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ABSTRACT

The genotyping of mother–father–child trios is a
very useful tool in disease association studies, as
trios eliminate population stratification effects and
increase the accuracy of haplotype inference.
Unfortunately, the use of trios for association studies
may reduce power, since it requires the genotyping of
three individuals where only four independent hap-
lotypes are involved. We describe here a method for
genotyping a trio using twoDNApools, thus reducing
the cost of genotyping trios to that of genotyping two
individuals. Furthermore, we present extensions to
the method that exploit the linkage disequilibrium
structure to compensate for missing data and geno-
typing errors. We evaluated our method on trios from
CEPH pedigree 66 of the Coriell Institute. We demon-
strate that the error rates in the genotype calls of the
proposed protocol are comparable to those of stan-
dard genotyping techniques, although the cost is
reduced considerably. The approach described is
generic and it can be applied to any genotyping
platform that achieves a reasonable precision of
allele frequency estimates from pools of two indi-
viduals. Using this approach, future trio-based asso-
ciation studies may be able to increase the sample
size by 50% for the same cost and thereby increase
the power to detect associations.

INTRODUCTION

Most genetic variation in humans can be characterized by sin-
gle nucleotide polymorphisms (SNPs) and recent progress in
the technology for high-throughput SNP genotyping has now
provided an unprecedented opportunity to understand the
genetic basis of complex disease through whole genome asso-
ciation studies (1–3). Unfortunately, even with these
advances association studies remain very expensive due to
the need to genotype thousands of individuals in order to

compensate for the increased burden of multiple hypotheses.
One of the challenges in case–control disease association
studies is to eliminate the potentially confounding effect of
population stratification, which may lead to false identifica-
tion of association (4). One way to avoid these effects is to
genotype mother–father–child trios in combination with sta-
tistical tests such as the transmission disequilibrium test
(TDT) (5). In TDT, a set of affected children is genotyped
along with their parents, in order to test for a deviation
from a random transmission of alleles from heterozygous par-
ents to their children. The main advantage of the TDT test is
that it is not affected by population stratification or any other
population-wide mating patterns (6). In addition, the genotyp-
ing of trios reduces uncertainties in haplotype inference (7).
When unrelated individuals are genotyped, the genotype
information is obtained and not the haplotypes; the subse-
quent determination of the haplotype information then
becomes an error-prone and a computationally difficult
task. With mother–father–child trio genotypes, haplotype
inference becomes much easier and the prediction error rate
is reduced considerably; this is especially useful in studies
that test haplotypes for association.

Unfortunately, the extraction of genotype information from
trios requires genotyping of three individuals, whereas the
effective size of the sample only consists of two independent
individuals, as the child’s genotypes are transmitted from the
mother and the father. As a result, the power of trio-based
studies is reduced, given fixed resources for genotyping, as
fully two-thirds of the genotyping effort is expended on unaf-
fected individuals (the parents). Here, we describe a generic
protocol to reconstruct the individual genotypes of trios,
using two DNA pools per trio, which reduces the genotyping
effort of TDT studies to that of case–control studies.

In our approach, rather than genotypes, SNP allele frequen-
cies are determined from mother–child and father–child DNA
pools and genotypes of all three individuals are inferred from
these pool allelic frequencies. The method thereby increases
the sample size by 50% for the same amount of work, by
employing two measurements for each trio (allelic frequency
estimates of mother–child and father–child pools) compared
to three measurements (genotypes of mother, father and
child). Our use of pooled trio DNA is unlike other pooling
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approaches that have been published recently, in which pools
of hundreds of cases versus controls are employed (8–11).
Whereas in our approach, pool allele frequencies result in
inferred genotypes, in studies using large pools, allele
frequencies are the goal per se and are not resolved to the
genotypes of the individuals who make up the pool. Thus,
using our approach, no information is lost, while the cost of
the experiment is reduced considerably. Furthermore, our
approach is generic in the sense that any genotyping platform
that achieves a reasonable precision (�12.5%) of allele
frequency estimates from two individuals may be used.

