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Abstract: Bovine coronavirus (BCoV), a major causative pathogen of bovine enteric and respiratory
diseases and a zoonotic pathogen transmissible between animals and humans, has led to severe
economic losses in numerous countries. BCoV belongs to the genus Betacoronavirus, which is a model
of a pathogen that is threatening human health and includes severe acute respiratory syndrome
coronavirus (SARS-CoV), SARS-CoV-2, and Middle East respiratory syndrome coronavirus. This study
aimed to determine whether photocatalytic material effectively reduces CoVs in the environment.
Using the film adhesion method of photocatalytic materials, we assessed its antiviral activity and
the effect of visible light irradiation according to methods defined by the International Organization
for Standardization. Consequently, photocatalytic material was found to have antiviral activity,
reducing the viral loads by 2.7 log TCID50 (tissue culture infective dose 50)/0.1 mL (500 lux), 2.8 log
TCID50/0.1 mL (1000 lux), and 2.4 log TCID50/0.1 mL (3000 lux). Hence, this photocatalytic material
might be applicable not only to reducing CoVs in the cattle breeding environment but also perhaps in
other indoor spaces, such as offices and hospital rooms. To our knowledge, this study is the first to
evaluate the antiviral activity of a photocatalytic material against CoV.
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1. Introduction

Coronaviruses (CoVs) belong to the order Nidovirales, family Coronaviridae, subfamily Orthocoronavirinae,
and are positive-sense, single-stranded, enveloped RNA viruses with the largest genome of approximately
26–32 kb among the currently known RNA viruses [1]. The subfamily Orthocoronavirinae comprises
four genera: Alphacoronavirus, Betacoronavirus, Gammacoronavirus, and Deltacoronavirus [2–4]. CoVs can
be detected from various animal species, including cattle, pigs, camels, mice, dogs, cats, bats, birds,
and humans, and cause various symptoms in the respiratory, hepatic, and gastrointestinal tracts and
mild-to-severe neurological disorders [5–8]. Gamma- and Deltacoronaviruses generally infect birds;
however, some of them can also infect mammals [3]. On the other hand, Alpha- and Betacoronaviruses
infect only mammals and usually cause respiratory illness in humans [9,10].

The genus Betacoronavirus further comprises four lineages (A–D): (A) Embecovirus, including
mouse hepatitis virus (MHV), bovine coronavirus (BCoV), equine coronavirus (ECoV), and human
coronaviruses (HCoV-OC43 and HCoV-HKU1); (B) Sarbecovirus, including severe acute respiratory
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syndrome coronavirus (SARS-CoV) and SARS-CoV-2; (C) Merbecovirus, including Middle East
respiratory syndrome coronavirus (MERS-CoV); and (D) Nobecovirus, including several bat
coronaviruses [11]. Most Betacoronaviruses are commonly found in bats, and numerous diverse
CoVs phylogenetically related to SARS-CoV and MERS-CoV have been reported in various bat species
worldwide [4]. Therefore, HCoVs other than HCoV-OC43 seem to have originated from bats.

In contrast, HCoV-OC43 may result from interspecies transmission of BCoV to humans [12].
Furthermore, BCoV-like viruses have been isolated from various wild ruminants and a child with acute
diarrhea [13–16]. Therefore, BCoV seems to be a zoonotic pathogen transmissible between animals and
humans, resulting in public health concerns. BCoVs associate with bovine enteric disease (BED), such as
neonatal calf diarrhea and winter dysentery in adult cattle, and also associate with bovine respiratory
disease (BRD) in cattle of all age groups [17]. In Japan, BCoV has been most frequently detected in
cattle with diarrhea [18,19]. Furthermore, BCoV is the second-most detected pathogen in cattle with
pneumonia in Japan [19]. Hence, BCoV infections reduce milk production, deteriorate health, and lead
to the death of calves, resulting in severe economic losses. However, there is no effective method to
prevent BCoV infections, except for infection control and hygiene management.

CoVs are primarily transmitted through the inhalation of excretions from infected individuals
and through direct contact with contaminated surfaces followed by touching the nose, mouth,
and eyes [20,21]. These viruses reportedly stabilize in favorable atmospheric conditions on different
surfaces for days [22]. In addition, HCoV has been reported on the surface of door handles, cell phones,
and other items in the houses of confirmed patients [23]. Moreover, transmission in an unventilated
environment or closed spaces owing to high aerosol concentrations has been previously suggested [24].
Furthermore, fecal–oral transmission is also an important route because the viruses are shed in the
feces for a long period [25].

