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Juglone has been extensively reported as a natural antitumor pigment. However, it is easy
to be oxidized due to active hydroxy in the quinone. Here, we designed some new juglone
derivatives, as the hydroxy was replaced by methyl (D1), allyl (D2), butyl (D3), and benzyl
(D4) groups. Nuclear magnetic resonance spectra andmass spectrometry were applied to
confirm the derivatives and oxidative products of juglone. U87 and U251 cell lines were
used for tests in vitro, and primary human glioblastoma cells were applied for in vivo
experiments. The CCK8 and EdU assay demonstrated the anti-tumor effect of the four
derivatives, and IC50 for U87 was 3.99, 3.28, 7.60, and 11.84 μM, respectively. In U251,
IC50 was 7.00, 5.43, 8.64, and 18.05 μM, respectively. D2 and D3 were further selected,
and flow cytometry showed that apoptosis rates were increased after D2 or D3 treatment
via ROS generation. Potential targets were predicted by network pharmacology analysis,
most of which were associated with apoptosis, cell cycle, and metabolism pathway.
CDC25B and DUSP1 were two of the most likely candidates for targets. The orthotopic
glioblastoma model was established to evaluate the anti-glioma effect and side-effect of
juglone derivatives, and the in vivo experiments confirmed the anti-glioma effects of juglone
derivatives. In conclusion, new derivatives of juglone were created via chemical group
substitution and could inhibit glioma cell viability and proliferation and induce apoptosis
rate via ROS generation.
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INTRODUCTION

Glioma is the most common primary malignant brain tumor, and glioblastoma (GBM) contributes
50–60% of them. Despite the advance in molecular research of GBM, the overall survival remains as
poor as 14.6 months even after comprehensive management (Stupp et al., 2005; Zhu et al., 2017).
Temozolomide (TMZ) was demonstrated as a first-line chemotherapeutic agent through DNA
alkylation by clinical trials, but GBM would resist TMZ when MGMT is unmethylated or when the
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tumor recurs (Newlands et al., 1997; Yung et al., 2000; Stupp et al.,
2001). Tumor treating fields (TTFields) also could partially
benefit GBM patients (Zhu et al., 2017). However, many
endeavors such as anti-VEGFA (Batchelor et al., 2014), anti-
EGFRvIII (Schuster et al., 2015), and anti-PDL1 (Berghoff et al.,
2015) all failed to meet the set goals. Therefore, there is still
urgency to develop new therapeutic approaches for GBM.

Juglone shows broad anti-cancer activity in traditional herbal
medicine (Sugie et al., 1998; Xu et al., 2012; Redaelli et al., 2015;
Zhang et al., 2015). It has been reported that juglone could exert
its anti-glioma effect for its fat-soluble characteristics in vitro and
in vivo in human GBM cells (Wu et al., 2017) and also in C6 rat
glioma cells (Meskelevicius et al., 2016). It is also cytotoxic to
human leukemia, cervical carcinoma, and pancreatic cancer cells
(Xu et al., 2012; Zhang et al., 2012; Avci et al., 2016). The potential
mechanism includes the activation of the apoptotic caspase
cascade and the accumulation of intracellular reactive oxygen
species (ROS) (Sajadimajd et al., 2016). Juglone is also taken as a
PIN-1 (peptidyl-prolyl cis/trans isomerase 1) inhibitor for
malignant solid tumors (Xu et al., 2016).

Although the anti-glioma effect was confirmed in our previous
report (Wu et al., 2017), there are still some concerning issues.
The preservation of juglone is difficult due to its instability and
susceptibility to oxidation, which could decrease the antitumor
effects. Hence, new derivatives of juglone are designed to increase
stability and lipophilicity, with the hydroxy-substituted by other
chemical scaffolds, such as methyl, allyl, butyl, and benzyl group.
The toxicity and potential mechanism of antitumor effects are
also explored in this study both in vitro and in vivo.