In this proof-of-principle study we have evaluated Trio-
phase using a population of 12 previously genotyped indi-
viduals comprising a single three-generation lineage of
8 trios, from which all pairwise parent–child pools (16 pools)
were assembled (Supplementary Table 1). These pools were
allelotyped with a high degree of replication (32 replicate
allelotypes per pool per SNP) across 12 SNPs in order to gen-
erate a large body of data (6144 allelotypes) in which techni-
cal variation from the construction of pools and from the
instrumentation itself would be the primary source of error.
Even though a high degree of replication was used, in our
analysis, the genotypes of each trio are predicted from data
of two pools without replication. In other words, the dual
goals of this study were (i) to establish that technical error
does not rule out the use of the method and (ii) to develop
and benchmark an algorithm, which we have called Trio-
phase, for use in inferring genotypes from parent–child
pools, without replications. The results demonstrate that
under these model circumstances, both the approach and
algorithm compare very favorable with standard genotyping.

MATERIALS AND METHODS

Triophase algorithm

Given two DNA pools, one consisting of the mother and the
child, and another consisting of the father and the child, there
are 16 possible configurations of alleles, depending on the
assignments to the four chromosomes involved. The pair of
allele frequencies creates a signature in the sense that when
the allele frequencies of the two pools are given, there is

exactly one genotype configuration that corresponds to it
(Table 1). When all three individuals are heterozygous,
there are two different possible configurations of the alleles,
but both configurations result in the same pair of allele
frequencies.

In practice, there are technical issues that complicate theo-
retical calculations. To begin with, when preparing pools, it is
never the case that the two individuals’ DNA are absolutely
equimolar. Owing to imprecision in quantification, normal-
ization and liquid handling, one of the individuals has a larger
representation than the other. Furthermore, in allele fre-
quency estimates using a technology such as single-base
extension/MALDI-TOF mass spectrometry (as well as most
other technology platforms), the accuracy of the allele fre-
quency estimate may vary from SNP to SNP. For most
SNPs, estimates of allele frequency are skewed due to differ-
ential hybridization of allele-specific oligonucleotides, with
the direction and magnitude of the shift depend on the geno-
typing platform, the specific SNP and on the actual allele fre-
quency (8,12,13).

To resolve these technical problems, we have implemented
an algorithm, Triophase, which relies on the fact that the
allele frequency for an ideal pool must be equal to one of
five values: 0, 25, 50, 75 or 100%. If the imprecision intro-
duced by technical considerations is significantly less than
half the difference in frequency between these bins (i.e.
12.5%), one could use clustering methods to accurately
assign the observed allelic frequencies into one of these
five bins. Furthermore, the algorithm derives power from
the fact that a biased distribution due to an asymmetrical
contribution of DNA from two individuals in a pool will
affect the observed allelic frequencies of all SNPs in the
assay in the same way. This allows the algorithm to normal-
ize the allele frequency estimates in silico.

The Triophase algorithm models the behavior of the allele
frequency estimate of each SNP by a polynomial of degree
three. Specifically, the algorithm begins by finding a new set
of centers that minimizes the least squares distance between
the allele frequency estimates and the corresponding centers
(ideally, the centers will be close to 0, 25, 50, 75 and 100%).
We map every possible cluster center to a new allele frequency
using a polynomial g xð Þ ¼ ax3 þ bx2 þ 1 � a � bð Þx. This

Table 1. The table illustrates the 16 possible trio configurations of parent and child alleles at a biallelic SNP, using A and G as an example

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Mother AA AA AA AA AG AG AG AG GA GA GA GA GG GG GG GG
Father AA AG GA GG AA AG GA GG AA AG GA GG AA AG GA GG
Child AA AA AG AG AA AA AG AG GA GA GG GG GA GA GG GG
Mother + Child Pool AA AA AA AA AG AG AG AG GA GA GA GA GG GG GG GG

AA AA AG AG AA AA AG AG GA GA GG GG GA GA GG GG
M + C Pool G Freq. 0 0 0.25 0.25 0.25 0.25 0.50 0.50 0.50 0.50 0.75 0.75 0.75 0.75 1 1
Father + Child Pool AA AG GA GG AA AG GA GG AA AG GA GG AA AG GA GG

AA AA AG AG AA AA AG AG GA GA GG GG GA GA GG GG
F + C Pool G Freq. 0 0.25 0.50 0.75 0 0.25 0.50 0.75 0.25 0.50 0.75 1 0.25 0.50 0.75 1
Paired Pool Freq. 0 0 0.25 0.25 0.25 0.25 0.50 0.50 0.50 0.50 0.75 0.75 0.75 0.75 1 1

