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Abstract: The sea cucumber Apostichopus japonicus is exploited as a commercial species owing to their
high nutritive and medicinal value. Recent high summer temperatures have caused high mortality
rates in A. japonicus. In this study, we applied the isobaric tag for relative and absolute quantitation
(iTRAQ) technique to investigate the global protein expression profile under an acute short-term
(48 h) heat stress. In total, 3432 proteins were identified, and 127 proteins showed significant heat
stress responses, with 61 upregulated proteins and 66 downregulated proteins. Our results suggest
that heat stress influenced the expression of proteins involved in various biological processes, such
as tissue protection and detoxification, lipid and amino acid metabolism, energy production and
usage, transcription and translation, cell apoptosis, and cell proliferation. These findings provide a
better understanding about the response and thermo-tolerance mechanisms of A. japonicus under
heat stress.
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1. Introduction

The effects of global warming include rising mean annual temperatures and dramatic increase
in the frequency and amplitude of severe temperature events [1]. These fluctuations constitute a
major threat to aquatic organisms, as they are naturally exposed to changing water temperature.
The sea cucumber Apostichopus japonicus, is an echinoderm distributed along the coast of northern
China, southeastern Russia, Japan, the Republic of Korea, and the Democratic People’s Republic of
Korea [2]. A. japonicus has been exploited as a commercial species owing to their high nutritive and
medicinal value. Temperature is the pivotal environmental factor affecting the growth and physiology
of A. japonicus [3]. Recent high summer temperatures have caused high mortality rates in cultured
A. japonicus. Therefore, a better understanding of the mechanisms involved in the A. japonicus heat
shock response would be significant and would lay the theoretical foundation for breeding traits for
thermo-tolerance. Though specific heat response genes, such as genes from the heat shock protein
(HSP) family, have been characterized, a lack of transcriptome and proteome data severely hampers
revealing global gene changes and the key pathways that are active in heat stressed A. japonicus [4–6].

Proteomic approaches have been used to identify stress-responsive genes and proteins regulated
by high temperatures. Two-dimensional electrophoresis (2DE) is the most frequently utilized approach
for a proteomic analysis. However, not all proteins are amenable to gels, and proteins in low abundance
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are hard to be characterized in 2DE approach [7]. Besides, the quantification accuracy and ability of
2DE to identify proteins may be compromised by co-migration or partial co-migration of proteins [8].
A new technique called iTRAQ (isobaric tag for relative and absolute quantitation) has become popular
in proteomic analysis in recent years, which provides more reliable quantitative measurements and
comparisons among samples [9]. Additionally, the iTRAQ approach has largely improved proteomic
analyses throughput and has been used in pathway studies.

In the current study, we applied the iTRAQ technique to assess the proteomic changes in
A. japonicus intestinal tissues after heat shock. Our results suggest that heat stress influenced
the expression of proteins involved in diverse biological processes, such as tissue protection and
detoxification, lipid and amino acid metabolism, energy production and usage, transcription and
translation, cell apoptosis, and cell proliferation. These findings provide a better understanding of the
response and thermo-tolerance mechanisms in A. japonicus under heat stress.

2. Results

2.1. Overview of the Proteomics Data

The proteomics data have been deposited to the ProteomeXchange via the PRIDE (Database
ID: PXD002660) [10]. Totally 272,754 spectra were obtained, of which 38,588 unique spectra were
detected (Table 1). A total 3423 proteins were identified at a global false discovery rate of 1% (Table S1).
The global expression changes of these proteins under heat stress were shown in Figure 1. Finally,
127 proteins showed significant heat stress responses, with 61 upregulated proteins (Table 2) and 66
downregulated proteins (Table 3).

Table 1. Overview of the proteomics sequencing results.

Group Name Number

Total spectra 272,754
Spectra 41,330

Unique spectra 38,588
Peptide 10,908

Unique peptide 10,486
Protein 3432

Upregulated protein 61
Downregulated protein 66
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changes >1.20 as red and <0.83 as green).
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Table 2. Sixty-one upregulated proteins under heat stress in the intestine of the sea cucumber
A. japonicas.

