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ABSTRACT

Understanding how epigenetic variation in non-
coding regions is involved in distal gene-expression
regulation is an important problem. Regulatory re-
gions can be associated to genes using large-scale
datasets of epigenetic and expression data. However,
for regions of complex epigenomic signals and en-
hancers that regulate many genes, it is difficult to
understand these associations. We present STITCHIT,
an approach to dissect epigenetic variation in a gene-
specific manner for the detection of regulatory ele-
ments (REMs) without relying on peak calls in indi-
vidual samples. STITCHIT segments epigenetic signal
tracks over many samples to generate the location
and the target genes of a REM simultaneously. We
show that this approach leads to a more accurate and
refined REM detection compared to standard meth-
ods even on heterogeneous datasets, which are chal-
lenging to model. Also, STITCHIT REMs are highly en-
riched in experimentally determined chromatin inter-
actions and expression quantitative trait loci. We val-
idated several newly predicted REMs using CRISPR-
Cas9 experiments, thereby demonstrating the relia-
bility of STITCHIT. STITCHIT is able to dissect regula-

tion in superenhancers and predicts thousands of
putative REMs that go unnoticed using peak-based
approaches suggesting that a large part of the regu-
lome might be uncharted water.

INTRODUCTION

Elucidating the diversity of transcriptional regulation is a
prevalent problem in computational biology. While there
is a plethora of mechanisms involved in regulating tran-
scription (1), especially the binding of Transcription Factors
(TFs) to regulatory elements (REMs) such as Promoters,
Enhancers and Repressors has been shown to be essential for
orchestrating cellular development and identity (2,3). Im-
portantly, enhancers have been closely linked to several dis-
eases and recent research suggests that enhancers might be
therapeutic targets (3,4).

In order to describe how REMs might influence their tar-
get genes in a systematic way, two models have been pro-
posed: the scanning model and the looping model (3,5). Ac-
cording to the scanning model, a REM is usually affecting
a gene that is located in close genomic distance, whereas in
the looping model, REMs can influence a gene that is lo-
cated several kilobases (kb) away from the actual regulatory
site via chromatin looping. Because biological evidence has
been found for both models, it is likely that both do occur
in-vivo (6,7).
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To elucidate regulatory function, two main problems
need to be solved: Firstly, REMs, need to be identified
genome wide and secondly, they need to be assigned to
their target genes. The first problem, identifying REMs
genome wide, has been addressed by international projects,
e.g. Blueprint and Roadmap. There, REMs were identified
using DNase1-Hypersensitive Sites (DHS), i.e. sites of ac-
cessible chromatin (8,9), via distinct patterns of Histone
Modifications (HMs), i.e. the co-occurrence of H3K27ac
and H3K4me1 while H3K4me3 is absent (10), or via TF-
ChIP-seq experiments of TFs such as EP300 (11). Typi-
cally, such data sets are analysed with peak calling algo-
rithms. Although, there is a plethora of peak callers avail-
able, designed for ChIP-seq (12) and chromatin accessibility
data (13), peak callers still have several limitations. For in-
stance, the selection of the cut-off to determine peaks over
background is not trivial, and also cell cycle stage (14) or
cell numbers (15) can prevent the accurate detection of truly
enriched regions. Furthermore, it is often not clear what
level of enrichment is needed such that a region can be seen
as biologically active (16). Besides, as illustrated in Supple-
mentary Figure S1, integrating peak calls across several di-
verse samples is not straightforward (17). However, an in-
tegrated set of peaks is required if machine learning ap-
proaches should be utilized to associate a defined set of can-
didate REMs to potential target genes across many sam-
ples. Note that automated integration of replicates, as of-
fered e.g. in the peak caller JAMM (18), is not designed for
such an application. It is rather meant to provide stable, re-
producible peak calls across replicates of the same cell-type
or tissue.

In addition to the efforts taken by Blueprint, Roadmap
and other IHEC members, putative enhancers were identi-
fied in the Fantom5 consortium via the identification of dis-
tinct bidirectional expression patterns in CAGE (Cap Anal-
ysis of Gene-Expression) data (19).

Overall, many different ways have been proposed to iden-
tify putative REMs using distinct chromatin signatures.
Nevertheless, the problem of linking those regions to the
genes they regulate is still not straightforward to solve. In
literature, especially in instances were only few replicates
are available, putative REMs are often linked to their near-
est gene according to genomic distance (20), or aggregated
using window based approaches (21–23). However, several
studies suggest that especially enhancers and repressors do
not regulate their nearest gene but may influence more dis-
tant genes (19,24–26). On top of that, REMs are highly
tissue-specific (27), suggesting that a purely distance based
detection of REMs is error prone.

Yao et al. (3) describe two approaches attempting to over-
come these limitations: (i) methods based on physical in-
teraction, i.e. capture Hi-C (28), or Chromatin Interaction
Analysis by Paired-End Tag sequencing (ChIA-PET) (29)
and (ii) methods based on associating gene-expression to
the activity of REMs, e.g. using DNase1-seq (9,24), or
HM abundance (30). Further, Hi-C data can be combined
with open-chromatin and histone ChIP-seq data to predict
enhancer-gene interactions (31).

While methods based on physical interaction are labori-
ous, time consuming and experimentally challenging, e.g.
in terms of providing a sufficient resolution of long-range

contacts (32), association based methods are predestined
to use the plethora of available epigenetics data to link
REMs to their target genes: Using machine learning, Cao
et al. propose to integrate predicted REMs into cell-type
specific interaction networks (33), similar to Hait et al.,
who also provide regulatory-maps derived from statisti-
cal associations between the activity of REMs and tar-
get gene-expression (24). Shooshtari et al. combined chro-
matin accessibility data with Genome-Wide Association
Studies (GWAS) to better pinpoint regulatory events in
autoimmune and inflammatory diseases (34). In the Fan-
tom5 consortium, putative REMs have been linked to
their target genes by associating enhancer activity to gene-
expression (19). Gonzales et al. use a nearest gene linkage of
DHSs in an iterative manner within gene-expression models
to link REMs to their target genes (20).

Here we present STITCHIT, a novel method to identify
and to link REMs to their target genes. Unlike conventional
approaches, that are either using peaks or literature curated
sets to identify candidate REMs, STITCHIT solves the prob-
lems of identifying and linking REMs to genes simulta-
neously instead of solving two independent sub-problems
(Figure 1). Applying STITCHIT to two large datasets ob-
tained from Blueprint and Roadmap shows that our peak-
free strategy outperforms the state of the art REM inference
and linkage methods in various quality control experiments.
Using CRISPR-Cas9 experiments, performed in an unseen
cell-line, we were further able to validate the regulatory role
of novel REMs detected by STITCHIT.

MATERIALS AND METHODS

Preprocessing

Paired DNase1-seq and RNA-seq data was downloaded
for 110 Roadmap samples. Upon granted access, we ob-
tained 56 paired DNase1-seq and RNA-seq samples from
Blueprint. An overview on sample numbers and tissue/cell-
type diversity is provided in Table 1. Supplementary Table
S1 lists all data accession numbers.

Paired samples are required as they are expected to have
a better correlation between chromatin structure and gene-
expression, because both samples originate from the same
donor. Details on data processing as well as used command
calls are provided in Supplementary Section 1.

Further, we obtained H3K27ac, H3K4me1 and
H3K4me3 data in wig format from the Blueprint data por-
tal for four samples (C0011IH1, S00C0JH1, S00XUNH1,
C0010KH1, see Supplementary Table S1). Also, we down-
loaded REMs contained in the GENEHANCER database
from the GeneLoc website (35).

Overall workflow and conceptual idea

Conceptually, we pursue the idea to identify regions in large
genomic intervals around a gene g of interest that can be as-
sociated to the expression variation of gene g across many
samples. To identify these regions, we utilize paired epige-
netics and gene-expression data. The STITCHIT algorithm
uses the actual signal of the epigenetics data to highlight
segments of the data showing signal variation that can be
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Figure 1. Comparison of REM inference approaches. (right) Current methods solve the problem of linking REMs to target genes with a sequential approach
(e.g. FOCS). Firstly, a catalogue of putative REMs is defined using peak calling. Secondly, signal in REMs in a window around a gene is associated to the
expression of the same gene. The final associations are reported (3). (left) STITCHIT combines the step of defining REMs and their association to target
genes into a joint prediction problem (1) and generates a catalogue of gene-specific REMs (2.). Thereby REMs that zoom in on the epigenomic region
that is associated with gene-expression are generated. This allows to detect more subtle REMs that are missed by sequential approaches that apply strict
thresholds on the initial signal.

Table 1. Overview on the data used in this study

Blueprint Roadmap

#Paired samples 56 110
#Different cell-types 13 33
Primary cells only Yes No

used to separate samples according to the target genes ex-
pression. Thus, the peak-calling step can be omitted and the
two tasks of identifying regulatory sites and their linkage to
targets are solved simultaneously. To refine the list of pu-
tative REMs identified by STITCHIT, we apply a regression
approach that is detailed below. This allows us to judge the
explanatory power of the found regions for gene-expression
and to assess the significance of each identified region. The
workflow of the proposed methodology is depicted in Fig-
ure 1, details are provided in Supplementary Figure S2.

Discretization of gene-expression data

In this work, we used the PROBABILITY OF EXPRESSION
(POE) method to discretize gene-expression data (36).
Briefly, POE determines for each gene a discrete expres-
sion state c ∈ C by fitting a mixture model composed of
either two classes (c1 (expressed) versus c2 (not expressed))
or three classes (c1(less expressed than baseline), c2(baseline
expression), c3(higher expressed than baseline)), depending

on which model achieves a higher likelihood. While there
is a R-implementation of POE available, we had to adapt it
for compatibility reasons. The updated R-Code is provided
in Supplementary Section 2.

The STITCHIT algorithm

In the following, we are given a dataset Dg with m rows, cor-
responding to the samples, and n columns representing the
epigenetic signal at base pair resolution around the target
gene g. Further, to each row, we assign a class label, indicat-
ing whether the corresponding sample is associated with a
high, medium or low expression value (C = 0, 1, 2). Note
that also a two-level classification was used here (C = 0, 1),
depending on the results of the POE method (36) (cf. Sup-
plementary Section 2). The algorithm is implemented such
that any number of distinct class labels, not exceeding the
number of samples, (|C| ≤ m) can be used. With Ck we re-
late to all rows to which we assigned class label k ∈ C.

A segment s has a start point i and an end point j, where 1
≤ i ≤ j ≤ n. We call Sg a segmentation of Dg, if it contains a
set of non-overlapping segments that covers the whole range
from 1 to n. The two trivial cases would be a segmentation
consisting of only a single segment with start point i = 1 and
end point j = n or the segmentation containing n segments,
where each segment only contains a single column, i.e. a sin-
gle base. The former would contain no information about
the class labels, while the latter would consist of a large set
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of noisy segments which result in bad features for the learn-
ing step that is based on the segmentation. Our goal is to
provide a small set of robust features for the learning step.
We achieve this by joining adjacent base pairs to segments,
such that the variance between the epigenetic signals of base
pairs that are contained in a segment is low, w.r.t. the class
label. The optimal segmentation according to the score we
define below, finds a trade-off between the number of seg-
ments and the variance.

To score a segmentation, we propose an information the-
oretic score based on the Minimum Description Length
(MDL) principle (37). MDL is a practical instantiation to
Kolmogorov complexity (38) and thus belongs to the class
of compression-based scores. Formally, given a model class
M, MDL identifies the best model M ∈ M for data D as
the one minimizing

L(D, M) = L(M) + L(D | M), (1)

where L(M) is the length in bits of the description of the
model M, and L(D|M) is the length in bits of the descrip-
tion of the data D given M. This is known as two-part, or
crude MDL. In essence, we try to find the simplest model
that can explain the data well. We follow the convention that
all logarithms are base two, since the length of the encod-
ing relates to bits, and define 0log 0 = 0. In this work, we
use MDL to balance our segmentation between having too
few segments and running at risk of missing structure in the
data and finding too many segments, which contain spuri-
ous information and make the post-processing infeasible.