There are several preventive treatment methods for CoV infections, such as antiviral drugs,
vaccines, traditional medicines, passive immunization, and inactivation agents [26–29]. Furthermore,
the agents for inactivating and disinfecting plural viruses include spraying antiseptic solution such
as ethanol, applying acidic or alkaline solutions, ultraviolet (UV) irradiation, heat treatment, and the
use of material with antiviral activity [30–32]. Among these, the use of photocatalytic material is
a more suitable method because it requires only light energy from solar and fluorescent irradiation.
Photocatalysts with visible light irradiation can inactivate several viruses, including avian influenza
virus A (H1N1) and human adenovirus, which can threaten human health [33–35]. However, no studies
have assessed the efficacy of photocatalysts against CoVs.

This study aimed to investigate the antiviral activity against BCoV with visible light irradiation
as a model to prevent a potential CoV infection. Consequently, the photocatalytic material used
in this study displayed antiviral activity and the effect of visible light irradiation against BCoV.
This material is potentially applicable as an effective tool to reduce CoVs in animal and human living
and community spaces.

2. Materials and Methods

2.1. Virus and Cell Culture

The Hokkaido/9/03 strain, originally isolated from nasal swab samples of cattle with pneumonia
at a farm in Hokkaido prefecture, Japan, was used in this study [36].

The Hokkaido/9/03 strain was inoculated in 75 cm2 flasks (106 cells) of HRT-18G cells (ATCC:
CRL-11663) and incubated at 37 ◦C for 1 h in a humidified 5% CO2 incubator. Thereafter, cells were
washed twice with 20 mL of sterilized phosphate buffered saline (PBS), added to 20 mL of Dulbecco’s
modified Eagle’s medium (DMEM) (Nissui, Tokyo, Japan) without fetal bovine serum (FBS),
and incubated at 37 ◦C for 3 days. Thereafter, cells were harvested and centrifuged at 1200× g for 5 min
to eliminate debris. The virus titer of the supernatant (tissue culture infective dose 50 (TCID50)/0.1 mL)
was determined using the method of Reed and Muench [37] and stored at−80 ◦C until use. Although the
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virus titer of the stored Hokkaido/9/03 strain approached 107.0 TCID50/0.1 mL, the stored viruses were
diluted in half with PBS to prepare a virus suspension to be used in subsequent experiments.

2.2. Film Adhesion of Photocatalytic Material and Test Equipment

Photocatalytic material was manufactured by Wako Filter Technology Co., Ltd. (Ibaraki, Japan).
The photocatalytic material was composed of a peroxotitanium acid solution (70%) and a peroxo-modified
anatase solution (30%), which is responsive to visible light.

The antiviral activity of this photocatalytic material was assessed using the film adhesion method.
A transparency film (overhead projector film VF-1410N, KOKUYO Co., Ltd., Osaka, Japan) was cut into
50 × 50 mm2 squares and sprayed with the photocatalytic material with a spray gun (LPH-50-062G,
ANEST IWATA Corporation, Yokohama, Japan). Thereafter, the film surface was dried with hot air
at 60–70 ◦C. Spraying and drying were repeated alternately to adjust to a 0.2 mg/m2 coating weight.
A transparency film uncoated with photocatalytic material was used as a negative control.

The testing equipment was set up in accordance with ISO 18071, a guideline of the International
Organization for Standardization [38], facilitating the assessment of the antiviral activity of
photocatalytic material under an indoor lighting environment. The equipment comprised a light
source and a moisture chamber with a test film (Figure 1).
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Figure 1. (A) Schematic of the test equipment. The test equipment was prepared in accordance
with ISO 18071, a guideline of the International Organization for Standardization: (1) light source
(fluorescent lamp), (2) Petri dish (lid), (3) cover film, (4) virus suspension, (5) test film, (6) glass
rod, (7) paper filter, and (8) Petri dish (bottom). (B) A photo of a moisture chamber with a test film.
(C) A photo of the testing equipment.
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2.3. Assessment of Antiviral Activity of Photocatalytic Material with Visible Light Irradiation