Accession Number Protein Description HS vs. Control

Mean SD

HSPs and Related Proteins

Unigene28963 heat shock protein 90 6.10 4.25
CL6821.Contig1 heat shock protein 70 1.56 0.62
CL5625.Contig2 heat shock protein 110 1.41 0.22
Unigene15437 heat shock protein 10 1.20 0.01

CL12434.Contig1 heat repeat-containing protein 7A 1.36 0.19

Detoxification and Tissue Protection

Unigene61290 glutathione S-transferase 1.36 0.07
CL6008.Contig2 glutathione S-transferase α-4-like, partial 2.23 0.72
Unigene25399 sigma class glutathione S-transferase 2 1.29 0.26

CL7884.Contig2 phospholipid hydroperoxide glutathione peroxidase 1.45 0.16
Unigene29285 prostaglandin D2 synthase, hematopoietic-like 1.53 0.35
Unigene25766 cytochrome P450 4V2-like 2.43 1.45

Cell Apoptosis and Proliferation

Unigene29013 apoptosis-inducing factor 1, mitochondrial-like, partial 1.28 0.20
CL4411.Contig2 prohibitin-like 1.19 0.12
CL2387.Contig1 autocrine proliferation repressor protein A-like 3.57 3.08

Unigene33274 suppression of tumorigenicity 13 (colon carcinoma) (Hsp70
interacting protein) 1.27 0.09

CL10790.Contig2 erlin-1 1.29 0.04
Unigene35102 mesoderm-specific transcript protein (MEST) 2.61 2.19

Lipid Transport and Metabolism

Unigene64084 long-chain specific acyl-CoA dehydrogenase 1.41 0.24

Unigene20467 long-chain specific acyl-CoA dehydrogenase,
mitochondrial-like 2.22 0.72

Unigene22338 short chain dehydrogenase/reductase family 16C, member
5-like 1.74 0.58

Unigene4389 17-β-hydroxysteroid dehydrogenase type 4 1.94 1.11
Unigene5795 11-β-hydroxysteroid dehydrogenase 2.54 1.24
Unigene6420 enoyl-CoA Hydratase family member-like 1.62 0.33

CL12084.Contig1 enoyl-CoA hydratase, mitochondrial-like 1.30 0.16
CL759.Contig2 hydroxyacyl-Coenzyme A dehydrogenase 1.34 0.31
Unigene19362 epidermal retinol dehydrogenase 2-like 1.97 0.83
Unigene15259 carnitine O-palmitoyltransferase 2, mitochondrial-like 1.21 0.06
Unigene11008 non-specific lipid-transfer protein-like 2.99 1.98

CL4289.Contig1 nuclear progesterone receptor 1.46 0.23
CL6901.Contig2 21-deoxynucleoside 51-phosphate N-hydrolase 1 1.43 0.27
CL8136.Contig1 acyl-CoA-binding protein like, ACBP2 2.33 1.46
Unigene18754 oxysterol-binding protein-related protein 9 1.20 0.18

Carbohydrate Transport and Metabolism

Unigene2131 lactase 1.48 0.10

Amino Acid Transport and Metabolism

CL4095.Contig2 sphingosine-1-phosphate lyase 1 1.33 0.27
Unigene23212 branched-chain-amino-acid aminotransferase-like protein 1 1.39 0.32

Energy Production and Conversion

CL10773.Contig1 isocitrate dehydrogenase 1.68 0.19
Unigene18857 electron transfer flavoprotein subunit α, mitochondrial-like 1.27 0.25

CL6007.Contig1 aldehyde dehydrogenase, dimeric NADP-preferring isoform 1.37 0.22
Unigene22955 α-methylacyl-CoA racemase-like 1.65 0.66
Unigene175 D-glucosyl-N-acylsphingosine glucohydrolase 1.85 0.31

Unigene22578 α-galactosidase 1.91 1.26
Unigene29260 ATPase family AAA domain-containing protein 1 1.35 0.05

CL5389.Contig1 ATPase inhibitor, mitochondrial-like 1.31 0.21
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Table 2. Cont.

