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Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is a highly trans-
missible virus that causes Coronavirus disease 2019 (COVID-19). Temperature and 
humidity are two essential factors in the transmission of SARS-CoV-2 affect the res-
piratory system of human. This study aimed to investigate the effects of temperature 
and humidity on the transmission of SARS-CoV-2 and the Spread Covid-19. The 
daily number of SARS-CoV-2 infected new cases, and the number of death due to 
Covid-19 are considered the response variables. Data are collected from March 08, 
2020 to January 31, 2021. A flexible regression model under the Generalized Addi-
tive Models for Location Scale and Shape framework is used to analyze data. The 
temperature and humidity have a significant impact on the transmission of SARS-
CoV-2. The temperature is highly significant in the number of SARS-CoV-2 infected 
new cases and number of death due to COVID-19. In contrast, the humidity is sig-
nificant on the number of SARS-CoV-2 infected new cases, but it is insignificant on 
the number of death due to COVID-19 at a 5% level of significance. The analysis 
revealed that both the temperature and humidity inversely affected the daily number 
of deaths and new cases of COVID-19.
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1 Introduction

Coronavirus disease 2019 (COVID-19), caused by the novel coronavirus (official 
name is SARS-CoV-2; formerly called 2019-nCoV), has become a major public 
health problem all over the world [1]. In light of the rising danger, World Health 
Organization (WHO) declared COVID-19 as an international public health emer-
gency [2]. Although it is still unknown exactly where the outbreak first started, 
many early cases of COVID-19 have been attributed to people who have visited 
the Huanan Seafood Wholesale Market, located in Wuhan, Hubei, China [3]. 
Globally, as of March 21, 2021 there have been 123.55 million confirmed cases 
of COVID-19, including 2.72 million deaths and among confirmed cases 99.53 
million are recovered [4].

Bangladesh is a well-known climate-vulnerable country due to its high popula-
tion density and complex meteorological settings [5]. In Bangladesh, the first cor-
onavirus cases were confirmed on March 08, 2020 by the country’s epidemiology 
institute, the Institute of Epidemiology Disease Control and Research (IEDCR). 
It has been reported that the temperature, humidity, wind, and precipitation may 
favour either the spread or the inhibition of epidemic episodes [6, 7] reported that 
the transmission of viruses is influenced by weather conditions and the density of 
people. Although Bangladesh is an over-populated country (about 160 million), 
COVID-19 in Bangladesh seems less acute. As of March 21, 2021 there have 
been 570,878 confirmed cases including 8690 deaths and among confirmed cases 
522,105 are recovered [4]. The reason for moderate transmission of COVID-19 
might be an influence of tropical weather (consisting of high temperature, often 
excessive humidity).

Meteorological parameters are the important factors influencing infectious dis-
eases such as severe acute respiratory syndrome (SARS) and influenza [8]. It is 
supposed that high temperature and humidity, together, have a combined effect 
on the inactivation of coronaviruses. In contrast, the opposite weather condition 
can support the prolonged survival time of the virus on surfaces and facilitate the 
transmission and susceptibility of the viral agent [9]. There is also some evidence 
that COVID-19 cases have particularly clustered around cooler, drier regions [10, 
11]. Many articles have been published to examine the effects of temperature and 
humidity on the spread of COVID-19. A systematic review article has also been 
published in [12]. Most of the researches findings are that there is a significant 
effect of temperature and humidity on the spread of COVID-19. However, there 
is still a lack of evidence because some studies found no association between 
COVID-19 transmission with temperature (see for example, [13, 14]).

In addition, we know that the viruses continuously mutate, and SARS-CoV-2 
also change similarly. Callaway  [15] state that SARS-CoV-2 has been mutating 
at a rate of about 1–2 mutations per month. Mutations can have a negative or 
positive impact on the SARS-CoV-2 virus’s capability to sustain and replicate, 
depending on where in the SARS-CoV-2 the genome misconstructions transpire. 
The researcher cautioned that these mutant genealogies of the SARS-CoV-2 
strain would be continued uncontrolled transmission of SARS-CoV-2 in many 
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parts of the world. Viral mutations and variants in the United States are regularly 
scanned through sequence-based surveillance, laboratory studies, and epidemio-
logical investigations [16].

Recently, a novel SARS-CoV-2 mutated (known as lineage B.1.1.7) emerged in 
the United Kingdom (UK) in November 2020 and expanded quickly in other coun-
tries [17]. A total of 17 mutations have been recorded in the new strain found in the 
UK. Virologists in Bangladesh have announced that a new SARS-CoV-2 strain is 
a bit similar to the one discovered in the United Kingdom recently [18]. After the 
mutation, we do not know the effects of the temperature and humidity on the trans-
mission of SARS-CoV-2 strain. Hence, it is crucial to understand the behaviour of 
the transmission of SARS-CoV-2 for the current data.

Therefore, the main objective of this research is to investigate the effects of tem-
perature and humidity on the transmission of SARS-CoV-2 by using flexible regres-
sion models. We try to understand the seasonal behaviour of the transmission of 
SARS-CoV-2 and the spread of COVID-19. A detailed material and methods regard-
ing data source and statistical models are explained in Sect. 2. Section 3 describe the 
data analysis and results. Finally, the discussions and conclusions are portrayed in 
Sect. 4.

