regions of 
the model can be assessed from this ensemble [40].  Regrettably, although this concept has 
been an aspect of NMR structure representation since the technology for determining structures 
from NMR data was first developed in the mid 1980’s [46, 54-57], many users of NMR 
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structures do not appreciate the significance of the well-defined vs not-well-defined regions of 
the model as they are not specifically annotated in the PDB coordinate file. AF2 provides this 
information in a color-encoded residue-by-residue estimate of predicted model reliability - the 
pLDDT score [2, 6].  Consideration of these aspects of NMR derived model reliability are 
essential for comparing NMR structures against prediction models, and for using NMR 
structures in biological applications.  
 
Ground truth data for assessment of improved structure prediction methods. 
In the most recent round of CASP15, several modeling methods were observed to outperform 
the standard AF2 modeling servers. All of these top-performing methods used AF2 models as 
input for subsequent “refinement”.  As this field evolves, it is important to develop benchmark 
experimental data sets to assess improved methods.  In particular, assessment against data 
(rather than against structural coordinates) has the advantage of avoiding bias introduced by the 
various methods used in interpreting these data as molecular models.  Of special interest are 
solution and solid state NMR data sets, like the ones described here, for proteins not used in 
training these methods.  For this reason, we took care to collect in a single GitHub site not only 
the atomic coordinates, resonance assignments, NOESY peak lists, and RDC data for these 
proteins, but also the corresponding NOESY and triple-resonance NMR FID data sets and 
PSVS / RPF structure analysis reports.  This data archive, which will grow as additional 
validation studies like the ones outlined here are completed, should be valuable to the broader 
community for assessing and improving new methods of protein structure prediction and 
structure-guided NMR data interpretation. 
 
Multiple conformational states. 
Recently, there has been some progress using AF2 and other deep learning (DL) methods for 
modeling multiple native conformational states of proteins [58-60]. Ground truth NMR data for 
assessing such methods is especially important to develop.  In this work, we report two kinds of 
averages for the DP score across the NMR ensemble, <DP> vs DPavg.  The former metric treats 
the whole ensemble as the representation of the solution conformation, and it considers if the 
average interproton distances across this ensemble are consistent with the NMR NOESY data.  
The latter metric looks at how well each conformer of the ensemble fits the NOESY peak list 
data, and averages these individual fitness scores. For very tightly-bundled ensembles, these 
scores become identical, while for less converged ensembles they can differ by as much as 
30%.  Consistently, <DP> is greater than DPavg.  Under certain circumstances, looser bundles 
(poorer convergence) results from dynamic averaging, in which some members of the ensemble 
fit a portion of the NOESY data, and other members fit a distinct portion of the data, allowing the 
potential for modeling multiple conformations in dynamic equilibrium from a single NOESY data 
set, as has been described elsewhere [8, 61, 62]. In these earlier studies, NOE data were 
observed to fit to a mixture of conformers predicted by computational modeling methods.  In the 
set of nine protein targets discussed in this paper, four exhibit significant values of 𝛥DP = <DP> 
- DPavg suggestive of such conformational averaging; viz target PDB IDs  2KHD, 𝛥DP = 0.12; 
2KIW, 𝛥DP = 0.17; 2KZV, 𝛥DP = 0.14; and 2RN7, 𝛥DP = 0.19 (Table 4).  In each of these 
cases, AF2 models fit to a subset of the NOESY data, consistent with the presence of multiple 
conformational states that include the AF2 structures. A more rigorous assessment of the 
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significance of these different DP averages in terms of conformational flexibility and multiple 
conformational states is currently under investigation.  
 

5. Conclusions 
In this study, we observed that the AF2 models for nine “blind” NMR protein structures, not used 
in training of AF2, have accuracies, assessed by comparison against NMR NOESY, chemical 
shift data, and (where available) RDC data, similar to the experimental NMR models deposited 
in the PDB. The NOESY FID data, NOESY peak list data, chemical shifts, and model 
coordinates for these targets have been organized on a public GitHub site, and are accessible 
for assessing improved NMR data analysis and structure prediction methods. These results 
document the potential to use AF2 as a guiding tool to analyze NMR data and more generally 
for hypothesis generation in biology research.  
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Table 1 - Nine Blind Protein NMR Targets 

Uniprot 
ID 

NESG Target 
ID 

PDB 
ID 

DOI BMRB 
ID 

PDB 
Release 

Date 

Residue  
(No of 

Residues)a 

Authors 

O31898 SR399 2HEQ 10.2210/pd
b2HEQ/pdb 

7155 2006-08-15 2-71 
(70) 

Ramelot, T.A., Cort, J.R., 
Wang, D., Janjua, H., 
Cunningham, K., Ma, L.-
C., Xiao, R., Liu, J., Baran, 
M., Swapna, G.V.T., 
Acton, T.B., Rost, B., 
Montelione, G.T., 
Kennedy, M.A. 