Accession
Number

Protein Description HS vs. Control

Mean SD

Protein Synthesis

CL9215.Contig1 aspartyl-tRNA synthetase 1.17 0.11
CL7807.Contig3 RNA-binding motif protein, X chromosome 1.25 0.19

Unigene8195 elongation factor Tu, mitochondrial-like 1.34 0.20

Others/Uncharacterized

Unigene49395 toposome 1.83 0.81
Unigene28479 natterin-3-like 2.63 1.01

CL6732.Contig2 calpain-5 isoform 2 1.38 0.37
Unigene22143 phospholipase C delta isoform 2.55 0.58

CL1115.Contig1 endophilin-B1-like isoform 1 1.32 0.19
Unigene322 myosin VIb-like 1.32 0.24

CL7807.Contig3 atlastin-2 1.33 0.23
CL9074.Contig2 cysteine rich protein 1 1.59 0.18
Unigene11767 suppressor of G2 allele of SKP1 homolog 1.53 0.14

CL8638.Contig1 development-specific protein LVN1.2 1.71 0.62
Unigene22386 uncharacterized 1.39 0.35
Unigene1947 uncharacterized 3.76 1.54
Unigene5634 uncharacterized 1.66 0.38

Unigene16247 uncharacterized 2.11 1.58
Unigene62712 uncharacterized 11.32 9.13

Table 3. Sixty-six downregulated proteins under heat stress in the intestine of the sea cucumber
A. japonicas.

Accession Number Protein Description HS vs. Control

Mean SD

Cytoskeletal Proteins

Unigene32477 twitchin-like 0.67 0.21
Unigene32260 laminin subunit α-like 0.68 0.13
CL221.Contig4 α-actinin-like 0.76 0.10
Unigene3881 galectin-9-like 0.56 0.29
Unigene27394 fibrillin-1-like 0.52 0.17

CL5005.Contig4 cohesin subunit SA-1-like 0.69 0.25
Unigene9716 titin isoform 3 0.72 0.17

CL3832.Contig7 filamin-C isoform 1 0.83 0.01
Unigene30625 muscle M-line assembly protein unc-89-like 0.71 0.10

Transcription and Translation

Unigene29879 60S ribosomal protein L8-like 0.79 0.11
Unigene26472 60S ribosomal protein L6, partial 0.82 0.15
Unigene8941 ribosomal protein L4, partial 0.82 0.09

CL1672.Contig2 60S ribosomal protein L10-like 0.73 0.14
CL4437.Contig3 splicing factor, proline- and glutamine-rich 0.62 0.05
CL5572.Contig1 THO complex subunit 4 0.64 0.25
Unigene22920 small nuclear ribonucleoprotein-associated proteins B and B1 0.81 0.12
Unigene15894 malectin 0.75 0.08

DNA Replication and Repair

CL1035.Contig9 histone H3.3 0.66 0.29
Unigene5846 histone H1-β, late embryonic 0.61 0.05

CL5357.Contig1 legumain-like 0.67 0.20
CL64.Contig2 poly(ADP-ribose) polymerase pme-5-like 0.77 0.08
Unigene9968 ATP-binding cassette, sub-family C, member 9-like 0.69 0.01
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Table 3. Cont.

Accession Number Protein Description HS vs. Control

Mean SD

Amino Acid Transport and Mechanism

CL4631.Contig1 choline dehydrogenase, mitochondrial-like 0.65 0.17
Unigene11760 branched-chain-amino-acid aminotransferase, cytosolic 0.71 0.08

CL3226.Contig1 tyrosine aminotransferase-like 0.66 0.28
Unigene25781 aminopeptidase N-like 0.72 0.13

CL12737.Contig1 glutamyl aminopeptidase 0.79 0.16
CL2682.Contig1 cytosolic serine hydroxymethyltransferase 0.73 0.08
CL9582.Contig2 xaa-Pro aminopeptidase 1 isoform X3 0.76 0.09
Unigene36365 betaine homocysteine S-methyltransferase 1 0.58 0.22
Unigene3911 betaine homocysteine S-methyltransferase 1-like 0.38 0.10

Lipid Transport and Mechanism

Unigene27722 peroxisomal bifunctional enzyme-like 0.78 0.14
Unigene10407 peroxisomal bifunctional enzyme 0.81 0.07