0 0.25 0.50 0.75 0 0.25 0.50 0.75 0.25 0.50 0.75 1 0.25 0.50 0.75 1

The first three rows correspond to the genotypes of the mother, father and child. Rows 4 and 6 show the composition of pools consisting of equimolar amounts
of DNA from mother + child and father + child, respectively. Rows 5 and 7 tabulate the frequency of G in these pools [the frequencies of A are ¼ 1 � Freq (G)].
The final row shows the pair of pool frequencies for each configuration and illustrates that this pair of values uniquely identifies the genotype of mother, father
and child (configurations 7 and 10, the only two with the same pair of pool frequencies, correspond to the same genotypes of heterozygous mother, father
and child).
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map satisfies that g(0) ¼ 0 and g(1) ¼ 1. Furthermore, we
restrict the polynomial to satisfy that g(0.25) � 0.25, g(0.5)
� 0.5 and g(0.75) � 0.75. As a result, the polynomial will
only slightly change the clustering centers; these changes in
the clustering centers correspond to the skewness of the allele
frequency estimates, as demonstrated in Figure 1 (and Supple-
mentary Figures 1 and 2). As can be seen in these figures,
skewness is normally eliminated for allele frequencies that
are close to zero and one, and this fact is modeled by the map-
ping function by to constraints that g(0) ¼ 0 and g(1) ¼ 1.

To deal with pool asymmetries, we incorporate the DNA
quantities of the individuals to the calculation above. Even
though the sample quantities are not provided to the algo-
rithm, we use the fact that non-normalized pools will affect
all SNPs in the same manner. More formally, our model

assumes that for every SNP i and trio j, the following equa-
tions would be satisfied if no other error sources existed:
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qmi mijþcij

2 qm
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where pmcij and pf cij are the allele frequency estimated from the
genotyping platform, f ij‚mij‚cij are the actual genotypes of
the father, mother and child, and qfi ‚q

m
i are the DNA quantity

ratios for the father–child and mother–child pools. Other error
sources are then incorporated into the model by minimizing
the sum over the squares of deviations from these equations
(minimizing the least squares distance).

In order to find the minimum least squares distance, we run
Triophase in iterations. In the first iteration, the algorithm
assumes that all pools are equimolar and the mapping func-
tions g(x) are calculated for each SNP based on the least
squares distance, as described above. Given these mappings,
we search for sample quantities that will minimize the least
squares distance between the mapped clustering centers and
the allele frequency estimates. We compare the mapped fre-
quencies to the actual allele frequency estimates and pick the
sample quantities that minimize the sum of least squares. We
then iterate by searching for new mapping functions based on
the estimated sample quantities. The algorithm terminates
when there is no substantial improvement in the least squares
sense (for a formal discussion of the algorithm see Supple-
mentary Data).

Triophase with missing data

The quantification of the DNA product is a nontrivial process
that may result in some uncertainties in the allele frequency
calls. In most cases, the genotyping platform can derive a
confidence interval [x,y], within which the actual allele fre-
quency is likely to lie. In the case where the pools are of
size two, the confidence intervals may be viewed as integer
intervals, where x and y are both integers that represent
bounds on the possible allele count in these two individuals.

SNPs in close proximity to each other are usually corre-
lated and are said to be in linkage disequilibrium (LD). If
the genotyped SNPs are in high LD, Triophase uses the LD
structure to infer the missing data. In particular, Triophase
first estimates haplotypes from the confidence intervals and
then infers genotypes from haplotypes. The haplotypes are
estimated based on local prediction. We use a sliding window
of varying length and the haplotypes are inferred for each of
these windows using an approach similar to the greedy algo-
rithm suggested for genotype phasing (14). For a given win-
dow and trio, there is a confidence interval associated with
each of the SNPs in that window. These confidence intervals
can be viewed as constraints on the possible four haplotypes
(mother and father haplotypes) that appear in the trio. The
algorithm searches for a haplotype that can be assigned to