A sterilized moist paper filter was placed at the bottom of a sterilized Petri dish containing
2 mL of sterilized water. Two glass rods were intercalated to avoid contact between the test film and
the paper filter. The test film, which was UV irradiated with an irradiance of 1 mW/cm2 (380 nm)
for 24 h with a black light (06947604, NEC Corporation, Tokyo, Japan) to inactivate organic matter
before the test, was placed on them with the photocatalytic-coated surface. In total, 150 µL of the
virus suspension (106.7 TCID50/0.1 mL) was harvested with a sterilized pipette tip and dropped onto
the test film. A 40 × 40 mm2 square of sterilized film was placed on top of the dripped suspension
and lightly pushed into the suspension to spread it throughout the entire film surface. Thereafter,
the lid of the Petri dish was put in place to conserve moisture. The Petri dishes containing the six
test films (three photocatalytic-coated films and three photocatalytically uncoated films) with the
virus suspension were irradiated with 500, 1000, and 3000 lux visible light with a white fluorescent
lamp (600113, Mitsubishi Electric Lighting Corporation, Kanagawa, Japan) for 4 h. The Petri dishes
containing the six test films (three photocatalytic-coated films and three photocatalytically uncoated
films) with the virus suspension were maintained in the dark for the same duration at 25 ± 3 ◦C.

After 4 h with or without visible light irradiation, both test films and cover films were washed
with 5 mL of DMEM without FBS in a Stomacher bag, and these washout solutions were used to
determine the virus titers.

2.4. Determination of TCID50 of Virus Suspensions on Test Films after 4 h with or without Visible
Light Irradiation

Virus titers in suspensions on test films after 4 h with or without visible light irradiation were
determined using the TCID50 assay on confluent monolayers of HRT-18G cells in 96-well plates
(Techno Plastic Products AG, Trasadingen, Switzerland). Cell monolayers were prepared by adding
100 µL of 104.2 cells/mL in DMEM with 5% FBS to each well, and then plates were incubated at 37 ◦C for
24 h in a humidified 5% CO2 incubator. Each collected solution was serially 10-fold diluted in DMEM
without FBS. After 100 µL of each dilution was inoculated with confluent cells in 5 wells, the mixture
was incubated at 37 ◦C for 7 days. On day 7 postinoculation, the TCID50/0.1 mL of each solution was
determined using the aforementioned method [37].

2.5. Criteria for Assessment of Antiviral Activity of Photocatalyst and Effect of Visible Light Irradiation

The values of antiviral activity and the effects of visible light irradiation were determined in
accordance with ISO 18071 [38] as follows:

Value of antiviral activity of photocatalyst with visible light irradiation:

(VL) = log (BL/SL) (1)

Value of antiviral activity of photocatalyst without visible light irradiation:

(VD) = log (BD/SD) (2)

Effect of visible light irradiation:
(∆V) = VL − VD (3)

where BL—means of the virus titers of three photocatalytically uncoated films after visible light
irradiation with a constant illuminance; SL—means of the virus titers of three photocatalytic-coated
films after visible light irradiation with a constant illuminance; BD—means of the virus titers of three
photocatalytically uncoated films after being kept in the dark for the same duration as visible light
irradiation; SD—means of the virus titers of three photocatalytic-coated films after being kept in the
dark for the same duration as visible light irradiation.
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The performance of the photocatalytic material was determined to be effective when the antiviral
activity of the photocatalyst with visible light irradiation (VL) was ≥2.0 and the effect of visible light
irradiation (∆V) was ≥0.3, based on the criteria of the Photocatalysis Industry Association of Japan
(PIAJ) [39]. VL of 2.0 and ∆V of 0.3 correspond with a mean reduction of 1/100 and 1/2 of viruses with
visible light irradiation, respectively.