CL8765.Contig2 dihydropteridine reductase 0.74 0.09
CL1598.Contig1 γ-butyrobetaine dioxygenase-like 0.60 0.22

Carbohydrate Transport and Metabolism

Unigene27857 α-mannosidase 2C1-like 0.47 0.24
Unigene18547 pyruvate carboxylase, mitochondrial 0.73 0.15

Hormonal and Nerve Regulation

Unigene25501 thyroid hormone-induced protein B-like 0.41 0.28
CL9528.Contig2 proactivator polypeptide 0.72 0.23
Unigene19435 angiotensin-converting enzyme 0.38 0.18

CL7652.Contig1 potassium channel tetramerization domain containing 6-like 0.37 0.29
CL5238.Contig2 glutamate receptor 1-like 0.68 0.08

Others/Uncharacterized

Unigene1888b1 sterigmatocystin biosynthesis dehydrogenase stcV 0.65 0.26
CL5732.Contig1 N-acetylated-α-linked acidic dipeptidase 2-like isoform 1 0.58 0.11
CL9717.Contig2 peroxiredoxin-4-like 0.53 0.07
Unigene25753 homogentisate 1,2-dioxygenase 0.56 0.32

CL2303.Contig2 cathepsin L 0.70 0.26
Unigene8231 α-parvin-like 0.77 0.11

CL7154.Contig1 sorcin 0.82 0.10
Unigene32921 thiopurine S-methyltransferase isoform X2 0.75 0.07

CL2660.Contig13 phosphatidylinositol-binding clathrin assembly protein unc-11-like
isoform 6 0.80 0.09

Unigene15838 cytochrome P450 2N2 0.70 0.10
CL2540.Contig2 cytochrome P450 2U1-like 0.58 0.05
Unigene23131 oocyst wall protein 4 precursor 0.58 0.10

CL4607.Contig1 uterine-ovary specific-44 protein 0.79 0.14
CL10965.Contig2 MAM and LDL-receptor class A domain-containing protein 2-like 0.73 0.13

Unigene11852 uncharacterized 0.74 0.17
Unigene8201 uncharacterized 0.62 0.21
Unigene63234 uncharacterized 0.55 0.34
Unigene11761 uncharacterized 0.77 0.08

CL11132.Contig3 uncharacterized 0.59 0.23
Unigene23211 uncharacterized 0.77 0.20

CL12015.Contig1 uncharacterized 0.58 0.19
CL709.Contig5 uncharacterized 0.37 0.27
Unigene8605 uncharacterized 0.78 0.03

CL3869.Contig4 uncharacterized 0.58 0.12

2.2. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) Pathway
Enrichment Analyses

A GO analysis was performed to evaluate the functions of the differentially expressed proteins.
Totals of 15, 12, and 59 categories were enriched in cellular component (CC), molecular function (MF)
and biological process (BP) categories, respectively (Table S2). Fiber components (sarcomere, myofibril,
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contractile fiber part, and contractile fiber), binding functions (identical protein binding, receptor
binding, coenzyme binding, and flavin adenine dinucleotide binding, and actin binding) and response
processes (response to organic substance, response to hormone stimulus, response to endogenous
stimulus, and response to lipid) were of the top 10 enriched GO-terms by cluster frequency in CC, MF
and BP, respectively (Figure 2).

A KEGG pathway enrichment analysis revealed seven upregulated pathways, of which
xenobiotics metabolism and fatty acid related metabolisms were included (Table 4). Systemic lupus
erythematosus and the renin-angiotensin system were identified as downregulated pathways.
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Table 4. Enriched pathways of different expressed proteins (heat stress (HS) vs. Control).