From now on, we consider the model class of segmenta-
tions S from which we want to find the optimal segmenta-
tion Sopt

g , that is

Sopt
g = arg min

Sg∈S
L(Sg) + L(Dg | Sg). (2)

In particular, we encode a segmentation Sg as follows:

L(Sg) = LN(|Sg|) + |Sg||C| log
( | max − min |

τ

)

+ log
(

n − 1
|Sg| − 1

)
, (3)

where |Sg| denotes the number of segments, LN is the uni-
versal prior for integer numbers (37), |C| is the number of
class labels, max refers to the maximum value observed in
the data, min refers to the minimum value observed in the
data and � ≤ 1 is the data resolution. The � parameter is
used to fix a certain precision up to which we record the
data. This is necessary to fairly compare models when deal-
ing with floating point numbers.

First, we encode the number of segments, then for each
segment per category the associated mean value by assum-
ing it lies between the minimum and the maximum value in
the data and last the complexity to select |Sg| segments from
possible n segments.

To encode the data given a segmentation, we simply sum
over the costs per segment

L(Dg | Sg) =
∑
s∈Sg

∑
k∈C

1
|Ck| L(Dg | s, k), (4)

where |Ck| corresponds to the number of rows associated
with class label k. Here, costs or encoding costs refers to the
code length per segment. The longer the encoded length, the
higher the costs of encoding a segment.

To encode the costs for a specific segment and the data as-
sociated with class k, we encode the error assuming a Gaus-
sian distribution. Using σ̂ 2 as the sample variance over the
data corresponding to segment s and class label k, we get
(compare (37))

L(Dg | s, k) = |s||Ck|
2

(
1

ln(2)
+ log(2πσ̂ 2)

)

+ |s||Ck| log τ, (5)

with |s| being the length of the segment. Note that the epige-
netic data is not discrete, but continuous. To model the epi-
genetic signal probabilistically, we assume that those data
points that fall within a single segment are Gaussian dis-
tributed. That is, to specify the model for the data of one
class in one segment, we need to specify the mean and the
variance. Specifically, the squared loss penalizes data points
that are further away from the mean more than for exam-
ple measuring the absolute error. Consequently, the more
deviating the mean and variance of two adjacent segments
are, the more costly and hence the less likely it would be to
merge these together into one segment.

To find the optimal segmentation Sopt
g , we use dynamic

programming (39). In essence, we start with a segmentation
containing only a single segment. Then we iteratively com-
pute the best segmentation containing i segments based on
the best segmentation containing i − 1 segments for i ∈ {2,
. . . , n}. Lastly, we select Sopt

g among the optimal segmen-
tations for each possible number of segments. The runtime
complexity of this algorithm is O(n2). By selecting a min-
imum segment size of � and partitioning the search space
into l chunks, we can run each chunk in parallel and the
total runtime complexity reduces to O( n2

lβ2 ). In our experi-
ments, we use � = 10 and set l to � n

5000�, which makes the
algorithm feasible to be applied on large genomic intervals.
Here, we have considered 25kb upstream of a genes’ Tran-
scription Start Site (TSS) and 25 kb downstream of a genes’
Transcription Termination Site (TTS).

An example is provided in Supplementary Section 3.

Selection of candidate regulatory elements

Those segments that are associated to the observed expres-
sion changes need to be extracted from Sopt

g . Thus, for all
segments s ∈ Sopt

g we compute both Pearson and Spearman
correlation between the epigenetic signal in s across all sam-
ples m and the continuous expression values of the target
gene g. We select all segments that achieve a correlation
value (Spearman (default), or Pearson) with a significance
threshold of P ≤ 0.05. We apply the same filtering to the
alternative methods introduced below.

Refinement of selected regions using linear regression

STITCHIT provides for all selected segments s ∈ Sopt
g a ma-

trix X holding the epigenetic signal within these regions.
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The m rows of X denote the samples, the n columns refer
to the regions selected by STITCHIT. To further refine the
suggested regions for a distinct gene g, we first train a lin-
ear model using elastic net regularization, as implemented
in the glmnet R-package (40). Here, we are utilizing the
DNase1-seq signal within candidate REMs (X) to predict
the expression of g, stored in y. The grouping effect results
in a sparse regression coefficient vector. However, correlated
features, i.e. regions that jointly regulate gene g, which is
an expected scenario in this application, will be maintained.
This is achieved by combining both the Ridge and the Lasso
regularizers:

β̂ = arg min
β

||y − Xβ||2 + λ[α||β||2 + (1 − α)||β||]. (6)

Here, β represents the feature coefficient vector, β̂ the es-
timated regression coefficients, and � controls the total
amount of regularization. Both the input matrix X and the
response vector y are log-transformed, with a pseudo-count
of 1, centered and normalized. The parameter �, which
is optimized in a grid search from 0.0 to 1.0 with a step-
size of 0.01 controls the trade-off between Ridge and Lasso
penalty.

As previously performed by Schmidt et al. (41), model
performance is assessed in terms of Pearson and Spearman
correlation as well as using the mean squared error (MSE)
between predicted and measured gene-expression. Specif-
ically, the performance of the linear model is assessed on
an hold-out test dataset in a ten-fold outer Monte Carlo
cross-validation procedure, where 80% of the data are ran-
domly selected as training data and 20% as test data. The
parameter � is fitted in a six-fold inner cross-validation us-
ing the cv.glmnet procedure. The parameters’ final value is
determined according to the minimum cross-validation er-
ror, which is computed as the average MSE on the inner
folds (lambda.min).

Significance of the correlation between predicted and
measured gene-expression is corrected using the Benjamini-
Yekutieli correction (42), which is designed to account for
dependency between the tests (24). Only models with a q-
value ≤0.05 are considered for interpretation of the selected
regions. For those models, we refer to all features with a me-
dian non-zero regression coefficient across the outer folds
by XNZ.

In a second learning step, similar to Hait et al. (24), we
train an Ordinary Least Squares model (OLS) on the pre-
selected features XNZ predicting y and report the regres-
sion coefficients �OLS as well as the P-values per feature for
downstream analysis:

y = XNZβOLS. (7)

The OLS model allows for a simple comparison of regres-
sion coefficients �OLS across genes, as there is no bias in-
troduced by the regularization, and provides a straight for-
ward way to compare individual regions. Note that the OLS
model is not used to judge model performance. Model per-
formance is exclusively assessed using the cross-validation
procedure described above. All regions and model coeffi-
cients used for interpretation and validation are obtained
from the OLS models (Supplementary Figure S3a).

Nested execution of STITCHIT inside a Monte Carlo cross-
validation procedure

In addition to the aforementioned pipeline that uses the
same data set for the execution of STITCHIT and as input
for the linear models to refine the REM selection, we devise
a nested Monte Carlo cross-validation strategy that consid-
ers 80% of the data to generate the set of candidate REMs
Sopt

g for gene g. The exact same 80% of the data are subse-
quently used to fit the elastic net model as described above.
The performance of the elastic net model is then evaluated
on the 20% of unseen data, which have not been used in gen-
erating the set of candidate REMs Sopt

g . To obtain a robust
performance estimate this Monte Carlo cross-validation is
repeated 10 times per gene g. A graphical overview on the
nested execution of STITCHIT is provided in Supplementary
Figure S3b.

Down-sampling of training data

To perform down-sampling experiments we use a nested
cross-validation strategy using 20% of the complete
Roadmap data set for model testing and down-sampled ver-
sions of the remaining 80% for training. Specifically, from
these 80% of the data, we generate down-sampled sets con-
sidering 40%, 50%, 60%, 70%, 80%, 90%, and 100% of the
data points for model training. For each gene, we repeat this
process 10 times in a Monte Carlo fashion randomly select-
ing the test and training samples. STITCHIT and REM re-
finement are performed as described above.

Alternative approaches to identify and to link REMs to genes

We compare the REMs identified with STITCHIT (S) to
those obtained with three alternative approaches (Supple-
mentary Figure S4): (i) an unsupervised, window based ag-
gregation of DHSs per gene and per sample, (ii) taking the
union of DHSs across all samples (UNIFIEDPEAKS) and
(iii) considering known REMs from the GENEHANCER
database. Command line arguments along with further de-
tails on how to produce the respective scores are provided in
Supplementary Section 4. We applied exactly the same lin-
ear regression paradigm for approaches (ii) and (iii) as de-
scribed above for the regions identified with STITCHIT. The
unsupervised linkage (1) is not considered for interpretation
purposes.

Unsupervised integration of peaks per sample. Similar to
work by others (20,41), we determine for each gene g in
each sample i considering a predefined window w how many
DHSs are located within this window cg

i , how long the ac-
cessible regions lg

i are and we aggregate the signal intensity
within the selected DHSs sg

i . The contribution of each DHS
p is also weighted by its distance dist(p, g) to the TSS of
gene g following an exponential decay. Details are provided
in Supplementary Section 4.

Unified peaks. Here, we generate consortia specific aggre-
gations of all DHSs called with JAMM. Overlapping sites
are merged using the BEDTOOLS merge command. Thereby,
we obtain a set of regions representing all accessible sites
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within one dataset. Using the bigwig files generated with
DEEPTools and the libBigWig library (https://zenodo.org/
record/45278), we compute the DNase1-seq signal within
the merged peaks for each sample. Next, we test for all can-
didate peaks within a distinct window w, here w = 25 kb up-
stream of a genes TSS and downstream of its TTS, whether
there is a significant spearman correlation (P ≤ 0.05) be-
tween the DNase1-seq signal within the peak and the ex-
pression of the gene. All merged peaks passing this test (U )
are considered for the regression model described above. We
refer to this as the UNIFIEDPEAKS approach.

This approach is conceptually similar to the peak ag-
gregation approaches pursued by Hait et al. (24) and
Shooshtari et al. (34).

GeneHancer. For all REMs obtained from the GENE-
HANCER database, we calculate the sample specific
DNase1-seq signal within each region for each gene, using
the libBigWig library. Note that a window or distance
cut-off is not required here since each region is already
assigned to its putative target gene. Considering that the
GENEHANCER database is comprised of REMs originating
from many different sources identified with a plethora
of assays and molecular signatures, we perform the same
correlation based test as above to identify a subset (G) of
regions with sufficient correlation between the DNase1-seq
signal and the gene-expression of the respective target gene.

Validation of putative regulatory regions

Overlap with the Ensembl Regulatory Build and OCHROdb.
We used the terms: Open chromatin, Promoter, Promoter
Flanking Region, TF binding site and Enhancer from the
Ensembl Regulatory Build (ERB) (43) (release 86), to com-
pare predicted REMs to an established regulatory annota-
tion of the genome. To further refine the analysis, we com-
pare REMs not overlapping any ERB terms with the DHSs
contained in OCHROdb (44), a manually curated database
of reproducible DHSs across replicates and various consor-
tia within IHEC.

Chromatin accessibility and regulatory relevance of previ-
ously unknown REMs. We further assessed the DNase1
signal within REMs overlapping any of the ERB terms or
the OCHROdb (labelled as known) and those not overlap-
ping these elements (labelled as unknown). We compared
their DNase1 signal against 10 000 randomly chosen ge-
nomic regions using the BEDTOOLS shuffle command ex-
cluding the original positions.

Furthermore, we investigated whether the top REM per
gene is a known or an unknown REM. Also, we performed a
simple enrichment test for each gene, using the GSET func-
tion from the GSEASY package considering the sorted list of
REMs (by absolute regression coefficient) and the label of
each REM (known, unknown).

Overlap with histone modification data. We selected the top
10 000 STITCHIT REMs, ranked by their OLS P-values.
Additionally, we have randomly chosen 10 000 STITCHIT
REMs from the entire set and, as a baseline, obtained 10
000 random regions of similar size using the BEDTOOLS
shuffle command excluding the original positions. Next, we

obtained the H3K27ac, H3K4me3 and H3K4me1 signal
for four Blueprint samples (see Data) in 1kb windows cen-
tered in the middle of the candidate REMs and visualized
the data in R. Furthermore, we obtained the top 10 000
STITCHIT REMs for each class of labels used in the Regu-
latory build and assessed the H3K27ac signal within those
REMs.