Q8Q045 MaR214A 2KBN 10.2210/pd
b2KBN/pdb 

16051 2008-12-03 67-166 
(100) 

 

Ramelot, T.A., Ding, K., 
Magliqui, M., Jiang, M., 
Ciccosanti, C., Xiao, R., 
Lui, J., Everett, J.K., 
Swapna, G., Acton, T.B., 
Rost, B., Montelione, G.T., 
Kennedy, M.A.  

Q9KL30 VcR52 2KHD 10.2210/pd
b2KHD/pdb 

 

16238 2009-06-16 1-100 
(100) 

Ramelot, T.A., Cort, J.R., 
Wang, H., Ciccosanti, C., 
Jiang, M., Liu, J., Rost, B., 
Swapna, G.V.T., Acton, 
T.B., Xiao, R., Everett, 
J.K., Montelione, G.T., 
Kennedy, M.A. 

Q4L7R3 ShR105F 2KIW 10.2210/pd
b2KIW/pdb 

16298 2009-07-07 64-166 
(103) 

Yang, Y., Ramelot, T.A., 
Belote, R.L., Foote, E.L., 
Janjua, H., Nair, R., Rost, 
B., Swapna, G., Acton, 
T.B., Xiao, R., Everett, 
J.K., Montelione, G.T., 
Kennedy, M.A. 

A1ZBM2 FR629A 2KJR 10.2210/pd
b2KJR/pdb 

 

16338 2009-06-23 8-92 
(85) 

Ramelot, T.A., Cort, J.R., 
Shastry, R., Ciccosanti, 
C., Jiang, M., Nair, R., 
Rost, B., Swapna, G., 
Acton, T.B., Xiao, R., 
Everett, J.K., Montelione, 
G.T., Kennedy, M.A. 
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A7VTE5 QlR8A 2KOB 10.2210/pd
b2KOB/pdb 

 

16498 2009-09-26 61-160 
(100) 

Ramelot, T.A., Lee, D., 
Ciccosanti, C., Jiang, M., 
Nair, R., Rost, B., Acton, 
T.B., Xiao, R., Everett, 
J.K., Montelione, G.T., 
Kennedy, M.A. 

Q7P141 CvR118A 2KZV 10.2210/pd
b2KZV/pdb 

 

17020 2010-08-25 175-257 
(83) 

Yang, Y., Ramelot, T.A., 
Wang, D., Ciccosanti, C., 
Mao, L., Janjua, H., Acton, 
T.B., Xiao, R., Everett, 
J.K., Montelione, G.T., 
Kennedy, M.A.  

Q5XPI4 HR8700A 2MA6 10.2210/pd
b2MA6/pdb 

 

19329 2013-07-31 1247-1304 
(58) 

 

Ramelot, T.A., Yang, Y., 
Janjua, H., Kohan, E., 
Wang, H., Xiao, R., Acton, 
T.B., Everett, J.K., 
Montelione, G.T., 
Kennedy, M.A. 

A0A0H2
VTH7 

SfR125 2RN7 10.2210/pd
b2RN7/pdb 

11017 2008-01-15 1-108 
(108) 

Ramelot, T.A., Cort, J.R., 
Semesi, A., Garcia, M., 
Yee, A.A., Arrowsmith, 
C.H., Kennedy, M.A. 

aUniprot residue ranges and number of residues in deposited NMR structure, excluding disordered 
purification tags, if any. 
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Table 2. Well-defined and Comparison Residue Ranges for NMR and AF2 model 
ensembles 

PDB 
ID 

Method  Consensus 
Well-defined 

Residue 
Range 

Comparison 
Residue  
Rangea 

GDT  
Score for 

Comparison 
Residue 
Range 

 
 

AF2 Model 1b 
(AF2 Best) 

Backbone 
(N,C𝛼,C’) 
rmsd for 

Comparison 
Residue 
Ranged 

 
AF2 Model 1b 

(AF2 Best) 

GDT  
Score for Full 

Length 
Proteind 

  

 

 

AF2 Model 1b 
(AF2 Best) 

2HEQ NMR  
 

11-20, 33-41, 
46-68 

14-20, 33-
41, 47-68 

0.97 
( 0.97 )  

 
 

0.65 Å 
( 0.65 Å )   

0.68 
( 0.69 ) 

 