Figure 1. Allelic frequencies of pools for SNP assay ID rs1012515. The
x-axes correspond to pool index, ordered by increasing known pool allelic
frequency. Upper panel: the pools’ allelic frequency estimate as measured by
MassARRAY genotyping (raw data, open boxes) versus the Triophase-
corrected estimates (closed circles). Lower panel: the pools’ known allelic
frequency bin (large gray circles) versus Triophase-assigned frequency bins
(small dark circles). Two errors in pool frequency estimation are evident in
the lower panel as lone small dark circles.
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as many trios as possible within this window. Once this hap-
lotype is assigned to these trios, the algorithm updates the
constraints that are set by the confidence intervals accord-
ingly. This is done repeatedly until all trios have been
assigned four haplotypes in the window. The final result for
each of the SNPs is based on a majority rule, which takes
into account all windows overlapping with that SNP (for
additional details see Supplementary Data).

We use chromosome 22 of the Yoruban population avail-
able from the HapMap dataset (denoted YRI) to evaluate
Triophase. This dataset is composed of 30 trios taken from
a Yoruban population from Nigeria and it spans 19 738
SNPs, in an average distance of 5 kb. We used the phasing
algorithm HAP (15) to resolve the missing data that was pre-
sent in this dataset. As explained below, we simulated errors
and confidence intervals from this dataset in order to test our
algorithms.

We simulated the confidence intervals for each of the
pools. The simulations depend on a parameter p, which we
define as the missing data rate. For each DNA pool with an
allele count of k, we simulated a confidence interval [x,y]
such that x < k < y. The bounds x and y are chosen according
to a bounded geometric distribution with parameter p. That is,
we pick x and y so that k� x�G pð Þ‚ y� k�G pð Þ; if x < 0
we set x ¼ 0 and if y > 4 we set y ¼ 4. Under the resulting
simulation, the fraction of ambiguous pools (when x < y)
is �2p. As seen from our experiments, a realistic value of
p would be on the order of 0.01.

DNA quantification and construction of pools

DNA samples were of CEPH/Pedigree 66, purchased as
purified DNA from the Coriell Collection (details found at
http://locus.umdnj.edu/nigms/nigms_cgi/cells.flat.cgi?id¼7&
query¼66). This pedigree of 13 individuals is composed of
both pairs of maternal and paternal grandparents, parents
and seven children. Owing to constraints of available mate-
rial, one of the children (repository number GM12550) was
excluded. The remaining 12 individuals permitted the con-
struction of 16 independent mother–child and father–child
pools. Prior to pooling, DNA was quantified by three differ-
ent methods: UV spectroscopy using the NanoDrop instru-
ment (NanoDrop Technologies, Wilmington, DE),
fluorimetry using the Picogreen DNA-binding dye (Invitro-
gen, San Diego) and quantitative-PCR using real-time
quantitative-PCR and a sequence-specific Taqman probe.
Samples were carefully normalized to a uniform concentra-
tion, re-quantified using all three methods to confirm the
accuracy of normalization and equimolar pools assembled
at a concentration of 1.25 ng/ml of each individual sample
(2.5 ng/ml total [DNA]). The details of the pools are shown
in Supplementary Table 1.

Allelotyping

Genotyping of individual samples and allelotyping of DNA
pools were both performed using the same chemistry and
laboratory protocols for multiplex PCR, single-base primer
extension (SBE) and generation of mass spectra (for complete
details see iPLEX Application Note, Sequenom, San Diego).
For the purpose of this proof-of-principle experiment we used
a single multiplex assay containing 14 SNPs selected for their