2.6. Immunofluorescence Assay

To visualize the antiviral activity of the photocatalytic material irradiated with 1000 lux visible
light for 4 h, an immunofluorescence assay (IFA) in addition to the TCID50 assay was performed using
virus suspensions harvested every 1 h (from 0 to 4 h) after visible light irradiation. Cell monolayers
were prepared by adding 300 µL of 104.1 cells/mL in DMEM with 5% FBS per well in an 8-well chamber
slide (Thermo Fisher Scientific, Waltham, MA, USA) and incubated at 37 ◦C for 24 h in a humidified
5% CO2 incubator. The harvested solutions were inoculated into confluent cells and then maintained
at 37 ◦C for 1 h. Thereafter, the solutions were replaced with DMEM without FBS. Approximately 22 h
later, cells were washed with PBS, fixed with acetone, and incubated with anti-BCoV rabbit serum
(originally generated in our laboratory) for 1 h. Subsequently, cells were washed thrice with PBS
and incubated with goat FITC (fluorescein isothiocyanate) conjugate anti-rabbit IgA, IgG, and IgM
(Cappel Laboratories, Cochranville, PA, USA) for 1 h. Thereafter, cells were washed thrice with PBS
and incubated with DAPI (4,6-diamidino-2-phenylindole) solution (Dojindo Laboratories, Kumamoto,
Japan) for 10 min. After three washes with PBS, the coverslips were sealed with Mountant Perma
Fluor (Thermo Fisher Scientific, Waltham, MA, USA) and observed using a fluorescence microscope
(Axiovert200/40 LD-1; Carl Zeiss AG, Oberkochen, Germany).

3. Results

3.1. Determination of TCID50 of Virus Suspensions on Test Films after 4 h with or without Visible Light
Irradiation

Virus titers in virus suspensions on test films uncoated or coated with photocatalytic material
harvested after 4 h with or without visible light irradiation of 500, 1000, and 3000 lux are summarized
in Table 1.

Table 1. Inactivation of bovine coronavirus on photocatalytic uncoated or coated films after 4 h with or
without visible light irradiation at different illuminance values.

Time of
Irradiation (h)

Illuminance Values of Visible
Light Irradiation (lux)

Virus Titers after Visible
Light Irradiation a Antiviral Activity Values c

Uncoated b Coated b VL VD ∆V

0 0 5.2 (±0.1) N.T.
4 0 4.5 (±0.2) 2.3 (±0.2) 2.2 0.5
4 500 4.6 (±0.3) 1.9 (±0.4) 2.7
0 0 4.3 (±0.0) N.T.
4 0 4.7 (±0.2) 2.7 (±0.2) 2.0 0.8
4 1000 4.4 (±0.3) 1.6 (±0.1) 2.8
0 0 4.2 (±0.2) N.T.
4 0 4.2 (±0.1) 2.4 (±0.2) 1.8 0.6
4 3000 3.6 (±0.2) 1.2 (±0.5) 2.4

N.T.: not tested. a Virus titer is shown in log TCID50 (tissue culture infective dose 50)/0.1 mL. The virus titer represents
the mean (±standard deviation) of three independent experiments. b Uncoated: photocatalytically uncoated film;
Coated: photocatalytic-coated film. c Antiviral activity was calculated according to ISO 18071, a guideline of the
International Organization for Standardization (see Section 2.5. Criteria of Antiviral Activity of Photocatalytic
Material and Effect of Visible Light Irradiation in Materials and methods).

The mean virus titers from three photocatalytically uncoated films obtained at 0 h were 5.2 log
TCID50/0.1 mL (500 lux), 4.3 log TCID50/0.1 mL (1000 lux), and 4.2 log TCID50/0.1 mL (3000 lux),
respectively. The mean virus titers from photocatalytically uncoated films harvested after 4 h without
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visible light irradiation displayed no clear differences from those of photocatalytically uncoated
films harvested at 0 h. Furthermore, the mean virus titers from three photocatalytic-coated films
harvested after 4 h without visible light irradiation exhibited decreases of 2.9 log TCID50/0.1 mL
(500 lux), 1.6 log TCID50/0.1 mL (1000 lux), and 1.8 log TCID50/0.1 mL (3000 lux) compared with those
from photocatalytically uncoated films harvested at 0 h, respectively. Moreover, the virus titers from
three photocatalytic-coated films harvested after 4 h with visible light irradiation showed decreases
of 0.4 log TCID50/0.1 mL (500 lux), 1.1 log TCID50/0.1 mL (1000 lux), and 1.2 log TCID50/0.1 mL
(3000 lux) compared with those from photocatalytic-coated films harvested after 4 h without visible
light irradiation. The values of antiviral activity of photocatalysts with visible light irradiation (VL)
and the effects of visible light irradiation (∆V) were 2.7 (500 lux), 2.8 (1000 lux), and 2.4 (3000 lux),
and 0.5 (500 lux), 0.8 (1000 lux), and 0.6 (3000 lux), respectively, all of which exceeded the criteria
(VL: 2.0 and ∆V: 0.3) of the PIAJ [39].