Overlap with GENEHANCER. Using BEDTOOLS intersect
we computed the overlap between all candidate regulatory
sites identified with STITCHIT with all unique entries con-
tained in the GENEHANCER database that are within the
searched 25 kb search window and downstream of each
gene (193 298 distinct regions). The same is done for re-
gions based on the UNIFIEDPEAKS approach, thereby as-
sessing how many known REMs from GENEHANCER can
be recovered.

GWAS hits. We collected 103 121 unique GWAS sites
from the European cohort contained in the EMBL-EBI
GWAS Catalog (45). For these SNPs we determined 1 020
896 proxy SNPs using the precomputed data of the Euro-
pean population provided by SNiPA (46). The collection of
the SNPs from the EMBL-EBI GWAS Catalog combined
with the proxy SNPs is denoted as M. For all gathered
SNPs we looked up their Minor Allele Frequency (MAF)
provided by the dbSNP database (47) (build 154). Next, we
computed 100 randomised SNP sets. Therefore we sampled
for each set |M|-many SNPs from the dbSNP database,
while maintaining the MAF distribution of M. The sets of
random SNPs are denoted as A = {A1, ...,A100}.

Next, we computed three different measures to char-
acterize the overlap between STITCHIT REMs (S) and
our GWAS catalog (M): (i) |S ∩ M|, denoting how many
overlaps occur between any m ∈ M and any candidate
STITCHIT REM s ∈ S and |S ∩ A|, denoting the ex-
pected number of such overlaps using the random SNP
sets A; (ii) |{m : m ∈ {S ∩ M}}|, denoting the number of
unique GWAS loci m ∈ M overlapping with any candidate
STITCHIT REM s ∈ S and |{a : a ∈ {S ∩ A}}|, denoting the
expected number of unique SNPs; (iii) |{s : s ∈ {S ∩ M}}|,
denoting the number of unique STITCHIT REMs overlap-
ping any m ∈ M and |{s : s ∈ {S ∩ A}}|, denoting the ex-
pected number of unique REMs.

Generation of a REM background model. We generated
REM background sets specific for STITCHIT, UNIFIED-
PEAKS and GENEHANCER matching the number and length
of REMs per gene. Here, we follow the established assump-
tion that REMs are more likely to be placed close to the TSS
of their target gene than far away from it. For each gene,
we generated as many REMs upstream and downstream of
the TSS as present in the original REM sets. We computed
REM positions using the REXP function sampling from an
exponential distribution with a rate parameter of 7.

eQTL analysis. We obtained uniformly reprocessed
BLUEPRINT eQTLs B, including three different pri-
mary cell types, and GTEx version 8 eQTLs T , including
49 different tissues from EMBL’s eQTL catalogue (48)
(Supplementary Table S10).

https://zenodo.org/record/45278
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We count how many REMs overlap eQTLs that are as-
signed to the same gene as the REM, in other words, we
compared the gene-locus assignment from all b ∈ B and t ∈
T with our predicted REMs R = {S,U ,B} and obtained
the number of REMs with correct overlaps OB

R and OT
R ,

respectively. To assess the significance of this overlap, we
compared it to the REM background models based on ex-
ponential decay described above, denoted by Ei with i ∈ [1,
10], approximating the expected overlap denoted by EB

R and
ET
R, respectively. The observed over expected ratio OEB

R
and OET

R can be computed by

OEB
R = OB

R
mean
i∈[1,10]

(EB
i )

, (8)

OET
R = OT

R
mean
i∈[1,10]

(ET
i )

. (9)

ChIA-PET and Capture Hi-C data. ChIA-PET data P
for K562 and MCF-7 targeting the RNA polymerase II
was downloaded from the 4DGenome database (49) and
lifted to hg38 using the UCSC liftover tool. The ChIA-PET
data sets contain 64 773 and 65 269 interactions, respec-
tively. Promoter capture Hi-C data C for GM12878 was ob-
tained from Mifsud et al. (50) and also lifted to hg38. The
GM12878 Promoter Capture Hi-C data set contains 88 568
interactions. In addition, we obtained Promoter Capture
Hi-C data from Javierre et al. (51), which was generated
in scope of the Blueprint project and hence matching well
to our Blueprint data set. The Blueprint Promoter Capture
Hi-C data set contains 51,142 interactions. The chromatin
interaction data allows us to calculate how many REMs
R = {S,U ,B} and target gene interactions match the chro-
matin contacts captured by the ChIA-PET P or Promoter
Capture Hi-C C data. To match chromatin interaction data
to our suggested REMs, we consider the entire gene-body
of the linked gene as the second coordinate. We consider
the entire gene-body to (i) easily cover interactions to alter-
native transcription start sites and (ii) to account for reg-
ulatory interactions within the gene body as reported be-
fore (20). We count an overlap as valid if either the gene or
the coordinate of the associated REM overlaps one coordi-
nate of the chromatin interaction and the second coordinate
of the interaction site overlaps the remaining coordinate of
the association.Valid overlaps are denoted as OP

R and OC
R,

respectively. As for the eQTL analysis, we calculate an ex-
pected number of overlaps using the method specific REM
background sets denoted as EP

R and EC
R, respectively. The

observed over expected ratio OEP
R and OEC

R can be com-
puted as

OEP
R = OP

R
mean
i∈[1,10]

(EP
i )

, (10)

OEC
R = OC

R
mean
i∈[1,10]

(EC
i )

. (11)

To assess both the distance of (not) supported REMs to
the TSS of their target gene as well as the regression coeffi-

cient of (not) supported REMs, we decided to only consider
REMs that are likely to be active in the cell lines used to gen-
erate the confirmation capture data as this would be a more
meaningful comparison. Here, we define a REM as active
if it has a non-zero DNase1-seq signal. To do so, we used
DNase1-seq data for K562 (ENCFF971AHO) and MCF7
(ENCFF924FJR) to complement the ChIA-PET data, and
DNase1-seq data for GM12878 (ENCFF743ULW) to com-
plement the Capture Hi-C data.

Analysis of additive enhancers

Anderson et al. defined redundant enhancers as REMs that
have a contribution to the model of at least 0.2 and that are
highly correlated (Pearson correlation > 0.7) with any other
of the nine enhancers they considered in their model. They
observed that with an increasing number of redundant en-
hancers, the maximum expression of their target genes in-
creases, thus they call those enhancers additive enhancers
(52). Here, as our setup is different, e.g. we are not lim-
ited to ten enhancers per model, we compute the Spearman
correlation between all enhancers that pass the elastic net
regularization and are used in the OLS model. We consider
these enhancers as redundant if their Spearman correlation
is >0.8. Due to the possible zero inflation of the read data,
we use Spearman instead of Pearson correlation. The max-
imum expression of the related genes is assessed for genes
in groups considering genes with [0,1], [2,3], [4,5] and [6[ re-
dundant enhancers, respectively.

Comparison against REMs determined by FOCS

We obtained promoter enhancer interaction (PEIs) pre-
dictions computed by FOCS from the methods website
at http://acgt.cs.tau.ac.il/focs/download.html and down-
loaded files using data for Roadmap (Roadmap Epige-
nomics Enhancer-Promoter links with annotations), as
these are the PEIs most comparable to STITCHIT data. As
FOCS predictions are only available for hg19, we used the
USCS liftover tool to convert them to hg38. Specifically, we
converted both promoter and enhancer coordinates. Next
we concatenated regulatory information from the PEI lists
for promoters and enhancers per gene to obtain a REM
format comparable to that of STITCHIT. This resulted in
105 379 FOCS REMs for Roadmap data. Using these lists
we repeated the validation experiments described above re-
garding the overlap with gRNAs, eQTLS from the ExSNP
database, GWAS hits and ChIA-PET data.

Characterization of repressors and multi target REMs

To identify REMs targeting multiple genes and to char-
acterize the nature of the regulatory influence, we merged
overlapping REMs using the BEDTOOLS merge command
generating a set of Union REMs, called CREMs. For these
union sets, we used the BEDTOOLS intersect command to
determine which REMs target exactly one and which target
more than one gene (multi target). For multi target REMs,
we determined whether they constantly have a positive, neg-
ative or both associations. We tested whether the observed
trends depend on the number of target genes or on the ab-
solute value of the regression coefficients. Additionally, we

http://arxiv.org/abs/http://acgt.cs.tau.ac.il/focs/download.html
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randomly shuffled the OLS regression coefficients assigned
to the REMs ten times to generate a background distribu-
tion. To perform motif enrichment, as described in the next
section, we extract the sequence of those REMs that have
exclusively either a positive or a negative association.

Motif enrichment analysis

To identify key TFs within a REM sequence set of acti-
vators and repressors (r.f. the previous section), we per-
formed a motif enrichment analysis. Therefore, we down-
loaded the binding motifs of 515 human TFs from the JAS-
PAR database (53). We used TRAP (54) to compute for
each sequence and each TF a TF-affinity value, which is
defined as the sum over all binding site probabilities of a
given TF for a sequence. In addition, we created a back-
ground sequence set consisting of randomly picked genomic
regions, which are not overlapping with the original REM
sequences, are of the same length and from the same chro-
mosome as the original REM sequences. We also applied
TRAP on this background sequence set. Based on these
TF-affinities, we performed a one-sided MannP–Whitney
test to identify TFs, which are enriched over all REM se-
quences in comparison to the background sequence set. We
adjusted the resulting P-values (using Benjamini–Hochberg
procedure) and considered all TFs as significant with an ad-
justed P-value smaller or equal than 0.001.

Splitting peaks through STITCHIT

From the overlap between UNIFIEDPEAKS (U ) and
STITCHIT (S) regions it can be computed into how many
STITCHIT segments s a peak p ∈ U is split into. We refer to
the instance that p is divided into several segments s as a
split event. The degree of a split event denotes the number
of STITCHIT segments s a peak p ∈ U is segmented into.
Within this counting procedure we also impose that any
s overlapping p needs to be linked to a different gene g
than p, while any STITCHIT segment s can be assigned to
the same target gene g′ as long as g′ 	= g. In addition, we
quantify how many split events are supported by confor-
mation data. To this end, for each split event, we assess
how many STITCHIT segments overlap a matching genomic
contact obtained from ChIA-Pet or Capture Hi-C data.
If all STITCHIT regions are supported, we call a split fully
supported, if not all but at least one region is supported we
call it partially supported. To ensure that UPs are not split
into different REMs due to over fitting of the STITCHIT
model, we also counted the number of times a peak p ∈ U
is split into multiple STITCHIT segments s that are linked
to the same gene g. Also, we computed the median length
of peaks p involved in split events, separately for different
split event degrees.

As an orthogonal way of validating split events, we com-
puted the overlap of REMs involved in split events to
superenhancers contained in the superenhancer database
(SEdb) (55). Specifically, we calculate a ratio score:

r = SSEdb

|SEdb| , (12)

where SSEdb denotes the number of distinct STITCHIT
REMs overlapping an entry of the SEdb and |SEdb| refers
to the total number of entries in the SEdb. As the SEdb
contained overlapping elements, we used BEDTOOLS merge
to unify overlapping entries resulting in a total of |SEdb| =
142 637 SE elements, which are used for the overlap com-
putation. We compared r to a background score

r ′ = 1
10

∑
i=[1,10]

S′
SEdb

|SEdb| , (13)

where S′
SEdb is based on ten random shufflings of the orig-

inal REMs throughout the genome maintaining the distri-
bution per chromosome.