Pathway ID Pathway Term All Proteins with Pathway
Annotation (2664)

Differential Proteins
with Pathway

Annotation (100)
p-Value

Upregulated Pathways

ko00480 Glutathione metabolism 30 (1.13%) 6 (6%) 1.37 ˆ 10´3

ko00980 Metabolism of xenobiotics by
cytochrome P450 46 (1.73%) 7 (7%) 1.51 ˆ 10´3

ko00071 Fatty acid metabolism 60 (2.25%) 8 (8%) 2.31 ˆ 10´3

ko03320 Peroxisome proliferator-activated
receptors (PPAR) signaling pathway 64 (2.4%) 8 (8%) 4.35 ˆ 10´3

ko00120 Primary bile acid biosynthesis 56 (2.1%) 7 (7%) 8.82 ˆ 10´3

ko00982 Drug metabolism-cytochrome P450 51 (1.91%) 6 (6%) 1.10 ˆ 10´2

ko05215 Prostate cancer 37 (1.39%) 5 (5%) 1.13 ˆ 10´2

Downregulated Pathways

ko05322 Systemic lupus erythematosus 23 (0.86%) 4 (4%) 9.55 ˆ 10´3

ko04614 Renin-angiotensin system 51 (1.91%) 6 (6%) 1.10 ˆ 10´2

3. Discussion

The sea cucumber A. japonicus in the northern China experienced the highest temperature between
26 and 30 ˝C in the field [11]. Besides, A. japonicus enters a state of aestivation when the ambient
temperature is maintained at 26 ˝C [3]. Previous reports showed that catalase (CAT) and superoxide
dimutase (SOD) activities and HSPs levels varied significantly at 26 ˝C, indicating that this temperature
is beyond the normal temperature limit for A. japonicus [3–5]. Therefore, we investigate the global
protein expression profile under 26 ˝C heat stress.

3.1. Tissue Protection and Detoxification

HSP families play crucial roles protecting organisms against stress by re-establishing normal
protein conformation and cellular homeostasis [12]. In our study, heat shock protein 90 (HSP90),
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HSP70, HSP100, and HSP10 were upregulated 6.10-, 1.56-, 1.41-, and 1.20-fold, respectively (Table 2).
The protein family HSP90 helps in the processes of protein folding, degradation and transport, and
is involved in cell-signal and cell-cycle control [13,14]. Our previous A. japonicus study showed that
HSP90 also responds to HS at the mRNA level [5]. HSP70 helps prevent protein aggregation, assists in
re-folding of abnormal proteins, and is essential for protein import and translocation processes [15,16].
HSP70 expression increased under heat stress in this study, which agreed with our previous western
blot research of HSP70 [17]. HSP100 expression was also upregulated under heat stress. It is now
clear that HSP100 plays a major role in thermo-tolerance, particularly in plants [18]. Recent HSP100
studies have focused on its cooperation with HSP70 during protein disaggregation [19]. HSP10
participates in various processes with HSP60, including the stress response and tumorigenesis [20,21].
In our study, HSP10 was more abundantly expressed under heat stress, which also agreed with our
previous HSP10 mRNA study [4]. Taken together, our proteomics data show that four HSPs responded
significantly to heat stress, indicating that these HSPs played crucial roles in alleviating heat stress in
the sea cucumber A. japonicus.

Glutathione (GSH) is involved in many biological processes either as a co-factor of enzymatic
reactions or as the major thiol-disulfide redox buffer [22]. Furthermore, GSH and GSH-associated
metabolism provide important defense from many forms of stress [23]. In our study, phospholipid
hydroperoxide peroxidase (GPx4) and three glutathione transferases (GSTs) were upregulated after heat
stress in A. japonicus (Table 2). GPx4, a 20–22 kDa monomer, reduces hydroperoxides of complex lipids
by transferring GSH to glutathione disulfide [22]. This process is crucial for scavenging or reducing
excess quantities of reactive oxygen species (ROS), thereby maintaining cell redox homeostasis [23].
GSTs are essential enzymes in GSH metabolism, as GSH forms conjugates with a variety of electrophilic
compounds, including various xenobiotic compounds, through the actions of GSTs [24]. The GSH
conjugates are then exported out of the cell, which is an important component of detoxification [23].
Therefore, upregulation of GSH metabolic enzymes under heat stress is widely regarded as an essential
way that cells protect against toxic damage [22,25,26].