3.2. Immunofluorescence Assay

The virus titers of virus suspensions from photocatalytic uncoated and coated films harvested
every 1 h with or without 1000 lux visible light irradiation for 4 h are summarized in Table 2.
The mean virus titers from three photocatalytically uncoated films harvested at 0 h were 4.7 log
TCID50/0.1 mL. Furthermore, the mean virus titers from three photocatalytic-coated films harvested
every 1 h with visible light irradiation for 4 h showed decreases of 1.1 log TCID50/0.1 mL (1 h), 1.5 log
TCID50/0.1 mL (2 h), 2.3 log TCID50/0.1 mL (3 h), and 2.4 log TCID50/0.1 mL (4 h) compared with those
of photocatalytically uncoated films harvested at 0 h. Moreover, the values of antiviral activity of
photocatalysts with visible light irradiation (VL) and the effects of visible light irradiation (∆V) every 1 h
were 0.9 (1 h), 1.7 (2 h), 2.0 (3 h), and 2.2 (4 h), and 0.2 (1 h), 0.6 (2 h), 0.8 (3 h), and 0.7 (4 h), respectively,
two points of times (3 and 4 h) of which exceeded the criteria (VL: 2.0 and ∆V: 0.3) of the PIAJ [39].

Table 2. Inactivation of bovine coronavirus on photocatalytic uncoated and coated films harvested
every 1 h with or without 1000 lux light irradiation for 4 h.

Time of
Irradiation (h)

Illuminance Values of Visible
Light Irradiation (lux)

Virus Titers after Visible
Light Irradiation a Antiviral Activity Values c

Uncoated b Coated b VL VD ∆V

0 0 4.7 (±0.2) N.T.
1 0 4.7 (±0.2) 4.0 (±0.3) 0.7 0.2
2 0 4.7 (±0.0) 3.6 (±0.9) 1.1 0.6
3 0 4.5 (±0.2) 3.3 (±0.2) 1.2 0.8
4 0 4.6 (±0.4) 3.1 (±0.4) 1.5 0.7

0 0 N.T. N.T.
1 1000 4.5 (±0.0) 3.6 (±0.3) 0.9
2 1000 4.9 (±0.2) 3.2 (±0.4) 1.7
3 1000 4.4 (±0.3) 2.4 (±0.2) 2.0
4 1000 4.5 (±0.2) 2.3 (±0.6) 2.2

N.T.: not tested; a Virus titer is shown in log TCID50 (tissue culture infective dose 50)/0.1 mL. The virus titer
represents the mean (±standard deviation) of three independent experiments. b Uncoated: photocatalytically
uncoated film; Coated: photocatalytic-coated film. c Antiviral activity was calculated according to ISO 18071,
a guideline of the International Organization for Standardization (see Section 2.5. Criteria of Antiviral Activity of
Photocatalytic Material and Effect of Visible Light Irradiation in Materials and methods).

IFA images using virus suspensions from photocatalytically uncoated films revealed no differences
in the levels of green fluorescence, regardless of visible light irradiation and the duration of irradiation
(Figure 2). The IFA image using virus suspensions from photocatalytic-coated films after 4 h in the
dark further decreased the levels of green fluorescence compared with those of the photocatalytically
uncoated film after 4 h in the dark. Furthermore, the levels of green fluorescence markedly decreased
in IFA images using virus suspensions from photocatalytic-coated films, consistent with the effects of
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visible light irradiation, compared with those from photocatalytic-coated films in the dark. These results
are almost identical to those of the TCID50 assay.
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Figure 2. Images of immunofluorescence assay (IFA) using virus solutions from photocatalytic uncoated
(A–C) and coated (D–H) films harvested every 1 h with or without 1000 lux light irradiation for
4 h. Twenty-two hours after inoculation with the collected virus solutions, cells were stained with
anti-BCoV (bovine coronavirus) rabbit serum followed by goat FITC (fluorescein isothiocyanate)
conjugate anti-rabbit IgG, IgA, and IgM (green), and with DAPI (4,6-diamidino-2-phenylindole) (blue).
(A) photocatalytically uncoated films after 0 h without visible light of 1000 lux, (B) photocatalytically
uncoated films after 4 h without visible light of 1000 lux, (C) photocatalytically uncoated films after 4 h
with visible light of 1000 lux, (D) photocatalytic-coated films after 4 h without visible light of 1000 lux,
(E–H) photocatalytic-coated films after 1 h (E), 2 h (F), 3 h (G), and 4 h (H) with visible light of 1000 lux.
Scale bar represents 100 µm.