CRISPR-Cas9 experiments to validate REMs suggested by
STITCHIT

Here, we describe a general approach for the exper-
imental design of targeted CRISPR-Cas9 experiments
using our REMs. Using ENCODE DNase1-seq data
for Human Umbilical Vein Endothelial Cells (HUVECs)
(ENCSR000EOQ) we compute the activity of predicted
REMs for each gene using the STITCHIT C++ module
REMSELECT, which is part of the github repository.
Given a custom bigWig file and predicted REMs for a gene
as input to REMSELECT, it generates a tabular overview
of REM position, regression coefficient, chromatin acces-
sibility readout, OLS P-value and a combined score multi-
plying the regression coefficient with the signal abundance
in the respective REMs from the bigWig file. This score
allows us to rank REMs simultaneously by the predicted
REM relevance and the activity of the REMs in the cell
type/ cell line of interest. Based on our REM activity score,
gene-expression of the target genes in HUVECs, existing
H3K27ac signal (ENCSR000ALB) within REMs and our
ability to find gRNAs for a CRISPR-Cas9 experiment, we
decided to validate REMs for three genes: KLF2 (A), NOS3
(B) and AC020916 (C).

We designed paired gRNAs to achieve a genomic dele-
tion for one REM per gene. In a first step, we used a
webtool (56,57), which is based on the AZIMUTH2.0 algo-
rithm to determine gRNAs within a 200 bp range around
the REMs of the considered genes. Next, we applied Cas-
OFFinder (58) to eliminate the gRNAs with any off-targets.
From the remaining ones, we choose for each gene one
gRNA pair that cuts out the corresponding REM most pre-
cisely. Supplementary Table S2 shows the position of the
considered REMs, the locations of the gRNA binding sites
and the position of the deleted genomic region per gene.
Upon gRNA design, circular plasmids harboring two gR-
NAs per REM for each gene (A–C) and Cas9 were synthe-
sised with the 3Cs method (59) on plasmid p0023.dna. Suc-
cessful synthesis was verified by Sanger sequencing. Four
viruses were generated with plasmids (A, B, C) and an
empty control plasmid p23 following the protocol of Weg-
ner et al. (59). Titer was determined in puro-sensitive RPE1
cells without Cas9 (59) (A: 1 × 106, B: 3 × 106, C: 1 × 106,
Control: 2 × 105). At D0 400,000 (66 000 cells per well)
HUVECs from LONZA were seeded on a 6-well dish us-
ing EGM medium from PELOBiotech (Cat. PB-SH-100-
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2199, PB-BH-100-9806). Cells were transduced on D1 with
virus and MOI=1 (polybrene 8�g/ml) in three indepen-
dent replicates for each sample. At D3 cells were washed
5× with PBS and harvested after 48h. RNA was purified us-
ing Rneasy Plus Mini Kit Cat. No. 74134 (Qiagen) accord-
ing to protocol. The High-Capacity cDNA reverse tran-
scription Kit 4368814 (Life Technologies) has been used to
generate cDNA according to protocol. PCR was performed
as shown in Supplementary Table S3, PCR-Primers are pro-
vided in Supplementary Table S4. We loaded 50 �l PCR
sample and 10 �l loading dye on 1.5% agarose gel. RNA
levels were quantified using Biorad Image Lab Software (see
Supplementary Figures S5–S7, and Supplementary Table
S5). Statistical significance between control and knock-out
samples is assessed using a one-sided t-test.

Availability of data and materials

We have implemented the STITCHIT algorithm, the UNI-
FIEDPEAKS approach, and a linking using previously de-
fined regions (e.g. from GENEHANCER) using C++. Each
linkage method, except for the unsupervised peak link-
age(www.github.com/schulzlab/TEPIC (60)), is available as
a separate executable in the STITCHIT repository: www.
github.com/schulzlab/STITCHIT. The code can be eas-
ily build using CMAKE (version ≥3.1) and requires a
C++11 compiler supporting openmp for parallel execution
of STITCHIT. We have thoroughly tested STITCHIT using
googletest. Raw data (Supplementary Table S9) can be
downloaded from the ENCODE data portal for Roadmap
data. To gain access to raw data files from Blueprint, a data
access application needs to be submitted. Files generated
within this study are available at Zenodo (https://zenodo.
org/record/4077842). The repository includes not only all
processed files, but also the predictions of REMs com-
puted by STITCHIT, the UNIFIEDPEAKS, and the GENE-
HANCER approach. The genome annotation file from Gen-
Code (61) as well as the candidate REMs from the GENE-
HANCER database are included in the STITCHIT repository
at www.github.com/schulzlab/STITCHIT.

Additionally, we provide a publicly available and user-
friendly web server, called EpiRegio to query the predicted
REMs of STITCHIT. For the results presented on EpiRegio,
STITCHIT was applied to the Roadmap and Blueprint data,
as mentioned before. To take even distant REMs into ac-
count, per gene a window of 100 000 bp upstream of a gene’s
TSS, the entire gene body and 100 000 bp downstream of a
gene’s TTS are considered. EpiRegio allows to search for
REMs, which are associated to a set of genes or overlap
with a given genomic region. The web server is available at
https://epiregio.de/ (62).

Supplementary Material: Supplementary Section 1 con-
tains details on data processing. Supplementary Section 2
holds a more detailed description of the POE algorithm. In
Section 3, details on the STITCHIT algorithm are provided.
Details on related methods to link regulatory elements to
genes are shown in Section 4. Additional Figures and Ta-
bles are listed in Supplementary Section 5.

Supplementary Excel Sheet: The excel sheet contains Sup-
plementary Table S7 with information on the intersection
between STITCHIT and GWAS hits.

RESULTS AND DISCUSSION

A novel method for the gene-specific identification of regula-
tory sites

We present STITCHIT, a novel segmentation based
method to identify gene-specific REMs. Unlike other ap-
proaches (24,33), STITCHIT solves the problem of defining
regulatory elements and identifying their target genes in
an integrative, joint approach and not in a sequential
manner. It is a peak-calling free approach interpreting the
epigenetic signal in relation to the expression of a distinct
gene g. Basically, STITCHIT solves a classification problem
by segmenting open-chromatin signal in a large genomic
area around the query gene g. The resulting segmentation
highlights regions exhibiting epigenetic signal variance,
which is linked to the expression of the analysed gene
(Figure 1, Supplementary Figure S2). Thereby, STITCHIT
can be used to look at aspects of gene regulation in a
gene-specific manner, and can therefore stimulate novel
biological investigations. Here, we apply STITCHIT to a
collection of paired, uniformly reprocessed DNase1-seq
and RNA-seq samples from Blueprint and Roadmap to
determine gene-specific REMs. These datasets are very
different, e.g. the Blueprint dataset is rather homogeneous
representing a wide spectrum of the haematopoietic lineage
and the Roadmap dataset is a large, highly heterogeneous
dataset, see 1. Thus, these two datasets are ideal to test the
capabilities of STITCHIT, which we did in various validation
and application scenarios.

STITCHIT has two main parameters that influence per-
formance and runtime: the segment-size and the resolution.
We have tested several values for both parameters and have
set the segment-size to 5000 and the resolution to 10 (Sup-
plementary Figure S8) as these parameters yield a good
trade-off between performance, assessed in terms of gene-
expression prediction performance, and runtime. An addi-
tional parameter that is to be specified is the size of the
considered genomic region up- and downstream of a gene.
This parameter influences whether distal associations can
be discovered and influences the runtime of the tool. We
have conducted runtime experiments (Supplementary Fig-
ure S9) and found that even with a window size of 0.5MB
(excluding the size of the genes) REMs can be learned in
about 10 min per gene. As regulatory interactions typically
arise within topological associated domains (63), this is also
a feasible value in practice, especially for analyses focusing
only on a few distinct genes. For all results presented here,
we consider an extension of 25 kb upstream of a gene’s TSS
and downstream of a gene’s TTS (see Methods), as we are
focused on the comparison with other methods and on the
illustration of the novelty of the approach.

STITCHIT leads to gene-specific regulatory regions derived
from gene-expression prediction models

In order to understand, whether the integrative prediction
approach of STITCHIT outperforms previous methods, we
did a number of comparisons. However, the comparison
with previous sequential methods is not straightforward, as
STITCHIT defines REMs in a gene-specific manner. Thus the
prediction of REM location and its target gene are coupled.

https://zenodo.org/record/4077842
https://epiregio.de/
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In the two following sections we first investigate the regions
from the perspective of the target gene, and then validate
the interactions using external data.

We compared STITCHIT to two sequential approaches
using the same data sets. The first is denoted UNIFIED-
PEAKS, and resembles the standard approach that re-
searchers would consider, defining REMs based on peak
calls over many samples (see Materials and Methods). The
second is a literature based approach using the GENE-
HANCER database, which provides a list of candidate reg-
ulatory elements for each gene. For those approaches, we
analyse the suggested REMs from a biological perspective,
and also characterize the gene-expression prediction mod-
els and the inferred REMs from a technical perspective.

As illustrated in Figure 2A, both STITCHIT and UNI-
FIEDPEAKS identify more candidate regions per gene than
GENEHANCER. In Supplementary Figure S10c, it is il-
lustrated how many REMs are retained by the filtering
steps performed in the regression pipeline. Simultaneously,
the regions retrieved by STITCHIT and UNIFIEDPEAKS are
shorter than those extracted from GENEHANCER (Figure
2B). The same observation is made using Pearson correla-
tion as a measure to filter candidate regions (Supplemen-
tary Figure S10b). This suggests that although STITCHIT
predicts more individual segments, the total genomic space
covered by those must not be larger than that of UNIFIED-
PEAKS regions. As shown in Supplementary Table S6, the
UNIFIEDPEAKS regions indeed cover a larger fraction of the
genome than STITCHIT and GENEHANCER regions.

Figure 2C depicts the number of genes for which a
model could be learned per consortia and linkage method.
STITCHIT and UNIFIEDPEAKS segments lead to more sta-
tistically significant models than GENEHANCER segments.
Also, STITCHIT finds slightly more significant models than
UNIFIEDPEAKS.

In Figure 2D, the Spearman correlation of elastic net
models predicting gene-expression from the DNase1-seq
signal within the identified REMs is depicted (c.f. Sup-
plementary Figure S11a for other measures). The correla-
tion is computed using a 10-fold outer Monte Carlo cross-
validation procedure (see Materials and Methods). To al-
low for comparability, we only show model performance for
genes that are covered by each tested method. Additionally,
we have performed benchmarking using a nested execution
of STITCHIT as explained in Figure S3B to check for inflated
performance estimates due to over-fitting and/or the pres-
ence of all samples at both feature generation and feature
selection steps (see Overestimation of model performance in
predicting gene-expression for details). As illustrated in Sup-
plementary Figure S10a, using Spearman correlation for
the internal filtering leads to a better model performance
and was thus used for all experiments in the manuscript.

In Supplementary Figure S12 we also show the perfor-
mance for a baseline model that uses window based peak ag-
gregation, labelled as Individual peaks (see Methods). There,
we show for each gene only the best performing model based
on either the 5 kb, 50 kb or the geneBody window. Across
all datasets, we observe that models based on STITCHIT re-
gions achieve a significantly better correlation (P ≤ 0.0001)
than models based on any other approach. This is indepen-
dent from the correlation measure used for the initial filter-

ing of REMs within STITCHIT, UNIFIEDPEAKS, and GENE-
HANCER. In a gene-to-gene comparison (Supplementary
Figure S11b, c) STITCHIT shows favourable performance,
too.

An important difference between GENEHANCER com-
pared to both STITCHIT and UNIFIEDPEAKS is that the
GENEHANCER models are relying on a curated database
of known regulatory elements. We assessed how many en-
hancers contained in the entire database of GENEHANCER
are retrieved using the OLS model. In general, only very
few elements are selected (Supplementary Figure S13). For
instance, if the database contains 6 enhancers for a gene,
on average 3 are chosen by our models. For genes with
more enhancers, e.g. 50, about 25% are considered by the
model. These differences may be due to the missing tissue
specificity of the GENEHANCER entries. Further, our re-
sults indicate that the supervised generation of REMs as
performed in STITCHIT outperforms the unsupervised se-
lection considerably, as different window sizes used with the
unsupervised approach can not generalize well across differ-
ent genes (Supplementary Figure S12).