AF2  
 

14-23, 32-42, 
47-69 

2KBN NMR  3-14, 17-29, 
35-53, 58-77, 
81-86, 89-97 

5-14, 17-28, 
35-53, 58-
77, 81-86, 

89-97 

0.95 
(0.96) 

 
 
 

0.85 Å 
(0.79 Å) 

0.88 
(0.88) 

 
 

AF2  
 

5-28, 33-100 

2KHD NMR  
 

31-38, 40-58, 
62-69, 75-81, 

84-97 

31-38, 42-
58, 62-66, 

75-81, 84-95 

0.93 
(0.93) 

 
 

0.99 Å 
(0.99 Å) 

0.63 
(0.66) 

 

AF2 
  

30-95 

2KIW NMR  
 

5-17, 21-87 5-15, 22-36, 
38-87 

0.81 
(0.81) 

1.90 Å 
(1.90 Å) 

0.66 
(0.66) 

AF2  
 

2-15, 22-36, 
38-90 
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2KJR NMR  
 

15-22, 27-52, 
55-82, 85-94 

15-22, 32-
52, 55-82, 

85-94 

0.92 
(0.94) 

1.08 Å 
(0.97 Å) 

0.79 
(0.80) 

 

AF2  
 

15-23, 32-94 

2KOB NMR  
 

63-157 63-156 0.97 
(0.98) 

0.75 Å 
(0.69 Å) 

0.87 
(0.88) 

 
 AF2  

 
63-156 

2KZV NMR  8-21, 27-39, 
45, 53-59. 

73-80 

14-20, 27-
38, 57-59, 

73-80 

0.94 
(0.96) 

 

1.03 Å 
(0.90 Å) 

0.66 
(0.68) 

 

AF2  
 

14-20, 26- 
38, 57-80 

2MA6 NMR 10-17, 20-44, 
49-58 

10-17, 20-
44, 49-58 

0.97 
(0.97) 

0.84 Å 
(0.83 Å) 

0.88 
(0.88) 

 
AF2  9-59 

2RN7 
 

NMR  8-25, 27-55 8-25, 27-54 0.95 
(0.96) 

 
 

0.81 Å 
(0.79 Å) 

0.49 
(0.50) 

 
AF2  8-54 

 
 

aThe Comparison Residue Range is the consensus between NMR and AF Consensus Residue Ranges. 
bComparing the medoid of the NMR ensemble with “Model 1”, defined as the conformer ranked number 1 
of the AF2 ensemble (and with the “AF2 Best” model, defined as the model with the highest GDT score 
with the medoid NMR structure) 
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Table 3. Protein Structure Validation Software Suite (PSVS) scores for 9 protein targets. 

Protein Method ProCheck -
bba 

ProCheck -
alla 

MolProbitya Ramachandran 
Statisticsb  

(percent most favored / 
allowed / disallowed) 

2HEQ NMR -1.49c -2.07 -1.73 99.5 / 0.2 / 0.2 

AF2 -1.81 -1.83 0.63 93.7 / 5.1 / 1.2 

2KBN NMR -1.46 -1.42 -1.83 95.5 / 4.4 / 0.1 

AF2 -1.57 -0.95 1.53 94.2 / 5.3 / 0.6 

2KHD NMR 1.85 1.66 -2.00 99.3 / 0.7 / 0.0 

AF2 -0.55 -0.59 1.53 90.8 / 8.6 / 0.6 

2KIW NMR 2.79 2.72 -1.47 98.8 / 1.0 / 0.1 

AF2 1.34 1.95 1.19 95.4 / 4.2 / 0.4 

2KJR NMR -0.31 0.30 -0.91 94.2 / 5.1 / 0.7 

AF2 -0.16 0.18 1.53 98.2 / 1.8 / 0.0 

2KOB NMR 1.38 0.95 -1.71 98.5 / 1.2 / 0.3 

AF2 1.61 1.60 1.53 99.4 / 0.6 / 0.0 

2KZV NMR 1.10 1.18 -1.37 97.9 / 2.0 / 0.2 

AF2 -0.16 0.06 1.25 95.6 / 2.6 / 1.8 

2MA6 NMR -2.91 -2.78 -0.20 86.4 / 13.4 / 0.2 

AF2 -2.08 -2.19 > 3.00d 92.3 / 6.0 / 1.8 

2RN7 NMR 1.61 1.18 -0.59 98.4 / 1.5 / 0.1 

AF2 1.34 1.18 1.53 95.3 / 4.5 / 0.2 

aZ scores relative to the corresponding scores obtained from a database of 252 high-resolution X-ray 
crystal structures solved at < 1.8 Å resolution (Bhattacharya et al., 2007). bPercent of backbone residues 
in percent most favored / allowed / disallowed of Ramachandran map (Lovell et al., 2003). c For each 
NMR / AF2 comparison, and for each metric, the better score (more positive Z-score) is indicated in bold 
font. d When zero Molprobity class scores are present, the z score is set to > 3.00. 
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Table 4. RPF Scores for NMR and AF2 model ensembles   
Protein Method DPmin