2  Material and Methods

2.1  Data Source

Data of Covid-19 cases are collected from the daily reports of the Institute of Epi-
demiology Disease Control and Research (IEDCR), Dhaka, Bangladesh, during the 
period of March 08, 2020 to January 31, 2021. Data are available on the website 
with the link https:// en. wikip edia. org/ wiki/ COVID- 19_ pande mic_ in_ Bangl adesh. 
The daily temperature (measured in ◦C ) and humidity (%) of Bangladesh are col-
lected from the website https:// www. timea nddate. com/ weath er/ bangl adesh/ dhaka.

2.2  Generalised Additive Models for Location Scale and Shape

Generalized Linear Models (GLM) and Generalized Additive Models (GAM) 
respectively introduced by [19, 20], are very popular in statistical data analysis. 
Rigby and Stasinopoulos  [21] proposed a generalized additive model for location, 
scale and shape (GAMLSS) as a way of overcoming some of the limitations asso-
ciated with GLM and GAM models for regression analysis. It is a general frame-
work of (semi)parametric regression models where the distribution of response 
variable does not necessarily belong to the exponential family and includes highly 
skew and kurtotic continuous and discrete distribution. We consider the logarithmic 
transformation of the number of SARS-CoV-2 infected new cases and the number 
of death due to COVID-19 as response variables of the GAMLSS model. In the 
sequel we denote, for notational convenience, “number of SARS-CoV-2 infected 
new cases" as “number of new cases". To avoid the logarithmic transformation of 

https://en.wikipedia.org/wiki/COVID-19_pandemic_in_Bangladesh
https://www.timeanddate.com/weather/bangladesh/dhaka
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zero and the computational complexity under the GAMLSS modelling framework, 
we add 1.1 to each response variable before the logarithmic transformation. For each 
response variable, we fit the GAMLSS model separately. The probability distribu-
tion of each response variable (Y) under the GAMLSS modelling framework is cho-
sen based on the minimum Bayesian information criterion (BIC) and Akaike infor-
mation criterion (AIC) values. The Normal Exponential-t distribution is selected 
for Y = log(number of new cases) , and the Gumbel distribution is selected for 
Y = log(number of death) . A detailed selecting procedure is described in Sect. 3.2.

2.2.1  Normal Exponential‑t Distribution

The Normal Exponential-t Distribution (NET) distribution was first introduced by 
[22] as a robust method of fitting the mean and scale parameters of symmetric dis-
tribution as functions of explanatory variables (X). The probability density function 
(pdf) of NET distribution, which is denoted as NET(�, �, �, � ), is given by [22] and 
defined by

for −∞ < y < ∞ , where −∞ < 𝜇 < ∞ , 𝜎 > 0 , 𝜈 > 1 , 𝜏 > 𝜈 , and c = (c1 + c2 + c3)
−1 , 

where c1 =
√
2�[1 − 2�(−�)] , c2 =

2

�
exp

{
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2

}
 and c3 =

2

(��−1)�
exp
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 , 

where �(⋅) is the cumulative distribution function of the standard normal variate. 
Note that the location parameter � is the mean of Y, for detailed density can be found 
in [23]. We are interested in estimating the mean function in the regression settings.

2.2.2  Gumbel Distribution

The pdf of the Gumbel distribution (also called an extreme value or Gompertz dis-
tribution), denoted by GU(�, � ), is defined by:

for −∞ < y < ∞ , where −∞ < 𝜇 < ∞ and 𝜎 > 0 , with E(Y) = � − �� , where 
� ≈ 0.577 is Euler- Mascheroni constant and Var(Y) = �2�2∕6 , for detailed density 
can be found in [23].

The covariates for both response variables are time (in days), temperature, and 
humidity are considered for this article. The beauty of the GAMLSS model is that 
the systematic part of it can be elaborated to endorse modelling not only the location 
(usually, mean) but other parameters of the distribution such as scale, shape. These 
parameters could be linear parametric and/or additive non-parametric functions 
of covariates and/or random effects. In this research, we choose flexible predictor 
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models via fractional polynomial and B-spline functions for finding the smoothing 
function of the predictor time. To estimate the conditional mean of the response var-
iable Y given covariate X = (time, temperature, humidity) , we have to estimate the 
parameters (as a function of X) of the conditional distribution of Y given X. There-
fore, the flexible regression models for the location function �(X) and the scale func-
tion �(X) under the flexible GAMLSS modeling framework can be written as

and

The (penalized) maximum likelihood estimation is used to estimate the parameters 
of the model (1) and (2).

2.2.3  Flexible Regression with Fractional Polynomial Function

The fractional polynomial in flexible predictor models is a generalization of the pol-
ynomial function. The general form of a fractional polynomial in x of degree m can 
be written as

where m is an integer and

with p0 = 0 and H0(x) = 1 , for a sequence of powers p1 ≤ p2 ≤ ⋯ ≤ pm from the 
grid

The optimal combination of powers will be selected by using the smallest value of 
BIC.