We assessed whether model performance depends on ge-
nomic features, such as gene length or the number of iso-
forms. As shown in Supplementary Figure S14 models for
longer genes tend to perform better than those for shorter
genes. Consequently, also genes with more than one isoform
tend to perform better. In addition, we observe that both
mean and standard deviation of gene-expression is linked to
model performance: models for genes with both high mean
expression and variation perform better than those for only
marginally expressed genes.

In Supplementary Figure S15, we sketch the distribution
of STITCHIT regions around a gene. As expected and sup-
ported by chromatin conformation data (ChIA-PET and
Promoter Capture Hi-C), we see enrichment at the TSS for
all tested methods and a depletion up- and downstream of
the TSS. Notably GENEHANCER has the highest enrich-
ment at the TSS, which might be due to the strong reliance
of GENEHANCER on regulatory interactions reported in lit-
erature.

The density plots of Figure 2E illustrate the distribution
of the total number of REMs predicted per target gene.
Our results indicate that STITCHIT tends to find more sites
per gene than the UNIFIEDPEAKS approach. Furthermore,
the distribution for GENEHANCER is different compared to
that of UNIFIEDPEAKS and STITCHIT. While the latter two
reach the maximum, depending on the dataset, between 20
and 30 REMs per gene, GENEHANCER reaches the opti-
mum at 1–4 predicted sites per gene. Note that due to the
architecture of the OLS model, the maximum number of
REMs called is capped by the number of samples available
in each data set.

To get a better understanding of how many samples are
needed to run STITCHIT, we performed down-sampling ex-
periments on the Roadmap dataset. Briefly, we considered
80% of the Roadmap data for training and the remaining
20% for testing. From the training set, we generate down-
sampled subsets with a step size of 10% starting at 40% of
the data (see Methods). As shown in Figure 2F, reducing
the number of training data does lead to a significant drop
in model performance. Although models could still be fitted
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Figure 2. (A) The natural logarithm of the number of segments selected by STITCHIT, UNIFIEDPEAKS, and GENEHANCER is shown for each dataset
respectively, whereas in (B), the average length of the selected segments is depicted. (C) The number of learned models is shown, separately per consortia
and method. (D) Boxplots showing Spearman correlation between predicted and measured gene-expression using linear regression with elastic net penalty
considering all regions identified by STITCHIT, the UNIFIEDPEAKS approach, GENEHANCER, and individual peak aggregation respectively for Blueprint
and Roadmap data. Within STITCHIT, UNIFIEDPEAKS, and GENEHANCER Spearman correlation was used for the initial filtering of candidate regions.
Within each consortia, the same set of genes is displayed to allow comparability (Blueprint: 11140, Roadmap: 9102). As indicated by a two-sided t-test,
STITCHIT regions achieve the best model performance (****P ≤ 0.0001). The estimated values for the variances are: 0.018, 0.017, 0.029 (Blueprint), 0.018,
0.024, 0.032 (Roadmap), for STITCHIT, UNIFIEDPEAKS and GENEHANCER, respectively. (E) The density plots delineates the number of predicted REMs
per gene, shown separately for the used datasets and tested methods. Note that, due to the design of the linear model, the maximum number of predicted
REMs is capped by the number of samples used for model training. (F) Considering 80% of the entire Roadmap data set, we performed down-sampling
experiments training 10 models for each gene with a different number of training samples, evaluated on the remaining 20% of the data. According to a
two-sided t-test (****P ≤ 0.0001), the performance drop is significant for each reduction of training samples.
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with as few as 35 samples, we recommend to use as many
samples as possible to avoid over-fitting and to ensure that
models can be generalised.

To further investigate the co-regulation of genes by vari-
ous enhancers, we checked for the occurrence of additive en-
hancers, a term postulated by Anderson et al. (52), among
all REMs identified with STITCHIT. Anderson et al. define
enhancers as additive if they have a strong regulatory contri-
bution and are correlated to other enhancers regulating the
same gene. Similar to their finding, we see a trend that genes
with many additive enhancers tend to be higher expressed
than others (Supplementary Figure S16a). However, only
few additive enhancers exist in our data set (Supplementary
Figure S16b).

Overall, we observed that especially on large heteroge-
neous datasets, such as the Roadmap dataset, the peak-
independent generation of REMs shows clear advantages
over the peak-based strategies. While the Blueprint dataset
is composed of primary cells related to the hematopoi-
etic lineage, the Roadmap dataset is more diverse and also
comprised of tissue samples. On the more homogeneous
Blueprint data, STITCHIT and UNIFIEDPEAKS identify al-
most the same number of segments with similar length. In
contrast to that, on Roadmap data, STITCHIT selects more,
but shorter REMs than UNIFIEDPEAKS (Figure 2A, B).
This difference is also reflected by the performance of the
gene-expression models (Figure 2D). The most likely ex-
planation for this behavior is that due to the high vari-
ance in the Roadmap data, merging peaks introduces a
loss of specificity, by removing the information of the ex-
act genomic location of accessible chromatin (Supplemen-
tary Figure S1). STITCHIT is more suited to resolve the sam-
ple and tissue specific variance, therefore obtaining better
results on Roadmap data compared to the UNIFIEDPEAKS
method.

Validation of REMs and of regulatory interactions using ex-
ternal data

Expression quantitative trait loci (eQTLs) are distinct ge-
nomic loci that are linked to the expression of genes. We ob-
tained eQTL data from the EMBL-eQTL catalog (48) and
overlayed it with our predictions by computing how many
unique REMs are correctly overlapping with eQTLs (Sup-
plementary Figure S17A, B). As each tested method identi-
fied different number of REMs, we generated specific back-
ground datasets matching size, length and distance to the
TSS of genes and compared that with the real REM collec-
tions (Supplementary Figure S17A, B). In Figure 3A, B,
we show the Observed over Expected (OE) ratios for eQTL
overlaps for Blueprint and Roadmap, respectively (see Ma-
terials and Methods). We find that STITCHIT achieves the
highest OE ratio in terms of overlap with eQTLs compared
to any other method. In fact, on Roadmap data, STITCHIT
is the only method achieving an OE ratio >1. The larger OE
ratio strongly suggests not only that STITCHIT REMs link
to the correct target gene, but also that STITCHIT is able to
detect more accurate regulatory regions than the competi-
tors.

Another approach to show the reliability of our predic-
tions is to assess the amount of rediscovered interactions

from the GENEHANCER database. In total, 32% and 36% of
GENEHANCER interactions are retrieved for Blueprint and
Roadmap using STITCHIT, respectively. UNIFIEDPEAKS re-
trieves less than that, i.e. 30% and 34%, respectively. While
those numbers might seem low in general, it is important
to remember that GENEHANCER is based on many more
(epi)genomic data sets and data types than any of the other
methods tested here.

Chromatin conformation capture technologies such as
Hi-C have demonstrated the prevalence of long-range reg-
ulatory interactions throughout the genome (64).

We compared REMs against several chromatin confor-
mation data sets including Promoter Hi-C Capture data
generated in scope of the Blueprint project (51). On this
high quality data set, STITCHIT achieves the best OE ratio
using both the matching Blueprint REMs as well Roadmap
REMs (Figure 3C, D, Supplementary Figure S18). In ad-
dition to the chromatin conformation data generated on
primary cells, we compared the learned interactions to
ChIA-PET data for K562 and MCF-7 cells (targeting RNA
polymerase II) as well as to Promoter-Capture Hi-C data
for GM12878 cells (Supplementary Figure S19A, B). As
above, we contrast the number of unique REMs overlap-
ping with experimentally confirmed chromatin interaction
to the overlap achieved with random REM sets (Supple-
mentary Figure S19C,D). While the UNIFIEDPEAKS ap-
proach performs better than STITCHIT and GENEHANCER
on Blueprint data, STITCHIT considerably outperforms the
other methods on Roadmap data. Notably, similar to the
eQTL analysis, STITCHIT is the only method achieving an
OE ratio >1.0 when compared to ChIA-PET data using
Roadmap REMs.

In an effort to better characterize REMs that are sup-
ported by conformation capture data we investigated the
distance of REMs to their genes TSS and their absolute re-
gression coefficients. For this analysis, we considered only
REMs with a non-zero DNase1 signal in K562, MCF7
or GM12878 cells, matching the cell-lines used for the
chromatin conformation capture experiments. In case of
STITCHIT, ChIA-PET supported interactions have on av-
erage larger OLS regression coefficients compared to un-
supported interactions in three out of four comparisons,
whereas with GENEHANCER and UNIFIEDPEAKS this holds
for two out of four comparisons. With respect to the dis-
tance of REMs to the TSS of their target genes, we find that
REMs supported by ChIA-PET data tend to be closer to
the TSS than unsupported REMs (Supplementary Figure
S20). A similar trend can be observed in eQTL data: sup-
ported REMs are closer to the TSS and their OLS coeffi-
cients tend to be higher compared to unsupported REMs
(excluding STITCHIT coefficients for Blueprint data) (Sup-
plementary Figure S21).

For Promoter Capture Hi-C data from GM12878 how-
ever, we observe that supported STITCHIT REMs tend to be
further away from the TSS than unsupported REMs (Sup-
plementary Figure S22A), while there is no significant dif-
ference for GENEHANCER and UNIFIEDPEAKS. While this
is contradicting the ChiA-PET results it might be explain-
able by the differences in experimental design of two assays.
While ChiA-PET contacts are enriched for regions that
are in close contact to the RNA-PolII, Promoter capture
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Figure 3. Comparison with eQTL and chromatin conformation capture experiments. Observed over expected (OE) ratios for the number of unique REMs
correctly overlapping annotated regions are obtained in comparison to a background dataset for each method, which is matched in REM sizes, lengths
and distances to the TSS of genes. OE ratios using GTEx eQTL data (48) are shown for (A) Blueprint and (B) Roadmap predictions. OE ratios for the
number of unique REMs correctly overlapping with Promoter Capture Hi-C data (51) are shown for (C) Blueprint and (D) Roadmap data.

Hi-C performs this enrichment using promoter contain-
ing restriction fragments, hence the obtained interac-
tions will follow a different distribution. We did not
find any significant difference with respect to regres-
sion coefficients for supported REMs and unsupported
REMs in context of Promoter Capture Hi-C data from
GM12878, across all tested methods (Supplementary
Figure S22B).

We note that the results obtained for GENEHANCER
REMs in the validation experiments are biased as eQTLs
and other data sources have been used in the generation of
the GENEHANCER database itself and therefore need to be
taken with a grain of salt.

Comparison against REMs identified by FOCS

In addition to comparing STITCHIT to GENEHANCER and
the UNIFIEDPEAKS approach, we performed all valida-
tion experiments mentioned before contrasting STITCHIT
against one of the current state of the art methods to
predict promoter-enhancer-interactions (PEIs), FOCS (24).
FOCS uses a regression approach to select the most rele-
vant REMs for a gene out of a candidate list comprising
10 REMs. The gene-specific candidate lists are compiled
using a nearest-neighbour approach on external data, e.g.
DNase1-hypersensitive sites from Roadmap. We obtained
FOCS predictions for Roadmap data from the FOCS web-
site and considered those predictions for a comparison to
STITCHIT. Note that FOCS predictions are not available for
Blueprint data.

As shown in (Figure 3B, D), STITCHIT performs
favourably compared to FOCS. STITCHIT REMs show a
higher OE ratio with eQTLs than FOCS (Figure 3B) and
also shows a higher OE ratio with ChIA-PET and Promoter
Capture Hi-C elements (Figure 3D). These results demon-
strate the general limitations of sequential approaches com-
pared to STITCHIT. Due to the initial selection of only 10
predefined REMs per gene, FOCS is very limited in eluci-
dating more complex regulatory mechanisms.