3.2. Lipid, Amino Acid and Carbohydrate Metabolism

Fifteen proteins involved in lipid transport and mechanisms were upregulated under heat stress in
A. japonicus, such as long-chain specific acyl-CoA dehydrogenases (ACADs) and enoyl-CoA hydratases
(ECHs). ACADs are a class of enzymes that function to catalyze the initial step of fatty acid β-oxidation
in the mitochondria [27]. Long-chain specific ACADs catalyze the breaking of long chain fatty acids
into acetyl-CoA molecules. Two long-chain specific ACADs were highly expressed under heat stress in
A. japonicus, reflecting the increasing demand for fatty acid metabolism. ECHs catalyze the second step
of β-oxidation to breakdown fatty acids to produce acetyl-CoA and energy in the form of NADH [28].
These enzymes are highly efficient, allowing cells to metabolize fatty acids into energy very quickly.
In our study, 17-β-ECH type 4 and 11-β-ECH were upregulated in the intestinal tissues of A. japonicus
exposed to heat stress, suggesting a shift to lipid metabolism during energy production. These findings
correlate well with previous reports suggesting that upregulation of fatty acid metabolism is an
important energy budget strategy in a disadvantageous environment [26,29–31].

Nine proteins with roles in amino acid metabolism were less abundant in the HS group (Table 3).
Notably, two types of betaine homocysteine S-methyltransferase (BHMT), BHMT1 and BHMT1-like,
were downregulated 0.58- and 0.38-fold, respectively. BHMTs use betaine to catalyze the conversion of
homocysteine (Hcy) to methionine (Met), which helps regulate Hcy levels and Met biosynthesis [32,33].
In our study, the expression of BHMTs decreased significantly under heat stress, which would result in
changes in the concentrations of many metabolites and enzymes activities involved in Met, Hcy, and
one-carbon metabolism [34]. Together with the reduction in other enzymes involved with amino acid
metabolism, we suggest that heat stress may disrupt amino acid homeostasis. Hence, more attention
should be paid to the nutrient requirements and amino acid deficiency diseases in sea cucumbers
under stress.
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In contrast, fewer proteins of carbohydrate transport and metabolism were involved under
stress, as only one protein (lactase) was upregulated and two (α-mannosidase 2C1-like and pyruvate
carboxylase) were downregulated. Expression of the key enzymes in the glycolytic pathway did
not change, such as 6-phosphofructo-2-kinase and pyruvate kinase, indicating that short-term heat
stress has no significant influence on this process [26] (Table S1). Pyruvate carboxylase, which
synthesizes phosphoenolpyruvate from pyruvate during gluconeogenesis, was downregulated [35].
Thus, gluconeogenesis was likely depressed under heat stress.

3.3. Energy Production and Usage

Eight proteins involved in energy production and conversion were upregulated. Electron transfer
flavoprotein (ETF) is located on the matrix face of the inner mitochondrial membrane and is a specific
electron acceptor [36]. This protein is an important part of the electron transport chain, as it creates an
electrochemical proton gradient that drives ATP synthesis. ETF was more abundantly expressed in
A. japonicus under heat stress, suggesting that regulating HS demands additional energy [25]. However,
the electron transport chain is the major site of ROS production, which may be the reason why high
temperature increases the ROS levels in the cell [37,38].

Isocitrate dehydrogenase, a critical tricarboxylic acid (TCA) cycle enzyme, catalyzes the oxidative
decarboxylation of isocitrate to produce α-ketoglutarate, using NAD+ or NADP+ as a co-factor [39].
Upregulation of isocitrate dehydrogenase accelerates the TCA cycle, suggesting an urgent need for
energy. Additionally, isocitrate dehydrogenase is involved in controlling the mitochondrial redox
balance and cellular defense against ROS, and overexpression of this enzyme results in protection from
ROS-induced damage in mouse cells [40]. Isocitrate dehydrogenase increased in abundance in blue
mussel Mytilus trossulus under heat stress while decreased in sea urchin Strongylocentrotus purpuratus
exposed to stressful ultraviolet radiation [41,42]. Hence species may have different approaches to sense
and deal with ROS [42].

These findings suggest that high temperature induces increase in the ROS production, which
functions as a signal for activating a shift in metabolic pathways to enhance ROS-scavenging in
A. japonicus.