We select p1 = 0 , p2 = 0 , p3 = 0.5 and m = 3 for the response variable of 
log(number of new cases) and hence the model (3) can be written as

For the response variable of log(number of death), we select p1 = 1 , p2 = 2 and 
p3 = 2 , and the fractional polynomial in time (in days) variable of degree m = 3 for 
the model (3) can be written as

(1)�(X, �) = �0 + f (time;�1) + �2 × temperature + �3 × humidity,

(2)log (�(X; �)) = �0 + f (time;�1) + �2 × temperature + �3 × humidity.

(3)fp(x;�, p1, p2,… , pm) =

m∑
l=0

�lHl(x),

Hl(x) =

{
xpl if pl ≠ pl−1
Hl−1(x) × log(x) if pl = pl−1,

{−2,−1,−0.5, 0, 0.5, 1, 2,max(3,m)}.

(4)fp(time;�1;0, 0, 0.5) = �10 + �11 log(time) + �12[log(time)]2 + �13(time)0.5.

(5)
fp(time;�1; 1, 2, 2) = �10 + �11 × time + �12 × (time)2 + �13 × (time)2 × log(time).
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2.2.4  Flexible Smoothing Regression with B‑Splines model

Flexible smoothing function with basis spline (B-spline) models were also fitted in 
order to get a more flexible approximation to the data. A general form of B-spline 
predictor model of x for the degree D can be written as

where K is the number of knot values, bk is the knot value at kth interval or piece 
and H(x > bk) is the Heaviside function taking value 1 if x > bk , otherwise 0. The 
combination of D, K, and the number knots values will be chosen based on the low-
est value of BIC.

3  Data Analysis and Results

3.1  Exploratory Data Analysis

To explore the raw data and find an indication for selecting the more sophisticated 
statistical model, we provide descriptive statistics and some graphical presentation 
of the variables in this section. Table 1 summarizes the descriptive statistics of the 
daily number of death due to COVID-19, SARS-CoV-2 infected new cases, and 
meteorological variables such as temperature and humidity for n = 324 days.

This study included 8033 total death, and 535,139 confirmed cases during that 
period. The average of the daily number of death due to COVID-19 and number of 
SARS-CoV-2 infected new cases are 24.79 and 1626.2, respectively. Besides, other 
factors showed that the lowest temperature of 20 ◦C with the highest temperature of 
37 ◦C , and the lowest humidity of 21% with the highest humidity of 100%.

The histogram with kernel density plot of the number of death due to COVID-
19 and the number of SARS-CoV-2 new cases are presented in Fig. 1. Figure (a) 
shows that the distributional shape of the number of death due to COVID-19 seems 
symmetric, indicating that the bell-shape distribution would be one of the best prob-
ability models for this variable. In contrast, Figure (b) reveals that the distributional 
shape of the number of SARS-CoV-2 infected new cases looks similar to a skewed 
pattern, indicating a skewed distribution would be more suitable for predicting this 
variable’s values.

(6)fb(x;�0,D,K) =

D∑
j=0

𝜃0jx
j +

D+K∑
k=D+1

𝜃0k(x − bk)
DH(x > bk),

Table 1  Descriptive statistics 
of daily number of death due to 
COVID-19, number of SARS-
CoV-2 infected new cases, 
temperature and humidity for 
March 08, 2020–January 31, 
2021

Variables Mean (SD) Lowest Highest

Number of death 24.79 (14.078) 0 64
Number of new cases 1626.2 (1032.006) 0 4019
Temperature 30.87 (3.738) 20 37
Humidity 60.71 (17.026) 21 100
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The scatter plot of the number of death due to COVID-19 and the number of 
SARS-CoV-2 infected new cases against time index for the period from August 
03, 2020 to January 31, 2021 are drawn in Fig.  2. We clearly see a nonlinear 
relationship between the response variables and the time index. We depict the 
scatter plot of the number of death due to COVID-19, and the number of SARS-
CoV-2 infected new cases against humidity in Fig.  3. The relationship between 
the number of death due to COVID-19 and the number of SARS-CoV-2 infected 
new cases against temperature are shown in Fig. 4. It is observed from these fig-
ures that there is a connection between both response variables and temperature 
and humidity covariates.

Without adjusting time effect in the model, we consider the following regression 
model to explore only the conditional relationship between two response variables 
Y = log(number of new cases) and Y = log(number of death) and two covariates 
named temperature and humidity. The mean regression model is, for i = 1, 2,… , n
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Fig. 1  Histrogram a Number of death due to the Covid-19; b number of SARS-CoV-2 infected new cases 
for Covid-19
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Fig. 2  Scatter diagram a number of death due to Covid-19; b number of SARS-CoV-2 infected new 
cases for Covid-19 against time index during the period August 03, 2020–January 31, 2021
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where yi = log(number of new cases) (and log(number of death)) and �i is the distur-
bance term for ith individual. Under the classical regression model assumptions (see 
for example, [24]), the summary statistics of the model (7) are tabulated in Table 2. 
The exploratory results show that the temperature is not significant on the number of 
new cases and on the number of death. In contrast, the humidity is highly significant 
on both response variables.