a DPmax
b.c DPavg

 <DP> <R> <P> <F> 

2HEQ NMR 0.68 0.74 0.71 0.78d 0.89 0.94 0.91 

AF2 0.74 0.78 0.77 0.78 0.89 0.93 0.91 

2KBN NMR 0.67 0.72 0.70 0.78 0.92 0.81 0.86 

AF2 0.74 0.76 0.75 0.77 0.93 0.80 0.86 

2KHD 
 

NMR 0.55 0.64 0.59 0.71 0.96 0.86 0.91 

AF2 0.61 0.65 0.63 0.65 0.96 0.84 0.90 

2KIW 
 

NMR 0.50 0.61 0.57 0.74 0.95 0.80 0.87 

AF2 0.59 0.63 0.61 0.65 0.97 0.77 0.86 

2KJR NMR 0.74 0.79 0.77 0.83 0.97 0.90 0.93 

AF2 0.74 0.80 0.76 0.79 0.97 0.88 0.93 

2KOB NMR 0.73 0.79 0.76  0.84 0.96  0.86  0.91 

AF2 0.75 0.78 0.78   0.78 0.96 0.84 0.90 

2KZV 
 

NMR 0.63 0.71 0.68 0.82 0.98 0.91 0.94 

AF2 0.68 0.71 0.70 0.73 0.97 0.88 0.92 

2MA6 
 

NMR 0.68 0.75 0.72 0.82 0.99 0.92 0.96 

AF2 0.75 0.79 0.77 0.80 0.99 0.92 0.95 

2RN7 
 

NMR 0.52 0.69 0.61  0.80  0.95  0.85 0.90 

AF2 0.66 0.68  0.67 0.70 0.96 0.82 0.88 
aDPmin - lowest DP score across the ensemble.  
bDPmax - highest DP score across the ensemble,  
cAF2 model with highest DPmax: 2HEQ - Rank 1,3 ; 2KBN - Rank 1; 2KHD - Rank 3; 2KIW - Rank 2; 2KJR 
- Rank 1; 2KOB - Rank 1; 2KZV - Rank 3,5; 2MA6 - Rank 5; 2RN7 - Rank 2,5.     
dFor each NMR / AF2 comparison, and for each metric, the better score is indicated in bold font.  
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Table 5.  Linear correlations (r2) and Q scores for experimental vs calculated 15N-1H RDCs 
for target 2KZV 

Model Alignment 
Medium 

r2 Q1 Q2 

NMR PAG 0.95 0.19 0.14 

AF2 PAG 0.90 0.26 0.21 

NMR PEG 0.86 0.35 0.25 

AF2 PEG 0.81 0.40 0.36 
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Supplementary Appendix A 
PDBStat Scripts for Data Analysis 

 
Structure Irregularity Analysis 
This analysis runs the routines OMEGA, which identifies unusual trans or cis peptide bond 
dihedral angles, defined as values outside the ranges of 180 ± 40 deg (trans) or 0 ± 40 deg (cis) 
or, CIS which identifies cis peptide bonds, and MIRROR, a C𝛼 chirality analysis identifying if 
each residue in the polypeptide chain is D or  L. 
 
PDBStat Script: 
load pdb [file] 
check 
quit 
 
 
Residual Dipolar Coupling analysis using PDBStat 

a. Example data and scripts are provided at: 
https://github.rpi.edu/RPIBioinformatics/BlindAssess 
mentMonomericAF2Data/blob/main/2KZV/2KZV_realexample.tgz/)  

b. Prepare input files (atomic coordinate files and  rdc data files rdc.media1, rdc.media2) in 
format of  2KZV_realexample.tgz file folder. Ensure the residue numbering is the same 
for the coordinate files and RDC data files  

c. Run “sh Do_2KZV” script, from 2KZV_realexample.tgz, in the directory where coordinate 
and RDC files are. This will create and hold the scripts for PDBStat and gnuplot, and 
generate the required files for RDC analysis with PDBStat. 

d. Output files for RDC analysis will be located in the same directory, containing scripts, 
logs, RDC values, RDC type, and plots. 

i. Example (2kzv_RDC_all_media1/2):  
THR     A       14       -1.793       -1.39       -0.69       NH 

First three columns describe the residue: name, chain and number. 
Fourth column is the experimental RDC value. 
Next columns (two in this case -NMR and AF2) are the calculated RDC values 
for the models utilized as input. 
Final column is the RDC value type 

ii. Q-scores Q1 and Q2 are generated in a log file 
iii. Plots of RDC_exp vs RDC_calc (cf Figure 3 of main text) can be generated using 

gnuplot or Excel 
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Supplementary Table S1.  
 