high minor allele frequencies in HapMap populations (>0.4)
and absence of LD. These included two SNPs on chromo-
some 3, three on chromosome 6, two on chromosome 8,
one each on chromosomes 7, 10, 12, 17 and 21, and two map-
ping to the sex chromosomes (data not included in the anal-
ysis). Briefly, initial 14-plex PCR was performed using
28 primers in 5 ml reactions on 384-well plates containing
5 ng of genomic DNA, either a pure sample from a single
individual (genotyping) or a 1:1 pool of 2.5 ng DNA of
each of two samples (allelotyping). Reactions contained
0.5 U HotStar Taq polymerase (QIAGEN), 100 nM primers,
1.25· HotStar Taq buffer, 1.625 mM MgCl2 and 500 mM
dNTPs. Following enzyme activation at 94�C for 15 min,
DNA was amplified with 45 cycles of 94�C for 20 s, 56�C
for 30 s, 72�C for 1 min, followed by a 3 min extension at
72�C. Unincorporated dNTPs were removed using shrimp
alkaline phosphatase (0.3 U, Sequenom). Single-base exten-
sion was carried out by addition of 14 SBE primers at con-
centrations from 0.625 mM (low MW primers) to 1.25 mM
(high MW primers) using iPLEX enzyme and buffers
(Sequenom) in 9 ml reactions. Reactions were desalted and
SBE products measured using the MassARRAY Compact
system and mass spectra were analyzed using TYPER soft-
ware (Sequenom), in order to generate genotype calls and
allele frequencies. Allelotyping of the 16 parent–child DNA
pools was replicated completely (from initial PCR) 32
times, resulting in a dataset of size 512 allelotypes for each
pool. Although these data do not represent 512 independent
pools, the purpose of this experiment was to test whether or
not technical variance from the platform would rule out the
use of the proposed methodology and the benchmark the
Triophase algorithm on real-world data; for the purpose of
estimating technical variance these data represent indepen-
dent analyses.

RESULTS

Evaluation of Triophase

In order to illustrate the feasibility of the protocol, we evalu-
ated the genotyping protocol together with Triophase, by
applying them to pedigree 66 of the Coriell Institute. The
pedigree consists of 12 individuals from three different gen-
erations and it provides a set of 8 different, partially overlap-
ping trios. We treated the trios as independent. We prepared
the two pools for each of the trios, using equivalent DNA
quantities as used for standard genotyping (2.5 ng per individ-
ual). We measured allelic frequency for 12 SNPs for each of
the pools using multiplexed quantitative MALDI-TOF mass
spectrometry and inferred the genotypes using Triophase.
We have replicated this experiment 32 times and thereby
modeled the performance of the method over 512 trios and
12 SNPs or 6144 allelotypes in all (see Materials and Meth-
ods for details). Our goal in carrying out such exhaustive rep-
lication was to generate a large dataset in which an accurate
measure of the population variance from the technology plat-
form could be ascertained. We measured the discordance rate
between inferred genotypes from pooling to the actual geno-
types (known from prior genotyping on the same platform,
using the same chemistry). In Table 2, the discordance rate
resulting from the use of parent–child pools is shown for
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all 12 SNPs, with or without the use of the Triophase algo-
rithm and in the latter case, permitting a no-call rate of 0,
2 or 5%. We allow for no-calls (missing data) based on the
signal to ratio (SNR) values of the mass spectra (values are
discarded in order from lowest SNR) and on the least squares
distance resulting from the Triophase algorithm (Materials
and Methods).

In theory, the use of parent–child pools is not dependent
upon an algorithm such as Triophase; one might simply use
uncorrected allelic frequencies rounded to the nearest fre-
quency bin (e.g. a pool allelic frequency of 0.124 would
resolve to zero and of 0.126 would resolve to 0.25). As illus-
trated in Figure 1 and Supplementary Figures 1 and 2, how-
ever, many assays are skewed from the expected allelic
frequency binds, with the result that such rounding would
result in unacceptably large error. In this pilot experiment,
the genotyping error rate from such simple rounding was
estimated at 2.12%.

The use of Triophase, in contrast, results in a discordance
rate of 0.66%, assuming that all data are included. Clearly,
there is a tradeoff between the no-call rate and the discor-
dance rate. Discordance could be decreased to 0.47% with
a 2% no-call rate. It appears that allowing >2% no-calls
does not reduce the discordance rate considerably (Table 2).

In most genotyping platforms, the error rate is higher for
heterozygous individuals than for homozygous individuals.
This is detrimental to TDT, in which the false association
of rare alleles is highly sensitive to errors in heterozygous
SNPs. Therefore, for this study we only considered SNPs
with minor allele frequency >0.45, so that the vast majority
of the trios has at least one heterozygous individual. Surpris-
ingly, we find that when restricting the evaluation to het-
erozygous trios, for which not all four alleles are identical,
we get a discordance rate of only 0.17% with 2% no-call rate.
This phenomenon can be explained intuitively by the follow-
ing argument. Unlike standard genotyping, where the number
of homozygous genotypes is always larger than the number
of heterozygous genotypes (under Hardy–Weinberg Equilib-
rium), in the case of pools of size two, the number of

pools where all four alleles are identical is relatively small.
Therefore, our algorithm has more data points for heterozy-
gous SNPs than for homozygous, resulting in an increased
accuracy for heterozygous SNPs. In the context of an associa-
tion study, where 100–1000 of samples are genotyped, the
number of data points will increase dramatically and we
expect the resulting discordance rate to decrease accordingly.