(7)yi = �0 + �1 × temperaturei + �2 × humidityi + �i,

20 40 60 80 100

0
10

20
30

40
50

60

Daily humidity

N
u

m
b

er
 o

f 
d

ea
th

(a)

20 40 60 80 100

0
10

00
20

00
30

00
40

00

Daily humidity

N
u

m
b

er
 o

f 
n

ew
 c

as
es

(b)

Fig. 3  Scatter diagram a number of death due to the Covid-19 versus humidity during the period August 
03, 2020–January 31, 2021; b number of SARS-CoV-2 infected new cases for Covid-19 versus humidity 
during the period August 03, 2020–January 31, 2021
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Fig. 4  Scatter diagram a number of death due to the Covid-19 versus daily temperature during the period 
August 03, 2020–January 31, 2021; b number of new cases for Covid-19 versus daily temperature during 
the period August 03, 2020–January 31, 2021
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Next, we consider the time (in days) variable as a covariate in the model. Since the 
exploratory data analysis shows a nonlinear relationship between time and response 
variables, we need advanced computer-intensive statistical models for further research.

3.2  Generalised Additive Models for Location Scale and Shape (GAMLSS) family

For selecting the best probability model for the response variable 
Y = log(number of new cases) , the summary including AIC and BIC values with their 
degrees of freedom of all selected candidate distributions coming from the GAMLSS 
family, are provided in Table  7 in “Appendix”. Above all of the distributions, we 
selected five possible candidate distributions based on the minimum BIC provided in 
Table 9 in “Appendix”. It is noticed that the smallest BIC and AIC are observed for the 
NET model. In contrast, the highest value of BIC (and also AIC) is observed for the 
Skew-t type-3 model. Based on the minimum BIC, we select the NET model to explain 
the transmission of SARS-CoV-2 for further investigation.

Similarly, for the response variable Y = log(number of death) , the summary results 
including AIC and BIC values with degrees of freedom of all selected candidate dis-
tributions coming from the GAMLSS family, are provided in Table 8 in “Appendix”. 
Above all of the distributions, we selected five possible candidate distributions based 
on minimum BIC presented in Table 10 in “Appendix”. It is noted that the smallest val-
ues of BIC and AIC are observed for the Gumbel model. In contrast, the highest value 
of BIC (and also AIC) is observed for the Skew-t type-4 model. Therefore, the Gumbel 
model is chosen as the best model to describe the number of death due to COVID-19 
for further analysis.

3.2.1  Flexible Regression with Fractional Polynomial Function

A fractional polynomials flexible models for log(number of new cases) given in (4) and 
for Y = log(number of death) given in (5) are estimated within the GAMLSS modelling 
framework via the best chosen probability distribution of each response variable. The 
fitted flexible predictor model for the �(X) for log(number of new cases) is

and the estimated flexible predictor model (2) is �(X; �̂) = exp(−1.322) = 0.267 . 
We, here, leave out the insignificant effects of the estimated model. The 

(8)
�̂(Xi; �̂) = 10.524 + fp(timei, �̂1) − 0.089 × temperaturei − 0.015 × humidityi,

Table 2  Summary statistics of the estimated model given in (7)

Estimate Log(Number of new cases) Log(number of death)

�̂
(
se(�̂)

)
t value P value �̂

(
se(�̂)

)
t value P value

Intercept 3.885 (0.866) 4.489 < 0.001 1.840 (0.462) 3.983 < 0.001
Temperature − 0.018 (0.024) − 0.734 0.464 − 0.196 (0.013) − 1.509 0.132
Humidity 0.056 (0.005) 10.518 < 0.001 0.028 (0.003) 9.915 < 0.001



162 Annals of Data Science (2022) 9(1):153–173

1 3

corresponding estimated fractional polynomial model for the �(X) in time (in days) 
of degree 3 is

The summary statistics of this estimated flexible predictor model (8) is tabulated 
in Table  3. Hence, the estimated flexible regression model for mean function 
E(Y|X) = �(X) of the conditional NET distribution under the GAMLSS modeling 
framework is

Note that the values of two fixed parameters � is 1.5 and � is 2 in the GAMLSS mod-
elling framework. We found the Global Deviance is 288.373, AIC is 308.373, and 
SBC is 346.181 for the final fitted model. Table 3 shows that the temperature and 
humidity are highly significant on the number of SARS-CoV-2 infected new cases. 
In addition, the regression coefficients for both temperature and humidity are nega-
tive which indicates that there is a negative relationship between these variables and 
the number of SARS-CoV-2 infected new cases.

Similarly, for the response variable of log(number of death), the estimated 
flexible regression model under the GAMLSS modelling framework of the loca-
tion function �(X) of Gumbel distribution is:

and the estimated flexible regression model of (2) is �̂(X; �̂) = exp(−1.264) = 0.283 . 
The estimated fractional polynomial model for the �(X) in time (in days) of degree 3 
is: for i = 1, 2,… , n

The summary statistics of the estimated model are provided in Table 4. Hence, the 
estimated flexible regression model of (10) can be written as

fp(timei, �̂1) = 35.067 + 18.203 × log(timei)

+ 2.204 × [log(timei)]
2 − 33.766 × (timei)

0.5.

(9)

�̂(Xi;�̂) = 45.591 + 18.203 × log(timei) + 2.204 × [log(timei)]
2

− 33.766 × (timei)
0.5 − 0.089 × temperaturei − 0.015 × humidityi.