4. Discussion

The values of antiviral activity of photocatalysts with visible light irradiation (VL) using virus
suspensions on test films after visible light irradiation for 4 h at 500, 1000, and 3000 lux yielded
2.4–2.8 log TCID50/0.1 mL. Furthermore, the effects of visible light irradiation (∆V) at the three values of
illumination yielded 0.5–0.8 log TCID50/0.1 mL. Both values of antiviral activity of photocatalysts with
visible light irradiation (VL) and the effects of visible light irradiation (∆V) at all three illuminations
exceeded the criteria defined by the PIAJ [39]. Hence, the photocatalytic material used in this study
appears to have high antiviral activity against BCoV.

Habibi-Yangjeh et al. reported three mechanisms of viral inactivation by a photocatalyst consisting
of a peroxotitanium complex as follows: physical damage of viruses, metal ion toxicity obtained from
metal-including photocatalysts, and chemical oxidation by reactive oxygen species generated over the
photocatalysts [35]. Moreover, a previous study demonstrated that the adenovirus was destroyed by
a photocatalyst under transmission electron microscopy observation [40]. Therefore, the reduction
of BCoV loads presented herein might have been caused by these three mechanisms because the
photocatalyst used in this study was made from a peroxotitanium complex.

Furthermore, this study shows that the photocatalytic material used here was completely effective
under visible light irradiation of 500 lux. The illuminance of solar light is usually >90,000 lux during
the daytime [41]; hence, this photocatalytic material can be fully useful outdoors. On the other hand,
the illuminance in indoor environments, including offices, hospital rooms, laboratories, and libraries,
is generally recommended to be 500 lux in accordance with ISO 8995 [42]; hence, this photocatalyst
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is potentially useful also under indoor lighting environments. Therefore, this material is potentially
applicable as a viral inactivator to reduce not only viral pathogens in environments where cattle are
maintained but also the risk of CoV contact infections by spraying various surfaces including walls,
floors, knobs, chairs, and handrails inside human living and community spaces.

We observed a reduction in the virus titer on photocatalytic-coated films after 3 h with 1000 lux
visible light irradiation based on the criteria defined by the PIAJ [39]. Furthermore, IFA revealed
a decrease in the levels of green fluorescence with a reduction in the virus titer. These results indicate
that the photocatalytic material used in this study displayed antiviral activity for at least 3 h with
visible light irradiation. In a previous study, the load of avian influenza virus (H1N1) on glass coated
with platinum-loaded tungsten oxide (Pt-WO3) as a photocatalytic material was clearly decreased with
1000 lux visible light irradiation for 2 h [33]. These facts might support photocatalytic materials as
a useful tool for viral inactivation to prevent the transmission of enveloped RNA viruses associated
with respiratory disorders.

In conclusion, this study shows that the photocatalytic material used here exhibits high performance
with visible light irradiation of different illuminances for 4 h. Especially, it is valuable that this material
has effective antiviral activity against BCoV with visible light irradiation of 500 lux, an illuminance
recommended in indoor environments. These results suggest the possibility of this photocatalyst
having antiviral activity against SARS-CoV-2 because BCoV belongs to the same genus as that of
SARS-CoV-2, which has propagated and transmitted worldwide. Although further studies are required
to analyze the antiviral activity of this material against SARS-CoV-2, this material might be of interest,
when properly used, to prevent and reduce CoV infection indoors; however, a possible increase
in the concentration of some volatile organic compounds due to photocatalysis may be a concern,
as reported in [43].
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