3.4. Transcription and Translation

Our proteomics data show that the majority of proteins involved in transcription and
translation were downregulated, including splicing factor, THO complex subunit 4, small nuclear
ribonucleoprotein-associated proteins B and B1 and 60S ribosomal proteins. Global transcription and
translation decrease in response to most types of cellular stress [29,43,44]. It is estimated that up to 50%
of cellular energy, depending on the organism, is consumed in the translation process [45,46]. Hence,
this decrease allows for a notable cellular energy savings. Furthermore, reducing protein synthesis
avoids exposing nascent polypeptides to denaturing conditions that could further intensify the cellular
stress response [44].

Only a few specific proteins participating in protein synthesis were more abundantly expressed
in the HS group, such as elongation factor thermo unstable (EF-Tu). Actually, the functions of
EF-Tu are not limited to a translation elongation factor but include chaperoning [47]. EF-Tu is
an important HS response protein in many species, and high EF-Tu expression is correlated with
thermo-tolerance [48–50].

3.5. Cell Apoptosis and Proliferation

Cell apoptosis signal occurs under heat stress. Apoptosis-inducing factor 1, a ubiquitous
mitochondrial flavoprotein that participates in the degradation phase of apoptosis, rose 1.28-fold under
heat stress in A. japonicus [51]. This result indicate that apoptosis is more predominant under heat
stress, which agrees with the apoptotic signals detected in our previous ultrastructural observations,
such as condensed chromatin and disappearing cytoplasm [17].
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The evidence for decreased cell proliferation is quite clear. For example, two key antiproliferative
proteins (prohibitin and autocrine proliferation repressor protein) were upregulated 1.19- and 3.57-fold,
respectively [52,53]. Moreover, two types of histone proteins (histone H1 and histone H3.3) are less
abundant under heat stress. Histone proteins are responsible for regulating DNA-templating processes,
including DNA replication and repair [54]. Therefore, downregulation of histone proteins reflects
decreased cell proliferation under stress.

3.6. Other Processes

Many other proteins were involved in the A. japonicus heat stress response. For example,
we identified nine cytoskeletal proteins with decreased expression, suggesting the induction of
apoptosis and depressed cell proliferation under heat stress [55,56]. Furthermore, cytoskeletal elements
are composed of sarcomeres and reducing their expression decreases muscle contraction under
heat stress [57,58]. The levels of hormonal and nerve regulation change under heat stress, which
influence metabolism, signal transport, and other physiological functions [59–61]. Additionally, many
uncharacterized proteins and proteins whose roles in the HS response remain unknown were detected.
These results show the complexity of the HS response.

4. Materials and Methods

4.1. Animals and Samples

A. japonicus (mean weight, 99 ˘ 13 g) were supplied by a commercial farm in Qingdao (Shandong,
China) in April 2015. Seawater temperature of the farm was about 13 ˝C. The sea cucumbers were
transported to our laboratory and maintained in seawater tanks (30‰salinity, 15 ˝C) for 2 weeks. The
sea cucumbers were fed with a formulated diet (5.04% ˘ 0.19% (w/w) crude protein, 0.26% ˘ 0.05%
(w/w) fat, and 72.20% ˘ 0.19% (w/w) ash) during the acclimation and experimental periods, and
remaining feed was removed daily.

A rapid temperature-change regime was carried out in the treatment tank, using a 2-kW heating
rod. The rate of heating was about 2 ˝C/h. The moment when water temperature rose to 26 ˝C was
regarded as the initial time, and water temperature maintained at 26 ˝C in the subsequent experiment.
Intestinal tissues of A. japonicus after a 48 h exposure were sampled as the heat stress (HS) group while
those from an untreated tank were sampled as the control (C) group. No sea cucumbers died during
the experiment. The intestinal tissues were frozen in liquid nitrogen and stored at ´80 ˝C.