(10)
�̂(Xi;�̂) = 5.495 + fp(timei, �̂1) − 0.062 × temperaturei − 0.008 × humidityi,

fp(timei, �̂1) = −3.584 + 9.832 × timei − 5.549 × time2
i
+ 2.398 × time2

i
× log(timei).

Table 3  Summary statistics of 
the estimated flexible predictor 
model given in (9)

Estimate Coefficients SE t value P value

Intercept 10.524 0.138 75.75 < 0.0001
Temperature − 0.089 0.005 − 21.40 < 0.0001
Humidity − 0.015 0.001 − 14.57 < 0.0001
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Finally, we obtain the estimated flexible regression model for mean function 
E(Y|X) = �(X) − ��(X) of conditional Gumbel distribution under the GAMLSS 
modeling framework is

For this model, the global deviance is 199.555, AIC is 219.555 and SBC is 257.363. 
Table 4 shows that the temperature and humidity are highly significant on the num-
ber of death due to COVID-19.

3.2.2  Flexible Smoothing Regression with B‑Splines Function

For the response variable log(number of new cases), we also use B-spline function 
given in (6) for estimating �(X;�) and �(X;�) of the NET distribution. With D = 3 and 
K = 4 in the model (6), the B-spline predictor function for estimating �(X;�) , the esti-
mated B-spline smoothing function of fb(timei;�0, 3, 4) ; ∀i = 1, 2,… , n is

With D = 3 and K = 1 in the model (6), the estimated function of fb(timei;�0, 3, 1) 
for i = 1, 2,… , n , is

Using the estimated B-spline function for estimating �(X; �) given in (12), we find 
the estimated flexible regression function of E(Y|X) = �(X;�) which is

(11)

�̂(Xi; �̂) = 1.911 + 9.832 × timei − 5.549 × time2
i
+ 2.398 × time2

i
× log(timei)

− 0.062 × temperaturei − 0.008 × humidityi.

Ê(Yi|Xi) = �̂(Xi; �̂) − ��̂(Xi; �̂)

= 1.748 + 9.832 × (timei) − 5.549 × (timei)
2 + 2.398 × (timei)

2 × log(timei)

− 0.062 × temperaturei − 0.008 × humidityi.

(12)

fb( timei;
��0, 3, 4) = −0.635 + 5.703 × timei − 9.591 × time2

i
+ 9.919 × time3

i

+ H(timei > b4)[8.534 × (timei − 65.6)3 + 9.285 × (timei − 130.2)3

+ 8.219 × (timei − 194.8)3 + 7.295 × (timei − 259.4)3].

(13)

fb(timei;��0, 3, 1) = 1.529 − 3.627 × timei − 2.365 × time2
i
− 2.726 × time3

i

− 2.992(timei − 162.5)3H(timei > b1).

Table 4  Summary statistics of 
the estimated flexible regression 
model via fractional polynomial 
function

Estimate Coefficients SE t value P value

Intercept 5.495 0.155 35.380 < 0.0001
Temperature − 0.062 0.005 − 13.579 < 0.0001
Humidity − 0.008 0.001 − 8.073 < 0.0001
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The summary statistics of the estimated function �̂(X, �̂) and log
(
�̂(X, �̂)

)
 are pre-

sented in Table  5. For this estimated model, the Global Deviance, AIC and SBC 
are −46.572 , −12.572 and 51.700, respectively. In the estimated mean function 
Ê(Y|X) = �̂(Xi; �̂) , we see the slope co-efficient of temperature ( �1 ) and humidity 
( �2 ) are negative which indicates that there is a negative relationship between these 
variables. In addition, the regression co-efficients for both temperature and humidity 
are highly significant on the number of SARS CoV-2 infected new cases. Similarly 
for estimated log

(
�̂(X, �̂)

)
 , we see the slope co-efficient of temperature ( �1 ) and 

humidity ( �2 ) are also negative which indicates that there is a negative relationship 
between these variables where both regression coefficients are not significant on the 
number of SARS-CoV-2 infected new cases at 5 % level of significance.

For the response variable log(number of death), we use the B-spline function of 
time predictor to estimate �(X) and �(X) of the Gumbel distribution. For estimating 
�(X; �) , we select D = 3 and K = 4 in the (6) and the estimated flexible function of 
fb(timei;�0, 3, 4) for i = 1, 2,… , n , is

𝜇(Xi;
��) = −0.635 + 5.703 × timei − 9.591 × time2

i
+ 9.919 × time3

i

+ H(timei > b4)[8.534 × (timei − 65.6)3 + 9.285 × (timei − 130.2)3

+ 8.219 × (timei − 194.8)3 + 7.295 × (timei − 259.4)3]

− 0.022 × temperaturei − 0.003 × humidityi.

(14)

fb(timei;
��0, 3, 4) = 0.978 + 1.409 × timei + 3.809 × time2

i
+ 4.361 × time3

i

+ H(timei > b4)[3.733 × (timei − 65.6)3 + 3.289 × (timei − 130.2)3

+ 3.667 × (timei − 194.8)3 + 2.600 × (timei − 259.4)3].