Experimental validation of enhancers suggested by
STITCHIT using CRISPR-Cas9 experiments in HU-
VEC

To further test the reliability of STITCHIT, especially with
respect to the validity of our predictions in unseen tissues,

we performed a CRISPR-Cas9 experiment (three replicates
each) targeting three different STITCHIT REMs identified
for KLF2, NOS3 and AC020916 in HUVECs. Note that
this cell type was not used for learning. Further experimen-
tal details are provided in the methods section.

We chose REMs to be tested based on the expression
of their target genes in HUVECs, the accessibility of the
REMs in HUVECs and the ability to generate appropri-
ate gRNAs. Selecting REMs to be experimentally validated
based on both the regression coefficient as well as the activ-
ity of REMs is also motivated by the observation that acces-
sible STITCHIT REMs supported by ChIA-PET data have a
higher regression coefficient than unsupported REMs (Sup-
plementary Figure S20). Figure 4A–C show the genomic
location of the considered REMs and the region targeted
in the CRISPR experiment. Although all three REMs are
included in the GENEHANCER database, none of them have
been identified using FOCS on the Roadmap data sets used
above. The tested REMs for NOS3 and AC020916 overlap
with a H3K27ac peak in HUVECs. Also, we note that the
REM tested for NOS3 has not been detected using the UNI-
FIEDPEAKS approach.

After quantification of expression (see Supplementary
Figures S5–S7) we observe a trend of changed expression
patterns in all three genes compared to the controls sug-
gesting a true biological role for the tested REMs. Two of
three genes showed significant differential expression after
excision of the REM (Figure 4D) (P-value ≤ 0.1 with a one-
sided t-test).

The ability to reliably transfer and apply STITCHIT pre-
dictions to an unseen cell type indicates the robustness of
STITCHIT and give rise to numerous interesting applica-
tions, where the STITCHIT model can be used guide ex-
perimental design. Therefore, we decided to leverage the
unique features of STITCHIT and have additionally gen-
erated regulatory maps with a 100 000 bp extension up
and downstream of all human genes using STITCHIT. We
have included those extended regulatory maps in the Zen-
odo archive as well as in the EpiRegio webserver. To take
even distant REMs into account, EpiRegio contains REMS
based on a window of 100 000 bp upstream of a gene’s TSS,
the entire gene body and 100 000 bp downstream of a gene’s
TTS. The webserver is available at www.epiregio.de. (62).
Additionally, the above findings strongly suggest that mod-
els considering only a narrow area around a gene for REM
detection are not sufficient.

file:www.epiregio.de.
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Partitioning of large regulatory elements using STITCHIT

As shown above, the UNIFIEDPEAKS approach produces
longer candidate regions than STITCHIT. Those larger el-
ements are likely to be clusters of many individual REMs.
In-vivo such regulatory clusters could arise for instance by
chromatin looping, as illustrated in Figure 5 A. Here, we
define a split event as the occurrence of a peak, detected
by UNIFIEDPEAKS, which is divided into several REMs by
STITCHIT with the additional constraint that the new sub-
REMs should not be linked to the same gene as the original
peak. As depicted in Figure 5B such split events do occur
frequently. Note, that for illustration purposes, split events
of degree >10 are not displayed in Figure 5B. The color
code indicates whether the splits are supported by ChIA-
PET data in K562 cells. If and only if all STITCHIT regions
are supported, we call a split fully supported, if not all but
at least one region is supported we call it partially supported
(see Materials and Methods). In addition to the absolute
numbers of fully and partially supported split events shown
in Figure 5B (Supplementary Figure S23 provides the full
support rate for all split events). While the full support rate
is high for split events with degree 2, (about 13% and 11%,
for Blueprint and Roadmap data, respectively), it gradually
drops with increasing split event degree to ∼5% across both
data sets. We note that most STITCHIT REMs overlap with a
peak contained in the candidate set considered by the UNI-
FIEDPEAKS method, however most of those peaks are either
removed by the correlation filter or the regression step (Sup-
plementary Figure S24B).

To ensure that splitting of peaks into REMs that are
assigned to the same gene as the original peak is not an
artefact of STITCHIT caused by over-fitting, we examined
the median length of splitted peaks for various split event
degrees. As indicated in Supplementary Figure S24a, the
length of the splitted peaks increases constantly with an

increasing split event degree, suggesting that indeed only
peaks covering large genomic intervals are subject to split-
ting.

The observation that regions, which are subject to split-
ting cover large genomic regions (Supplementary Figure
S24A), lead us to the hypothesis that these are regions of
high regulatory activity. For example, superenhancers are
clusters of enhancers covering a vast genomic space (65). We
computed the overlap of REMs involved in split events with
a curated database of superenhancers, known as SEdb (55).
Compared to background models, which adjust for the to-
tal number of REMs (see Methods), we find that REMs
that are part of split events are enriched in superenhancers
across both data sets (Figure 5C).

An example for a split event in our data is provided in
Figure 5D. To simplify the example, we are using the same
genes used in the 3D illustration of Figure 5A. Here, a
peak is linked exclusively to TMEM14B by the UNIFIED-
PEAKS method. The peak itself is located around the pro-
moter of TMEM14C and covers a total genomic range of
2497bp. STITCHIT divides that peak into segments linked to
PAK1P1, to TMEM14C itself, and to TMEM14B. ChIA-
PET data obtained from K562 cells supports the long range
interactions to PAK1P1 and TMEM14B. This example, to-
gether with the analysis presented in Figure 5B underlines
the ability of STITCHIT to precisely pinpoint regions of reg-
ulatory potential and suggests the application of segment-
ing large REMs, into more refined segments to reveal their
regulatory interactions.

Exploratory analysis of the regulatory landscape of EGR1

To better understand the functional advantage of STITCHIT
over UNIFIEDPEAKS, we have investigated the regulatory
landscape of EGR1 in more detail. For EGR1, the Spear-
man correlation achieved by the UNIFIEDPEAKS REMs in
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Figure 5. (A) Schematic illustration of chromatin folding: Three genes, namely TMEM14B, TMEM14C and PAK1P1 are brought to close spatial proximity
via loop formation thereby establishing regulatory interactions between the genes and their enhancer elements (colored bubbles) that together form a cluster
of enhancers that is in close genomic proximity to TMEM14C. (B) The bar plots indicate on the x-axis the magnitude of a Split event, that is the number
of differently linked STITCHIT segments a peak is split into. The y-axis holds the frequency for the individual counts. The color code indicates whether
STITCHIT associations are fully supported by conformation data, partially supported or not supported at all. (C) The overlap of STITCHIT REMs to the
SEdb [18], a database for superenhancers, is shown for all STITCHIT REMs that split a Unified-Peak (grey) and for randomly picked genomic regions.
The actual REMs have a higher ratio score, indicating that there are more REMs per superenhancer compared to the random data. (D) Example for a
split event at the TMEM14C locus. At the promoter of TMEM14C, a peak that is linked to TMEM14B is split into several STITCHIT segments. These are
associated to PAK1P1, TMEM14C itself, and TMEM14B. All STITCHIT associations shown here are supported by ChIA-PET data.

gene-expression modelling is 0.55, while STITCHIT regions
achieve a correlation of 0.72. Here, we test whether this dif-
ference in model performance is also reflected by an im-
proved interpretability of the identified regions regarding
the regulation of EGR1. In Figure 6 A, we show the iden-
tified candidate regions ranked according to the absolute
value of the regression coefficients per site (Supplemen-
tary Table S8). A striking difference between STITCHIT and
UNIFIEDPEAKS is that the latter identifies one large seg-
ment (U1: 8970bp) covering 2842bp upstream of EGR1,
the entire EGR1 gene as well as 2304 bp downstream of
EGR1 TTS. This segment is split up into two regions us-
ing STITCHIT: a region downstream of EGR1 TTS (S1), and
into a region within the first exon of EGR1 (S2). As shown
by the DNase1-seq signal tracks in Figure 6A, STITCHIT
region S1 and S2 do overlap DNase1-seq signal in sample
C0010KB, in which EGR1 is expressed, whereas they lack
signal in C005VG11, where EGR1 is not expressed. It is
likely that this difference between STITCHIT and UNIFIED-
PEAKS is the main reason for the observed performance dif-
ference.

Another interesting association can be observed for S3
and S8, which also overlap a segment identified with UNI-
FIEDPEAKS (U2). S3 has the strongest negative regression
coefficient identified by STITCHIT for EGR1 and indeed this

region (as well as S8) shows signal in C005VG11 but not in
C0010KB, supporting the role of the regions as an active
repressor of EGR1. The link of S3 to EGR1 is further sup-
ported by ChIA-PET data.

While these examples provide insights on the level of indi-
vidual samples, we have considered the DNase1-seq signal
within all identified STITCHIT regions and used it to clus-
ter the Blueprint samples (Figure 6B). Using only the sig-
nal within the candidate regulatory sites, an almost perfect
clustering into samples according to EGR1 expression lev-
els could be obtained. The clustering can be used to assess
the cell-type specificity of the suggested regions.

STITCHIT allows a characterization of repressive elements

STITCHIT enables not only the gene-specific identification of
REMs, it also allows to characterize the effect of REMs on
the expression profile of the target genes. We used this fea-
ture to investigate whether there is a difference between the
location of elements with a positive and those with a nega-
tive association around their target gene. As Supplementary
Figure S25 illustrates, we do observe differences. Compared
to background models generated by randomly shuffling
regression coefficients we found that REMs being positively
associated to gene-expression are enriched at a 5 kb bin
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Figure 6. (A) Genome browser tracks describing the regulation of EGR1. Track C0010KB1 (black) exemplifies the DNase1-seq signal for a sample where
EGR1 is expressed, whereas track C005VG11 (gray) illustrates the case where EGR1 is not expressed. (B) Heat map that is clustered according to the
DNase1-seq signal in the candidate REMs S1...S10 identified by STITCHIT, the gene-expression of EGR1 is not used for the clustering itself and shown
for illustration purposes only. The data has been log transformed with a pseudo-count of 1. Two major clusters can be observed corresponding to samples
where EGR1 is expressed and to those samples where EGR1 is not expressed. The heatmap shows the log2 of read counts for DNase1-seq, and log2 of
TPM for gene-expression, respectively.

located at the promoter of genes, the gene body as well as di-
rectly downstream of their target genes. However, they are
depleted further up and downstream. REMs with a nega-
tive regression coefficient on the other hand tend to behave
as predicted by the random model with the exception that
they are also enriched at the promoter and that they tend to
be depleted downstream of genes.

Till this point of our analysis, we have used the catalog
of REMs computed by STITCHIT in a gene-specific manner,
i.e. all scores and validation criteria have been performed
from the perspective of genes. However, an obvious ques-
tion to ask is whether there are REMs that are shared be-
tween genes and how the association of those REMs to
their target genes can be characterized. To answer this ques-
tion, we generated a union set of REM for each considered
data set (Blueprint and Roadmap) using the BEDTOOLS
merge command (66). We refer to the resulting elements as
CREMs. Note that if a REM does not overlap any other

REM, the original REM is identical to the correspond-
ing CREM. Specifically, this lead to 535 579 CREMs for
Blueprint and 704 735 CREMs for Roadmap data. By inter-
secting the CREMs with the original, gene-specific REMs
using BEDTOOLS intersect, we identified CREMs that are
linked to either one or to more than one gene. As depicted in
Supplementary Figure S26 most CREMs are uniquely asso-
ciated to one gene only, a small fraction of CREMs is linked
to multiple genes (13% Blueprint, 11% Roadmap datasets).

We find that the majority of those CREMs are associ-
ated to both positive and negative regulatory effects. As
one might expect, we also find that there are more unique
CREMs with a positive than a negative association (Figure
7A). These trends are invariant to both the number of genes
a CREMs is targeting and to the considered regression co-
efficient cut-off (Supplementary Figure S27). Compared to
background models that randomize the assignment of re-
gression coefficients to CREMs, the described observations
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Figure 7. (A) Number of STITCHIT REMs that are associated to multiple different genes in either a positive, negative, or in both ways compared against
a random background model using randomly shuffled coefficient distributions. Venn Diagrams depicting the overlap of TFs found enriched in positively
and negatively associated REMs for (B) Blueprint, and (C) Roadmap data. (D) Overlap among all TF sets enriched in REMs with positive association
across the considered data sets.

occur more often than expected by chance (Figure 7 A,
Supplementary Figure S28).