Well-defined Residue Ranges for NMR and AF2 model ensembles determined by various 
algorithms. 

PDB ID Method 
(Medoid #)a 

DAOP > 1.8 Å 
  

Well- 
defined 

CYRANGE 

Well- 
defined 

FindCore2 

Reliably 
Modeled  

AF pLDDTb, d 

Consensus 
Well-defined 

Residue 
Range 

Comparison 
Residue  
Rangec 

2HEQ NMR  
(6) 

11-20, 33-
41, 46-68 

11-20, 
34-69 

10-21, 
23, 32-70 

– 11-20, 33-
41, 46-68 

14-20, 33-41, 
47-68 

AF2  
(3) 

3-69, 72-73 11-69, 
71-84 

8-71 14-23, 
32-42, 
47-69 

14-23, 32-
42, 47-69 

2KBN NMR 
(18) 

3-14, 17-29, 
35-53, 58-
77, 81-86, 

89-97 

3-29, 34-
54, 58-

98 

2-30, 32-
101 

– 3-14, 17-
29, 35-53, 
58-77, 81-
86, 89-97 

5-14, 17-28, 35-
53, 58-77, 81-

86, 89-97 

AF2  
(4) 

2-101, 103-
107 

5-28, 33-
100 

1-102 4-100 5-28, 33-
100 

2KHD NMR  
(1) 

31-38, 40-
58, 62-69, 
75-81, 84-

100 

30-97 25, 30-
101 

– 31-38, 40-
58, 62-69, 
75-81, 84-

97 

31-38, 42-58, 
62-66, 75-81, 

84-95 

AF2 
 (2) 

6-7, 9-14, 
18-23, 25-
27, 30-107 

3-23, 30-
95 

26-108 30-100 30-95 

2KIW NMR  
(9) 

5-17, 21-87 5-92 4-18, 20-
94, 96 

– 5-17, 21-
87 

5-15, 22-36, 38-
87 

AF2  
(4) 

2-99, 104-
106 

1-91 1-96 1-15, 22-
36, 38-90 

2-15, 22-
36, 38-90 
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2KJR NMR  
(1) 

15-22, 27-
52, 55-82, 

85-94 

14-95 13-95 – 15-22, 27-
52, 55-82, 

85-94 

15-22, 32-52, 
55-82, 85-94 

AF2  
(5) 

15-24, 28-
30, 32-94 

3-23, 32-
94 

14-26, 
28-95 

14-23, 
29-94 

15-23, 32-
94 

2KOB NMR  
(5) 

63-157  63-157 61-161 – 63-157 63-156 

AF2  
(2) 

62-158, 160-
162 

63-156 61-163 62-157 63-156 

2KZV NMR (7) 8-21, 27-39, 
45-48, 53-
59, 63-80 

7-81 7-22, 26-
41, 43, 
45, 51-

68, 73-81 

– 8-21, 27-
39, 45, 53-
59. 73-80 

14-20, 27-38, 
57-59, 73-80 

AF2  
(1) 

4-20, 23-81 8-20, 26-
38, 57-

80 

4-45, 47-
48, 50-83 

10-40, 
53-81 

14-20, 26- 
38, 57-80 

2MA6 NMR (7) 10-17, 20-
44, 49-59 

10-58 8-60 – 10-17, 20-
44, 49-58 

10-17, 20-44, 
49-58 

AF2  
(1) 

4-5, 7-60 9-59 1-61 9-59 9-59 

2RN7 
 

NMR 
(17) 

8-25, 27-57 10-55 7-59 –  8-25, 27-
55 

8-25, 27-54 

AF2  
(5) 

 2-60, 68-70, 
77-107 

7-54 4-61 8-56 8-54 
 
 

aMedoid of backbone conformations identified using PDBStat. 
bpLDDT > 80 was used as the cutoff for reliably modeled residue ranges 
cThe Comparison Residue Range is the consensus between NMR and AF Consensus Residue Ranges. 
dComparing the medoid of the NMR ensemble with the Model 1 conformer of the AF2 ensemble (and the 
best score across all AF2 models) 
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