Table 5  The summary statistics of flexible regression models of �(X;�) and log(�(X; �) via B-spline 
smoothing function for the response variable log(number of new cases)

�(X,�) log (�(X, �))

� �̂
(
se(�̂)

)
t value P value � �̂

(
se(�̂)

)
t value P value

�
00

− 0.635 (0.938) − 0.677 0.499 �
00

1.529 (1.398) 1.093 0.275
�
01

5.703 (0.896) 6.366 < 0.005 �
01

− 3.627 (0.832) − 4.361 < 0.005
�
02

9.591 (0.848) 11.311 < 0.005 �
02

− 2.365 (0.652) − 3.630 0.0003
�
03

9.919 (0.851) 11.655 < 0.005 �
03

− 2.726 (0.726) − 3.753 0.0002
�
04

8.534 (0.844) 10.114 < 0.005 �
04

− 2.992 (0.639) − 4.685 < 0.005
�
05

9.285 (0.869) 10.675 < 0.005
�
06

8.219 (0.861) 9.547 < 0.005
�
07

7.295 (0.865) 8.437 < 0.005
�
1

− 0.022 (0.007) − 2.985 0.003 �
1

− 0.013 (0.033) − 0.394 0.694
�
2

− 0.003 (0.001) − 2.178 0.031 �
2

− 0.005 (0.006) − 0.786 0.433
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To estimate �(X;�) of the Gumbel distribution, we select D = 3 and K = 0 in the 
model given in (6). The estimated flexible function of fb(timei; �0, 3, 0) for ith indi-
vidual is

Using the estimated B-spline function given in (14), the estimated function of 
�(X; �) can be written as

By using the estimated B-spline model given in (15), the estimated scale function 
�̂(Xi; �̂) for i = 1, 2,… , n is

The summary statistics of the estimated models are tabulated in Table  6. In the 
estimated mean function �̂(Xi; �̂) , we see the slope co-efficient of temperature ( �1 ) 
and humidity ( �2 ) are positive which indicates that there is a positive relationship 
between these variables. Table  6 shows that, the temperature is highly significant 
but the humidity is not significant on the number of death due to COVID-19 at 5% 
level of significance. Similarly for estimated log

(
�̂(X, �̂)

)
 , we see the slope co-effi-

cient of temperature ( �1 ) and humidity ( �2 ) are negative which indicates that there 
is a negative relationship between these variables and the number of death due to 

(15)
fb(timei;�̂0, 3, 0) = 0.086 − 1.894 × timei − 0.929 × time2

i
− 1.118 × time3

i
.

�𝜇(Xi;
��) = 0.978 + 1.409 × timei + 3.809 × time2

i
+ 4.361 × time3

i

+ H(timei > b4)[3.733 × (timei − 65.6)3 + 3.289 × (timei − 130.2)3

+ 3.667 × (timei − 194.8)3 + 2.600 × (timei − 259.4)3]

− 0.032 × temperaturei − 0.003 × humidityi.

�̂(Xi; �̂) = exp(0.086 − 1.894 × timei − 0.929 × time2
i
− 1.118 × time3

i

− 0.008 × temperaturei − 0.004 × humidityi).

Table 6  The summary statistics of flexible regression models of �(X;�) and log(�(X; �) via B-spline 
smoothing function for the response variable log(number of death)

�(X;�) log (�(X; �))

� �̂
(
se(�̂)

)
t value P value � �̂

(
se(�̂)

)
t value P value

�
00

0.978 (0.485) 2.018 0.045 �
00

0.086 (1.073) 0.080 0.936
�
01

1.409 (0.332) 4.242 < 0.005 �
01

− 1.894 (0.794) − 2.387 0.018
�
02

3.809 (0.248) 15.334 < 0.005 �
02

− 0.929 (0.371) − 2.506 0.013
�
03

4.361 (0.268) 16.245 < 0.005 �
03

− 1.118 (0.444) − 2.521 0.012
�
04

3.733 (0.254) 14.678 < 0.005
�
05

3.289 (0.256) 12.867 < 0.005
�
06

3.667 (0.264) 13.886 < 0.005
�
07

2.600 (0.256) 10.142 < 0.005
�
1

− 0.032 (0.012) − 2.688 0.008 �
1

− 0.008 (0.028) − 0.291 0.771
�
2

− 0.003 (0.002) − 1.703 0.089 �
2

− 0.004 (0.005) − 0.777 0.438
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COVID-19. In addition, both regression co-efficients are not significant on the num-
ber of death due to COVID-19 at 5% level of significance. Based on these results, 
we obtain the estimated flexible regression model via B-spline smoothing function 
for E(Y|X) = �(X) − ��(X) , where � ≈ 0.577 is Euler- Mascheroni constant of con-
ditional Gumbel distribution. Hence, the estimated mean function for ith individual 
( ∀i = 1, 2,… , n ) can be written as

We also calculate the predicted values of response variable via fractional poly-
nomial and B-spline models. The graphical presentation of actual values and pre-
dicted values are depicted in Fig. 5.

We see the estimated curve via B-spline function is a smooth curve which is 
expected. On the other hand, the estimated curve via fractional polynomial func-
tion is not smooth. However, estimated both curves are very close.