Power evaluation

Even though our approach allows for the genotyping of trios
using 50% less of the effort, it is not clear whether there is a
substantial gain in power due to the dependencies between
the genotyping errors of the children and their parents. To
test the effect of these dependencies, we simulated sets of
500 trios each, in which we genotype a causal SNP with allele
frequency ranging from 5 to 35%. In each of the simulations
we used a different disease model that is characterized by the
prevalence that was set to 0.05 and the relative risk ranging
from 1 to 1.5. For each such disease model and allele fre-
quency, we ran 5000 simulations and compared four different
approaches for analysis: the TDT test when no genotyping
errors are present, the TDT test when the Triophase is used
and the genotyping errors are dependent, the TDT test
when standard genotyping is used and the genotyping errors
are independent and a c2-test for a case–control scenario that
was simulated for a set of 500 cases and 500 controls under
the same disease model and allele frequency. The error rate
used for the three latter analyses was 0.6%. As demonstrated
in Figure 2, there is a slight loss in power when there are
dependencies in the genotyping errors, but this is negligible
compared to the gain in power over the case–control scenario.

Missing data

We evaluated the performance of Triophase with missing
data on the set of 30 trios of the Yoruban population available
from the HapMap dataset (HapMap Consortium, 2005). We
simulated confidence intervals for the pools resulting from
this dataset across chromosome 22. The simulated confidence
intervals depend on an ambiguous data rate p (for details see
Materials and Methods). We evaluated Triophase for ambigu-
ous data rate p ranging from 0 to 14% with 1% increments.
The simulation study shows that the error rate is kept
15-fold lower than the rate of ambiguity (Figure 3). Thus,
when random SNPs are genotyped in a similar density to
the one given in the first phase of HapMap (every 5 kb on
the average), standard rates of missing data can be filled in
with high accuracy using Triophase. We note the errors in
the inference in the missing data decrease the power of the
TDT test. This however is also true when missing data is
inferred from data generated by standard genotyping. Evi-
dently, the power lost due to the resulting errors is negligible
compared to the power gained by the ability to type 50%
more trios.

DISCUSSION

The genotyping of trios is still a common practice due to its
robustness to effects of population stratification (6) and to the
improved accuracy of trio phasing methods (7). Additionally,
trios were used recently to find deletions variants in silico

Table 2. The observed genotyping error (discordance) rates of the proposed

parent–child pool-based protocol, under four conditions: (i) using simple

rounding of frequencies into the nearest bin, (ii) with Triophase and a 0% no-

call rate, (iii) with Triophase and a 2% no-call rate and (iv) with Triophase and

5% no-call rate

SNP ID Simple bins Triophase-correction
100%
Call rate

100%
Call rate

98%
Call rate

95%
Call rate

rs1012515 (%) 2.08 0.26 0.27 0.28
rs1029687 (%) 0.39 0.26 0.13 0.13
rs1228988 (%) 0.26 0.26 0.26 0.26
rs12415456 (%) 0.52 0.26 0.13 0.13
rs1472343 (%) 1.69 1.43 0.94 0.68
rs1669703 (%) 0.00 0.00 0.00 0.00
rs2289300 (%) 0.52 0.52 0.13 0.13
rs2560643 (%) 0.13 0.13 0.00 0.00
rs4382469 (%) 0.78 1.04 1.01 1.04
rs6550139 (%) 15.76 1.04 0.79 0.79
rs6550503 (%) 0.39 0.39 0.26 0.26
rs6569474 (%) 3.13 2.95 2.34 2.63
Mean (%) 2.12 0.66 0.47 0.45
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(16). Using the methods suggested in this paper, many of
these tasks could be performed on larger datasets or for a
lower cost. In particular, in the HAPMAP project (17), a
genome-wide analysis was performed across 60 trios, half

from a Yoruban population and half from Utah residents
with European ancestry (CEPH trios). Using the methods
described in this paper, future trio-based projects such as
the HAPMAP project or other family-based association stud-
ies would be able to increase the sample size by 50% for the
same cost.