We further characterized the exclusively positive and neg-
ative CREMs in terms of the TF binding sites they contain.
Using TRAP (54), a method that predicts TF binding using
a biophysical model, we obtained lists of enriched TF mo-
tifs and investigated the overlap between TFs enriched in
positively and negatively associated CREMs for Blueprint
(Figure 7B), and Roadmap (Figure 7C) (Supplementary
Table S9). We found that most motifs are shared although
some TFs occur exclusively in CREMs with a positive sign
and some occur exclusively in CREMs that are assigned a
negative regression coefficient.

For instance, YY1 and YY2 occur exclusively in positive
CREMs in Blueprint data. This is a sensible prediction as
YY1 is known to act as an enhancer (67). Another illustra-
tive example is that the known repressor FOSL1 is enriched
in repressive elements of Roadmap data (68). As shown in
Figure 7D, only five TFs are commonly enriched in positive
REMs among all data sets, including RUNX2 and RUNX3.
Both are known key regulators and have been reported to

control osteoblast differentiation, cell cycle state and CD8+
T cell development, respectively (69). The low overlap be-
tween different datasets suggests that the detection of TF
motifs may be influenced by the tissue- and cell type specific
regulatory landscape investigated by the different consortia.

STITCHIT learns more putative regulatory regions than
other approaches

We have seen earlier that STITCHIT tends to find more
REMs per gene than both UNIFIEDPEAKS or GENE-
HANCER (Figure 2A, Supplementary Figure S10A). In ad-
dition to that, we also observe that the overlap in terms
of genes for which a model could be learned, is less than
50% between two datasets (Supplementary Figure S29A–
C), independent from the method used for the computation.
Specifically for STITCHIT, only 34.7% (4477) of all gene-
specific models are shared between Blueprint and Roadmap.
Just 36.7% (8214) of all genes could be exclusively modeled
using Blueprint data and 28.6% (6917) with Roadmap (Fig-
ure 8A). As shown in Supplementary Figure S29D–F, genes
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that could be exclusively modeled in Blueprint data tend to
be higher expressed in Blueprint than in Roadmap data and
vice versa. Analogously, genes that can be modelled in both
data sets using STITCHIT or UNIFIEDPEAKS are equally ex-
pressed in Blueprint and Roadmap data.

Although we have shown that in gene-expression predic-
tion experiments, STITCHIT regions achieve a better agree-
ment between predicted and measured gene-expression
than related approaches (Figure 2D, Supplementary Fig-
ure S11), the performance of predictive models alone does
not proof that the identified regions truly play a role in
gene regulation. We stress that STITCHIT associations do
not imply causation. Thus, we can not distinguish whether
the accessibility of certain regions is driving expression of a
gene, or whether it is a consequence of that gene being ex-
pressed. Also indirect associations, which could be caused
by co-regulation of genes, can not be avoided. These prob-
lems have to be addressed by other methods and will require
substantial amounts of additional data to be solved. There-

fore, it is especially important to characterize the predicted
REMs, especially the uniquely detected ones, further.

An initial check for the functional relevance of STITCHIT
REMs is whether they exhibit overlaps with known
GWAS sites retrieved from the EMBL-EBI GWAS cata-
log (see methods). Overall we find 93,707 associations with
Blueprint and 86 066 with Roadmap data covering 82 041
and 77 006 SNPs respectively using STITCHIT. Compared to
a random setting considering 100 randomly sampled SNP
sets with matchef MAF, all true regions yield significantly
more associations (Figure 8B). The complete overlap results
of the EMBL-EBI GWAS catalog with our REM predic-
tions is also a unique and valuable resource allowing ex-
tensive downstream analysis as it suggests target genes for
many GWAS sites (Supplementary Table S7).

Furthermore, we overlapped REMs with the En-
sembl Regulatory Build (ERB) (43) and the OCHROdb
database (44). In about a quarter of all cases, an over-
lap is found with a state annotated as Promoter, Promoter
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flanking region, TF binding site, Enhancer, or Open Chro-
matin from the ERB. One more quarter overlaps with the
OCHROdb. However, roughly half of the STITCHIT REMs
do not overlap an annotated region (Figure 8C), thus they
are labelled as unknown, whereas the remaining elements are
labeled as known.

The question arises whether the unknown REMs are sim-
ply noise or whether they reflect REMs that have not been
annotated so far. To investigate whether these unknown
REMs are performing regulatory functions, we determined,
for each gene, whether the REM with the highest absolute
regression coefficient is labelled as unknown or known. As
depicted in Figure 8D, unknown REMs are assigned to the
highest regression coefficient for the majority of genes. In
addition, we find that unknown REMs are enriched among
the top REMs, sorted by absolute regression coefficient, for
about 500 genes, while about 20 000 genes do not show en-
richment for either known or unknown REMs (Figure 8E).
These results suggest that unknown REMs are of high im-
portance in the regression models, which does suggest a reg-
ulatory role for those.

To follow up on the hypothesis that unknown REMs are
biological relevant, we assessed the signal of three histone
marks (H3K27ac, H3K4me1 and H3K4me3) using ChIP-
seq data sets for four randomly chosen Blueprint samples.
We considered (i) the top 10,000 STITCHIT REMs ranked
according to their OLS P-value (cf. Methods), (ii) 10 000
randomly selected STITCHIT REMs omitting their regres-
sion coefficient and P-value, (iii) a background set com-
posed of 10 000 randomly picked genomic regions follow-
ing the same size distribution as the original REM set and
(iv) the top 10 000 regions per ERB-group. As indicated in
Figure 8F the strongest H3K27ac signal occurs within Pro-
moter and Promoter Flanking Regions. Importantly, the sig-
nal of the Random regions is the lowest. The signal of the
unknown regions is similar to that of TF binding sites and
Open Chromatin suggesting that these regions do have a reg-
ulatory effect. The association of STITCHIT REMs to both
active enhancers (H3K27ac) and promoters (H3K4me1/3)
is further backed up by the observation that the HM signal
in 10 000 randomly selected STITCHIT REMs behaves sim-
ilar to the signal of the top 10 000 REMs (Supplementary
Figure S30). Furthermore, the DNase1-signal in unknown
elements is relatively low but significantly higher than of
shuffled, randomly picked genomic regions (Supplementary
Figure S31).

Together with our previously described in vivo and in
silico validation experiments, these results suggest that
STITCHIT is able to detect unknown but potentially biolog-
ically relevant REMs that can not be detected using cur-
rently available sequential REM detection methods such as
FOCS.

Overestimation of model performance in predicting gene-
expression

Estimating the performance of gene-expression prediction
models (Figure 2D) is generally the first step in ensuring
that REMs predicted by a model are worthy to be explored
further, e.g. in validation experiments. As pointed out by
a reviewer during the revision of this manuscript, the def-

inition of candidate REMs is normally done on the com-
plete dataset. For example, the FOCS method used a set of
REMs defined by members of the Roadmap consortium.
The default STITCHIT pipeline uses all available samples
to generate a set of candidate REMs, which are then fil-
tered using a correlation filter and used for elastic net re-
gression. This leads to a circularity in testing model per-
formance during elastic net regression as the test data con-
sidered in the cross-validation process has been previously
used to define the candidate REM set, although not as part
of a regression approach. To ensure that this problem does
not lead to a vast overestimation of model performance as
presented in (Figure 2D), we devised a nested execution of
STITCHIT (Supplementary Figure S3B), in which we sub-
set 20% of the entire data as test data before executing the
STITCHIT algorithm. This comes with the downside of loos-
ing samples in generating the candidate set of REMs. As
shown in Supplementary Figure S32 there is a slight drop
in model performance. However, this drop is mostly due to
the loss of training samples as we saw in our down-sampling
experiments of the Roadmap data (Figure 2F). Given the
amount of samples we used the prediction of relevant can-
didate REMs is hard, as the datasets contain many differ-
ent cell types and/or tissues. REM locations that are more
cell type-specific are difficult to obtain and thus we see a
linear drop in prediction performance with samples used.
Thus, we think that our MDL formulation prevents other-
wise larger effects.

However, the circularity of feature generation and model
evaluation is a potential problem of all methods considered
in this article: UNIFIEDPEAKS, GENEHANCER and FOCS.
We attempted to also generate a nested version of the UNI-
FIEDPEAKS approach, but were not successful due to the
high computational costs of intersecting bed files for each
gene as part of the cross-validation. For GENEHANCER and
FOCS, it is not possible to avoid this issue in the first place,
as some of the data used to build and evaluate the linear
models, has been used initially to build the REM maps pro-
vided in GENEHANCER and FOCS. As can be expected, the
nested mode of STITCHIT is computationally more expen-
sive than the default mode, but is available in our repository.
With rising amounts of epigenetic data becoming available,
it should be considered to generate a robust readout of
model performance.

We believe that this problem also highlights again the
importance of free data access and absolute transparency
about which data types, samples and resources were utilized
to generate any kind of publicly available REM database.
Only then, potential issues of over-fitting in the models and
circularity of overlap with other datasets can be detected
and recognized.

CONCLUSIONS

Our novel method STITCHIT solves the combined task of
identifying potential REMs, and linking them to their pu-
tative target genes at the same time. This is achieved by com-
bining epigenetics and gene-expression data to identify a set
of potential REMs considering the signal of the epigenet-
ics data at hand, instead of pre-selected sites of enrichment.
Hence, the peak calling step can be omitted. Subsequently,
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STITCHIT regions are refined using a regression learning ap-
proach and a confidence score for each REM is computed.
Our modeling approach allows a distinct REM to influence
multiple genes. As STITCHIT is based on the Minimum De-
scription Length principle (MDL), over-fitting is naturally
avoided as MDL balances the complexity of the descrip-
tion of the model and the complexity of the data given the
model. In this work, uniformly processed DNase1-seq and
RNA-seq data from IHEC is used, however our method is
conceptually not limited to DNase1-seq data as a carrier
of epigenetic information, but also works with ATAC-seq,
FAIRE-seq or ChIP-seq data.

We have compared STITCHIT against related strate-
gies that are based on the integration of peaks, such as
FOCS (24), or on known REMs, as stored in the GENE-
HANCER database (70), and show that STITCHIT is not
only able to learn more sites with regulatory potential than
the other methods, while achieving a superior explanatory
power of gene-expression, but STITCHIT also performed
well in various validation experiments including our own
CRISPR-Cas9 validation experiments for three STITCHIT
REMs. Importantly, these experiments were carried out in a
cell type that was not used for model training, suggesting the
ability of our algorithm to generalise across tissues and cell-
types. With the application of STITCHIT to larger datasets
in the future, including uniformly reprocessed IHEC data, a
promising option for further validation could be the usage
of massively parallel reporter assays.

Furthermore, we illustrate how STITCHIT can be used
in an exploratory manner to elucidate the regulation of
a distinct gene exemplary for EGR1. STITCHIT is ef-
ficiently implemented in C++ and freely available on
github: www.github.com/schulzlab/STITCHIT. We believe
that STITCHIT paves the way for a seamless integration of
the wealth of epigenetics data being produced and allows
an easy-to-use analysis of transcriptional regulation on the
gene-level.
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STITCHIT is available on github: www.github.com/
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SUPPLEMENTARY DATA

Supplementary Data are available at NAR Online.