�E(Yi|Xi) = �𝜇(Xi;
��) − 𝛾�𝜎(Xi;��)

= 0.978 + 1.409 × timei + 3.809 × time2
i
+ 4.361 × time3

i

+ H(timei > b4)[3.733 × (timei − 65.6)3 + 3.289 × (timei − 130.2)3

+ 3.667 × (timei − 194.8)3 + 2.600 × (timei − 259.4)3]

− 0.032 × temperaturei − 0.003 × humidityi

− 0.629 exp(−1.894 × timei − 0.929 × time2
i
− 1.118 × time3

i

− 0.008 × temperaturei − 0.004 × humidityi).
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Fig. 5  Fractional polynomial curve versus basis spline curve a number of death due to the Covid-19 ver-
sus days during the period August 03, 2020–January 31, 2021; b number of SARA-CoD-2 infected new 
cases for Covid-19 versus days during the period August 03, 2020–January 31, 2021
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4  Discussion and Conclusions

This study examined whether the temperature and humidity in the transmission of 
severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) affect humans’ 
respiratory system that causes Coronavirus disease (COVID-19). We relied on 
the daily count of the number of confirmed SARS-CoV-2 infected new cases and 
the total number of death due to COVID-19 per day from Institute of Epidemiol-
ogy Disease Control and Research (IEDCR), Dhaka, Bangladesh. A generalised 
additive model location scale and shape (GAMLSS) model is used to examine 
the effect of temperature and humidity on the number of confirmed SARS-CoV-2 
infected daily new cases and the total number of death due to COVID-19 sepa-
rately. Without adjusting the time effect in exploratory data analysis, we did not 
find the significant impact of temperature on both response variables.

To investigate the significant effects of temperature and humidity after adjust-
ing the time variable, we used the flexible GAMLSS model. The best response 
distribution is chosen based on the minimum BIC under the GAMLSS modeling 
framework. The Normal Exponential-t distribution for log(number of new cases) 
and Gumbel distribution for log(number of death) are selected. To estimate the 
systematic part of the GAMLSS model, we have employed two flexible predic-
tor models such as (i) fractional polynomial model and (ii) B-spline smoothing 
model. Both models suggested that high temperature and high humidity signifi-
cantly reduce the transmission of SARS-CoV-2. A fractional polynomial model 
indicates that high temperature and high humidity significantly reduce the num-
ber of deaths due to COVID-19. Many researches support these results (see, for 
example in [12]) but these are opposite of the findings of [25]. According to the 
fitted fractional polynomial model, for every 1 ◦ C increase in temperature, the 
number of deaths due to COVID-19 reduced by 8.9% (95% CI: 7.3%, 10.5%) and 
daily new cases reduced by 6.2% (95% CI: 4.6%, 7.8%); for every 1% increase 
in humidity, the number of deaths due to COVID-19 reduced by 1.5% (95% CI: 
1.2%, 1.8%) and daily new cases reduced by 0.8% (95% CI: 0.48%, 1.1%), hold-
ing all the other factors constant.

On the other hand, the B-spline model suggested that high temperature and 
high humidity minimise the number of death due to COVID-19, where the tem-
perature significantly affects. However, the humidity significantly affects the 
number of deaths at a 10% level of significance but not significantly affects at 
a 5% level of significant. Note that there are a number of reasons for getting the 
insignificant effect of the humidity in the B-Spline model. It might happen that 
the sample size ( n = 324 ) is not enough to find the significant humidity effect in 
the B-spline model. Moreover, the temperature and humidity are correlated. As 
the response variable is already well explained by the temperature and B-spline 
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function of the time variable, it is possible to get a high p value of the regression 
coefficient of humidity. According to the fitted B-spline model, for every 1◦C 
increase in temperature, the daily number of deaths due to COVID-19 reduced 
by 0.8% (95% CI: 7.9%, 9.5%) and the daily new cases reduced by 2.2% (95% 
CI: 0.03%, 4.4%); for every 1% increase in humidity the number of deaths due to 
COVID-19 reduced by 0.4% (95% CI: 1.2%, 1.9%) and daily new cases reduced 
by 0.3% (95% CI: 0.02%, 0.62%), holding all the other factors constant.

Although our analysis shows that the temperature and humidity will be affected 
by the transmission of SARS-CoV-2, we notice that the temperature and humidity 
alone do not explain most of the variability of the transmission of SARS-CoV-2 
infection. To find the actual behaviour and variability of transmission of SARS-
CoV-2 infection, we have to consider the temperature and humidity with other con-
founding factors such as population density, public health policies, public health 
intervention, social isolation campaigns, actual diagnosis, transportation system, 
people lifestyle, etc. in the computer-intensive statistical model.