4.2. Protein Extraction, Digestion, and iTRAQ Labeling

Three biological replicates of the frozen intestinal tissues were prepared for the iTRAQ analysis.
The tissue was ground to powder in liquid nitrogen and dissolved in lysis buffer (7 M urea, 2 M
thiourea, 4% CHAPS, and 40 mM Tris-HCl, pH 8.5) containing 1 mM PMSF and 2 mM EDTA. 10 mM
DTT was added to the lysis buffer after 5 min. An ultrasound on ice for 15 min was carried out to
mix the suspension, which was then centrifuged at 25,000ˆ g for 20 min at 4˝C. The supernatant was
transferred to chilled acetone and precipitated at ´20 ˝C overnight. The supernatant was discarded
after centrifugation at 25,000ˆ g for 30 min at 4 ˝C, and the precipitate was washed three times with
chilled acetone for 30 min each at 4 ˝C. The pellets were air-dried and dissolved in lysis buffer using
ultrasound. The supernatant was reduced with 10 mM DTT at 56 ˝C for 1 h after centrifugation at
25,000ˆ g for 30 min at 4 ˝C and alkylated immediately with 55 mM iodoacetamide in the dark at room
temperature for 1 h. The treated proteins were precipitated in acetone at ´20 ˝C for 3 h. The proteins
were dissolved in buffer containing 1 mM PMSF and 2 mM EDTA using ultrasound after centrifugation
at 25,000ˆ g for 20 min at 4 ˝C and air-drying. The proteins were recovered after centrifugation at
25,000ˆ g for 20 min at 4 ˝C and quantified using the Bradford method.

The protein samples were digested with Trypsin Gold (Promega, Madison, WI, USA) at 37 ˝C for
16 h, and the peptides were dried by vacuum centrifugation. An isobaric tag was labeled to the control
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(113, 114 and 116 Da) and HS samples (118, 119 and 121 Da), following the manufacturer’s instructions
for the iTRAQ 8-plex reagents (Applied Biosystems, Foster City, CA, USA).

4.3. Fractionation by Strong Cation Exchange Chromatography (SCX) and Liquid Chromatography-Tandem
Mass Spectrometry (LC-MS/MS) Analysis

The labeled samples were fractionated on a SCX column using the LC-20AB high performance
liquid chromatography (HPLC) pump system (Shimadzu, Kyoto, Japan). The peptides were eluted
with a gradient of buffer A (25 mM NaH2PO4 in 25% ACN, pH 2.7) and buffer B (25 mM NaH2PO4

and 1 M KCl in 25% ACN, pH 2.7). The specific fractionating procedures were as follows: 100% buffer
A for the first 10 min, 5%–60% buffer B for 27 min, 60%–100% buffer B for 1 min, and 100% buffer B
for 1 min. Absorbance of the eluate was measured at 214 nm, and fractions were collected every min.
The eluted peptides were desalted with a Strata X C18 column (Phenomenex, Torrance, CA, USA) and
vacuum-dried.

A LC-20AD nanoHPLC (Shimadzu, Kyoto, Japan) and a 10 cm eluting C18 column were used to
analyze the peptide fractions. Mass spectrometry data were acquired with the Triple TOF 5600 system
(AB SCIEX, Concord, ON, Canada) fitted with the Nanospray III source (AB SCIEX) and a pulled
quartz tip emitter (New Objectives, Woburn, MA, USA).

4.4. Protein Identification and Quantification

The raw LC-MS/MS data were converted to MGF files using Proteome Discovery 1.2 (Thermo,
Pittsburgh, PA, USA). The proteins were identified using Mascot search engine 2.3.02 (Matrix Science,
London, UK) with the A. japonicus transcriptomics database containing 30,622 sequences. Proteins
containing at least two unique spectra were used for the follow-up quantification analysis. The
quantitative protein ratios were weighted and normalized in Mascot. We only identified proteins with
p-values <0.05 and fold changes >1.20 or <0.83 as being differentially expressed [62].

4.5. GO and KEGG Pathway Enrichment Analyses

The GO and KEGG databases were used to classify and group the identified proteins [63,64].
The hypergeometric test was used to identify significantly enriched GO terms and pathways of
differentially expressed proteins. A p-value <0.05 was considered as significant.

5. Conclusions

This study provides a global view of the proteins differentially expressed in the intestinal tissues
of A. japonicus under heat stress using the iTRAQ technique. Heat stress influences the expression of
proteins involved in various biological processes, such as tissue protection and detoxification, lipid
and amino acid metabolism, energy production and usage, transcription and translation, cell apoptosis,
and cell proliferation. These results reveal possible molecular events in A. japonicus under heat stress.

Supplementary Materials: Supplementary materials can be found at http://www.mdpi.com/1422-0067/
17/2/150/s1.
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