ACKNOWLEDGEMENTS

We thank Martin Vingron, Verena Heinrich, Anna
Ramisch, and Tobias Zehnder from the Max Planck Insti-
tute for Molecular Genetics, Berlin, Germany for helpful
comments and discussions, Markus List, TU Munich,
for support with processing the DNase1-seq data and the
Roadmap and Blueprint consortia for providing their data.
We also acknowledge the DEEP consortium for a critical
discussion of the main idea of this manuscript.
Author contributions: A.M. developed the MDL based seg-
mentation algorithm together with J.V. F.S. conducted all

computational experiments presented in this study, and ex-
tended and parallelized the implementation of the MDL al-
gorithm by A.M. to serve all presented use-cases. F.S. was
advised by J.G. and M.H.S. N.B. assisted F.S. and M.H.S.
with the validation analysis. M.H., M.W., M.K., M.S.L.
and R.P.B. where involved in validation of REMs using
CRISPR-Cas9 in HUVECs. M.H.S. supervised and de-
signed the study. F.S., A.M. and N.B. wrote the manuscript.
All authors commented on and reviewed the manuscript.

FUNDING

Federal Ministry of Education and Research in Germany
(BMBF) [01DP17005]; DFG Clusters of Excellence on
Multimodal Computing and Interaction [EXC248]; Cardio
Pulmonary Institute (CPI) [EXC 2026]. Funding for open
access charge: Goethe University Frankfurt am Main.
Conflict of interest statement. None declared.

REFERENCES
1. Eccleston,A., Cesari,F. and Skipper,M. (2013) Transcription and

epigenetics. Nature, 502, 461.
2. Vaquerizas,J.M., Kummerfeld,S.K., Teichmann,S.A. and

Luscombe,N.M. (2009) A census of human transcription factors:
function, expression and evolution. Nat. Rev. Genet., 10, 252–263.

3. Yao,L., Berman,B.P. and Farnham,P.J. (2015) Demystifying the secret
mission of enhancers: linking distal regulatory elements to target
genes. Crit. Rev. Biochem. Mol. Biol., 50, 550–573.

4. Sebastiani,P., Farrell,J.J., Alsultan,A., Wang,S., Edward,H.L.,
Shappell,H., Bae,H., Milton,J.N., Baldwin,C.T., Al-Rubaish,A.M.
et al. (2015) BCL11A enhancer haplotypes and fetal hemoglobin in
sickle cell anemia. Blood Cells Mol. Dis., 54, 224–230.

5. Blackwood,E.M. and Kadonaga,J.T. (1998) Going the distance: a
current view of enhancer action. Science, 281, 60–63.

6. Zhu,X., Ling,J., Zhang,L., Pi,W., Wu,M. and Tuan,D. (2007) A
facilitated tracking and transcription mechanism of long-range
enhancer function. Nucleic Acids Res., 35, 5532–5544.

7. Krivega,I., Dale,R.K. and Dean,A. (2014) Role of LDB1 in the
transition from chromatin looping to transcription activation. Genes
Dev., 28, 1278–1290.

8. Song,L. and Crawford,G.E. (2010) DNase-seq: a high-resolution
technique for mapping active gene regulatory elements across the
genome from mammalian cells. Cold Spring Harb. Protoc., 2010,
https://doi.org/10.1101/pdb.prot5384.

9. Thurman,R.E., Rynes,E., Humbert,R., Vierstra,J., Maurano,M.T.,
Haugen,E., Sheffield,N.C., Stergachis,A.B., Wang,H., Vernot,B. et al.
(2012) The accessible chromatin landscape of the human genome.
Nature, 489, 75–82.

10. Heintzman,N.D., Stuart,R.K., Hon,G., Fu,Y., Ching,C.W.,
Hawkins,R.D., Barrera,L.O., Van Calcar,S., Qu,C., Ching,K.A. et al.
(2007) Distinct and predictive chromatin signatures of transcriptional
promoters and enhancers in the human genome. Nat. Genet., 39,
311–318.

11. Visel,A., Blow,M.J., Li,Z., Zhang,T., Akiyama,J.A., Holt,A.,
Plajzer-Frick,I., Shoukry,M., Wright,C., Chen,F. et al. (2009)
ChIP-seq accurately predicts tissue-specific activity of enhancers.
Nature, 457, 854–858.

12. Thomas,R., Thomas,S., Holloway,A.K. and Pollard,K.S. (2017)
Features that define the best ChIP-seq peak calling algorithms. Brief.
Bioinformatics, 18, 441–450.

13. Koohy,H., Down,T.A., Spivakov,M. and Hubbard,T. (2014) A
comparison of peak callers used for DNase-Seq data. PLoS ONE, 9,
e96303.

14. Liu,Y., Chen,S., Wang,S., Soares,F., Fischer,M., Meng,F., Du,Z.,
Lin,C., Meyer,C., DeCaprio,J.A. et al. (2017) Transcriptional
landscape of the human cell cycle. Proc. Natl. Acad. Sci. U.S.A., 114,
3473–3478.

15. Gilfillan,G.D., Hughes,T., Sheng,Y., Hjorthaug,H.S., Straub,T.,
Gervin,K., Harris,J.R., Undlien,D.E. and Lyle,R. (2012) Limitations

https://zenodo.org/record/4077842
https://epiregio.de
http://nar.oxfordjournals.org/lookup/suppl/doi:10.1093/nar/gkab798#supplementary-data
https://www.doi.org/10.1101/pdb.prot5384


Nucleic Acids Research, 2021, Vol. 49, No. 18 10417

and possibilities of low cell number ChIP-seq. BMC Genomics, 13,
645.

16. Chen,K.B. and Zhang,Y. (2010) A varying threshold method for
ChIP peak-calling using multiple sources of information.
Bioinformatics, 26, i504–i510.

17. Lun,A.T. and Smyth,G.K. (2016) csaw: a Bioconductor package for
differential binding analysis of ChIP-seq data using sliding windows.
Nucleic Acids Res., 44, e45.

18. Ibrahim,M.M., Lacadie,S.A. and Ohler,U. (2015) JAMM: a peak
finder for joint analysis of NGS replicates. Bioinformatics, 31, 48–55.

19. Andersson,R., Gebhard,C., Miguel-Escalada,I., Hoof,I.,
Bornholdt,J., Boyd,M., Chen,Y., Zhao,X., Schmidl,C., Suzuki,T.
et al. (2014) An atlas of active enhancers across human cell types and
tissues. Nature, 507, 455–461.

20. Gonzalez,A.J., Setty,M. and Leslie,C.S. (2015) Early enhancer
establishment and regulatory locus complexity shape transcriptional
programs in hematopoietic differentiation. Nat. Genet., 47,
1249–1259.

21. Schmidt,F., Gasparoni,N., Gasparoni,G., Gianmoena,K.,
Cadenas,C., Polansky,J.K., Ebert,P., Nordström,K., Barann,M.,
Sinha,A. et al. (2017) Combining transcription factor binding
affinities with open-chromatin data for accurate gene expression
prediction. Nucleic Acids Res., 45, 54–66.

22. McLeay,R.C., Lesluyes,T., Cuellar Partida,G. and Bailey,T.L. (2012)
Genome-wide in silico prediction of gene expression. Bioinformatics,
28, 2789–2796.

23. Ramisch,A., Heinrich,V., Glaser,L.V., Fuchs,A., Yang,X., Benner,P.,
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28. Jäger,R., Migliorini,G., Henrion,M., Kandaswamy,R., Speedy,H.E.,
Heindl,A., Whiffin,N., Carnicer,M.J., Broome,L., Dryden,N. et al.
(2015) Capture Hi-C identifies the chromatin interactome of
colorectal cancer risk loci. Nat Commun, 6, 6178.

29. Fullwood,M.J. and Ruan,Y. (2009) ChIP-based methods for the
identification of long-range chromatin interactions. J. Cell. Biochem.,
107, 30–39.

30. Ernst,J., Kheradpour,P., Mikkelsen,T.S., Shoresh,N., Ward,L.D.,
Epstein,C.B., Zhang,X., Wang,L., Issner,R., Coyne,M. et al. (2011)
Mapping and analysis of chromatin state dynamics in nine human
cell types. Nature, 473, 43–49.

31. Fulco,C.P., Nasser,J., Jones,T.R., Munson,G., Bergman,D.T.,
Subramanian,V., Grossman,S.R., Anyoha,R., Doughty,B.R.,
Patwardhan,T.A. et al. (2019) Activity-by-contact model of
enhancer-promoter regulation from thousands of CRISPR
perturbations. Nat. Genet., 51, 1664–1669.

32. Rao,S.S., Huntley,M.H., Durand,N.C., Stamenova,E.K.,
Bochkov,I.D., Robinson,J.T., Sanborn,A.L., Machol,I., Omer,A.D.,
Lander,E.S. et al. (2014) A 3D map of the human genome at kilobase
resolution reveals principles of chromatin looping. Cell, 159,
1665–1680.

33. Cao,Q., Anyansi,C., Hu,X., Xu,L., Xiong,L., Tang,W., Mok,M.T.S.,
Cheng,C., Fan,X., Gerstein,M. et al. (2017) Reconstruction of
enhancer-target networks in 935 samples of human primary cells,
tissues and cell lines. Nat. Genet., 49, 1428–1436.

34. Shooshtari,P., Huang,H. and Cotsapas,C. (2017) Integrative genetic
and epigenetic analysis uncovers regulatory mechanisms of
autoimmune disease. Am. J. Hum. Genet., 101, 75–86.

35. Rosen,N., Chalifa-Caspi,V., Shmueli,O., Adato,A., Lapidot,M.,
Stampnitzky,J., Safran,M. and Lancet,D. (2003) GeneLoc:
exon-based integration of human genome maps. Bioinformatics, 19,
i222–i224.

36. Garret,E.S. and Parmigiani,G. (2003) In: POE: Statistical Methods
for Qualitative Analysis of gene-expression. Springer.

37. Grünwald,P.D. (2007) In: The Minimum Description Length
Principle. MIT press.

38. Kolmogorov,A.N. (1968) Three approaches to the quantitative
definition of information. Int. J. Comput. Math., 2, 157–168.

39. Bellman,R. (1954) The theory of dynamic programming. Bull. Amer.
Math. Soc., 60, 503–515.

40. Friedman,J., Hastie,T. and Tibshirani,R. (2010) Regularization paths
for generalized linear models via coordinate descent. J. Stat. Softw.,
33, 1–22.

41. Schmidt,F. and Schulz,M.H. (2019) On the problem of confounders
in modeling gene expression. Bioinformatics, 35, 711–719.

42. Benjamini,Y. and Yekutieli,D. (2001) The control of the false
discovery rate in multiple testing under dependency. Ann. Statist., 29,
1165–1188.

43. Zerbino,D.R., Wilder,S.P., Johnson,N., Juettemann,T. and
Flicek,P.R. (2015) The ensembl regulatory build. Genome Biol., 16,
56.

44. Shooshtari,P., Feng,S., Nelakuditi,V., Foong,J., Brudno,M. and
Cotsapas,C. (2018) OCHROdb: a comprehensive, quality checked
database of open chromatin regions from sequencing data. bioRxiv
doi: https://doi.org/10.1101/484840, 03 December 2018, preprint: not
peer reviewed.

45. Buniello,A., MacArthur,J.A.L., Cerezo,M., Harris,L.W., Hayhurst,J.,
Malangone,C., McMahon,A., Morales,J., Mountjoy,E., Sollis,E.
et al. (2019) The NHGRI-EBI GWAS Catalog of published
genome-wide association studies, targeted arrays and summary
statistics 2019. Nucleic Acids Res., 47, D1005–D1012.

46. Arnold,M., Raffler,J., Pfeufer,A., Suhre,K. and Kastenmüller,G.
(2014) SNiPA: an interactive, genetic variant-centered annotation
browser. Bioinformatics, 31, 1334–1336.

47. Sherry,S.T., Ward,M.H., Kholodov,M., Baker,J., Phan,L.,
Smigielski,E.M. and Sirotkin,K. (2001) dbSNP: the NCBI database
of genetic variation. Nucleic Acids Res., 29, 308–311.

48. Kerimov,N., Hayhurst,J.D., Peikova,K.,, Manning,J.R., Walter,P.,
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