Appendix

See the Tables 7, 8, 9 and 10.
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Table 7  Distribution of the 
response variable log(number of 
new cases) under the GAMLSS 
modelling framework

Bold values represent importance of related component and compare 
with other results

Distribution AIC BIC df

Beta 475.5216 520.8905 12
Box–Cox transformation 369.5741 411.1623 11
Box–Cox cole and green 648.6555 686.4629 10
Exponential 1845.012 1871.478 7
Exponential generalized beta type 2 346.9286 392.2975 12
Gamma 781.051 818.8591 10
Generalized beta Type 2 761.1340 806.5029 12
Generalized inverse Gaussian 1316.182 1353.990 10
Generalized gamma 731.2409 772.8290 11
Generalized t 304.0473 349.4163 12
Gumble 363.6858 401.4932 10
Inverse Gaussian 2103.315 2133.561 8
Johnson’s SU 318.6647 364.0336 12
Logarithmic 318.6647 364.0336 12
Lognormal 847.3616 885.1690 10
Log-normal (Box–Cox) 1485.072 1522.879 10
Normal 529.8718 567.6792 10
Normal family 351.9066 393.4947 11
Normal linear quadratic 1218.531 1256.338 10
Normal exponential t 305.7230 343.5305 10
Pareto type 2 1877.099 1907.345 8
Pareto type 2 original 4383.501 4406.186 6
Power exponential (type 1) 368.8753 410.4635 11
Power exponential (type 2) 369.5741 411.1623 11
Reverse Gumble 741.2917 779.0992 10
Skew power exponential type 1 349.2828 394.6517 12
Skew power exponential type 2 354.3330 399.7020 12
Skew power exponential type 3 350.9642 396.3331 12
Skew power exponential type 4 337.4964 382.8654 12
Shash 325.7598 371.1287 12
Shash original 342.5825 387.9514 12
Skew t type 1 310.3102 355.6792 12
Skew t type 2 314.6741 461.9935 10
Skew t type 3 316.4191 361.788 12
Skew t type 4 302.2429 347.6118 12
Skew t type 5 309.8542 458.0314 12
Weibull 960.9114 998.7188 10
Weibull (PH parameterization) 1225.135 1262.943 10
Weibull (mu as mean) 963.949 1001.756 10
Zero adjusted IG 2105.315 2139.342 9
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Table 8  Distribution of the 
response variable log(number 
of death) under the GAMLSS 
modelling framework

Bold values represent importance of related component and compare 
with other results

Distribution AIC BIC df

Box–Cox transformation 391.2810 436.6499 12
Box–Cox cole and green 445.7253 487.1573 11
Exponential 1278.677 1305.142 7
Exponential generalized beta type 2 224.2077 269.5766 12
Gamma 781.0517 818.8591 10
Generalized beta type 2 461.8899 507.2588 12
Generalized gamma 484.7071 526.2953 11
Generalized t 244.7373 290.1062 12
Gumbel 221.9905 259.7980 10
Inverse Gaussian 1425.243 1463.051 10
Johnson’s SU 222.2492 267.6181 12
Log-normal 847.3616 885.1690 10
Logit-normal 847.3616 885.1690 10
Logistic 246.0621 283.8695 10
Normal exponential t 244.4399 282.2473 10
Normal 269.5845 307.3920 10
Normal family 250.9953 292.5835 11
Normal linear quadratic 910.6652 942.8346 10
Pareto type 2 1310.657 1340.903 8
Pareto type 2 original 1311.364 1344.314 6
Power exponential 247.6591 289.2472 11
Power exponential (type 2) 247.6752 289.2634 11
Reverse Gumbel 377.6024 415.4098 10
Reverse generalized extreme 223.9409 265.5291 11
Skew power exponential type 1 229.1898 274.5587 12
Skew power exponential type 2 249.6290 294.9979 12
Skew power exponential type 3 228.4612 273.8301 12
Skew power exponential type 4 223.3892 268.7581 12
Shash 224.6456 270.0145 12
Skew t type 1 225.9048 271.2737 12
Skew t type 2 230.5579 275.9268 12
Skew t type 3 225.1310 270.4999 12
Skew t type 4 223.8488 269.2177 12
Skew t type 5 224.6678 270.0367 12
Weibull 607.6390 645.4465 10
Weibull (PH parameterization) 648.1237 685.9312 10
Weibull (mu as mean) 607.6391 645.4465 10
Zero adjusted inverse Gaussian 1427.243 1468.831 11
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Table 9  Goodness-of-fit 
statistics for selecting the 
best response distribution of 
log(number of new cases)

Bold values represent importance of related component and compare 
with other results

Distribution AIC BIC m df

Normal exponential t 308.373 346.181 3 10
430.145 460.391 2 8
839.973 862.658 1 6

Skew-t type 4 304.744 350.113 3 12
422.128 459.935 2 10
802.695 832.941 1 8

Generalized t 306.172 351.541 3 12
426.326 464.134 2 10
817.814 848.060 1 8

Skew-t type 1 312.875 358.244 3 12
422.449 460.257 2 10
817.572 847.818 1 8

Skew-t type 3 318.883 364.252 3 12
425.063 462.870 2 10
813.698 843.944 1 8

Table 10  Goodness-of-fit 
statistics for selecting the 
best response distribution of 
log(number of death)

Bold values represent importance of related component and compare 
with other results

Distribution AIC BIC m df

Gumbel 219.555 257.363 3 10
306.370 336.616 2 8
473.084 495.768 1 6

Reverse generalized extreme 221.531 263.119 3 11
305.942 339.968 2 9
471.106 497.572 1 7

Johnson’s SU 220.237 265.606 3 12
311.545 349.353 2 10
473.223 503.468 1 8

Exponential generalized beta type 2 222.236 267.605 3 12
309.918 347.725 2 10
480.896 511.142 1 8

Skew-t type 4 222.241 267.610 3 12
320.571 358.378 2 10
482.300 512.546 1 8
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