Current association studies only use pooled DNA data
when the individual information is not needed, for instance,
for the screening of potential linked SNPs as a first step of
a multistage association study (8–10,18–20). In contrast to
previous methods, the techniques presented here provide a
new application for DNA pooling, namely the individual
genotyping of trios. We have demonstrated that our method
considerably increases the power of an association study
when compared to a case–control based association study
with an equivalent budget. The methodology used for this
protocol is limited to trios and it assumes that the SNPs are
biallelic and that there is no copy number variation. It may
be possible to extend our methods to other scenarios in
which more complex pedigree configurations are genotyped
or even when unrelated individuals are genotyped. We
emphasize that our choice of the genotyping platform for
the evaluation of our method is arbitrary and is only used
as a proof-of-principle. We expect the method to have similar
performance on genotyping platforms that allows for reason-
ably accurate quantitative DNA pools measurements. In order
to demonstrate this point, we used the HapMap CEU popula-
tion to simulate scenarios in which the allele frequencies are
read with errors. The simulations were performed over
200 SNPs in chromosome 22. The error was introduced by
adding to the correct allele frequency a Gaussian distribution
with mean 0 and standard deviation (SD) of allelic frequency

Figure 2. The increase in power resulting from the use of pairwise parent–child pools in genotyping trios. We compared the power of four different scenarios
under a multiplicative disease model for a SNP with minor allele frequencies of 5 and 25%. In the first three scenarios, 500 trios are genotyped and the TDT test
is performed. The first scenario assumes no genotyping errors, the second assumes that the trios were pooled using the Triophase approach and thus the errors of
the child and its parents are dependent and the third one assumes that the errors for different individuals are independent, In the fourth scenario, we assume that
500 cases and 500 controls are genotyped and that a c2-test is performed. Notably, the Triophase approach does not lose much power due to dependencies in the
errors and for low allele frequencies, there is a considerable gain of power compared to a non-family-based case–control study.

Figure 3. The error rate of the predicted genotypes using multiplexing
pools in trios and the greedy algorithm for missing data estimation. The x-axis
is the missing data rate and the y-axis is the resulting genotyping error
rate. The pools and the corresponding confidence intervals were simulated
on two datasets: The first is a dataset simulated from the coalescent
model, taken from the dataset publicly available by (7). The second is
chromosome 22, taken from 30 Yoruban trios collected by the HapMap
consortium, (15).
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estimation ranging from 0 to 10%. As can be seen in Figure 4,
as long as the SD < 6%, the results are comparable to geno-
typing error rates. This is encouraging, since it implies that it
may be possible to extend the approach to other genotyping
platforms. In this study, empirical pool frequency determina-
tion using MALDI-TOF-based allelotyping across 12 SNPs
resulted in a range of SDs (Min SD ¼ 2.0%, Max SD ¼
10.0%, mean SD ¼ 4.8 ± 2.3%, Supplementary Figure 3).
For the current platform, at least, genotyping using parent–
child pools in combination with Triophase should produce
similar error rates to standard genotyping.

This proposed method is not without some drawbacks.
Although Triophase includes an algorithm for using fre-
quency estimates to correct, in silico, asymmetries in the con-
tributions of parent versus child genomic DNA to a pool, it is
likely that large asymmetries would interfere with the
method. Hence, the accurate normalization of DNA samples
is a prerequisite to the adoption of this method. Measuring
and normalizing DNA samples is not trivial, involving an
expense of both time and resources. In our hands, the cost
(in labor and reagents) of accurately normalizing a standard
96-well plate of DNA to the standard of the current study
is roughly $500 or $5 per sample. Thus, this cost is negligible
compared to the current genotyping costs, in studies where
hundreds of SNPs are genotyped.

Lastly, our study also provides an extensive measurement
of allele frequency estimates for pools of size two. The
study shows that for pools of this size, the clustering structure
of the five possible allele frequency values can be exploited
in order to provide accurate estimates of the actual allele fre-
quencies (Figure 1 and Supplementary Figures 1 and 2).
Therefore, it is conceivable that other methods involving
pools of size two will be used for other applications, includ-
ing those that are not based on trios.

SUPPLEMENTARY DATA

Supplementary Data are available at NAR Online.
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