METHODS AND MATERIALS

Chemical Synthesis of New Juglone
Derivatives
New juglone derivatives (D1-D4) were prepared according to
literature procedures (Clive et al., 2004; Mitchell et al., 2013; Li
and Shen, 2020). Ag2O (117 mg, 0.5 mmol) and alkyl halide
(1.5 mmol) was added to the solution of juglone (174 mg,
1 mmol) in CH2Cl2 (5 mL). The reaction mixture was
stirred at room temperature for 24 h. After filtration
through celite and removal of the solvent in vacuo, the
residue was subjected to flash column chromatography on
silica gel (230–400 mesh) using n-hexane/ethyl acetate as
eluent to give the product D1-D4.

Identification of Derivatives With Nuclear
Magnetic Resonance Spectra andOxidative
Products With Mass Spectrometry
All reactions were carried out in oven-dried glassware under an
atmosphere of dry N2 with the rigid exclusion of air and moisture
using standard Schlenk techniques. Dichloromethane was freshly
distilled from CaH2 immediately before use. All other chemicals
were purchased from either J&K Chemical Co. or used as received
unless otherwise specified. 1H and 13C{1H} NMR (Nuclear
magnetic resonance) spectra were recorded on a Varian Inova

400 spectrometer at 400 and 100 MHz, respectively. All signals
were reported in ppm unit with references to the residual solvent
resonances of the deuterated solvents for proton and carbon
chemical shifts. Mass spectra were obtained on a Thermo
Finnigan MAT 95 XL spectrometer, Shanghai Institute of
Organic Chemistry, CAS.

Cells and Culture
GBM primary cells were isolated by specimens derived from patients
in Huashan Hospital with full consent after approval from the local
ethic committee. Themolecular pathology of the specimen for in vivo
experiment is IDH-wildtype, MGMT unmethylation, and TP53
mutation. U251 and U87 were purchased from China Academia
Sinica Cell Repository (Shanghai, China). Primary GBM cells and
glioma cell lines were cultured in Dulbecco’s modified Eagle’s
Medium (DMEM; HyClone, Logan, UT, United States)
supplemented with 10% fetal bovine serum (FBS; Gibco BRL,
Gaithersburg, MD, United States). Cell cultures were maintained
in a 5% CO2 humidified incubator at 37°C.

Isolation and Culture of GBM Cells
GBM specimen was placed in ice and transferred to the lab
within 1 h after surgical resection. The specimen was washed
with PBS to remove the blood and necrotic tissue. Then the
minced GBM tissue by a surgical knife blade was digested with
0.25% trypsin in the falcon tube at 37°C for 15 min and shaken
every 5 min. The tissues were triturated into single cells by a
5 ml pipette and a 40 μm filter was used to remove tissue
debris. Single cells were centrifuged and resuspended with 1 ml
RBC lysis buffer at room temperature for 5 min. At last, GBM
cells were resuspended and cultured in DMEM with 10% FBS.
For subculture, cells were passaged once they reached
80–90% confluence. An intracranial implantation experiment
was performed on cells within passages two and five to
minimize genetic mutation.

Cell Viability and Proliferation Assays
Juglone (Sigma, America) and derivatives were dissolved in
dimethyl sulfoxide (DMSO) and diluted in DMEM. Cell
viability was assessed by the Cell Counting Kit-8 assay (CCK-
8, Dojindo, Japan). Briefly, tumor cells that were cultured in
DMEMwith 10% FBS were seeded in 96-well plates at a density of
1×104 cells/100ul/well and incubated overnight. Tumor cells were
pretreated with and without NAC (2 mM, Beyotime, China) for
1 h. After treatment of juglone or its derivatives in different
concentrations for 48 h, cells were incubated for 1 h with 10 μl
CCK-8 per well. The optical density (OD) was measured at
450 nm with a microplate spectrophotometer (Bio-Rad,
United States). Proliferation was examined using the EdU
incorporation (Ribobio, China) assay, which was performed
according to the manufacturer’s protocol, and the cells were
examined under a fluorescence microscope. The experiment
was triplicated, and each contained six replicates.

Flow Cytometric Analysis of Apoptosis
For apoptosis assay, glioma cells were treated with two kinds of
juglone derivatives for 48 h, 1×105 cells were harvested,
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resuspended in 100 µl binding buffer, and incubated with 5 µl
Annexin V-FITC, 10 µl of PI (BD, San Joe CA) in darkness at
room temperature for 15 min. After that, 400 µl of binding
buffer was added before being tested on a FACS Calibur
cytometer (BD, San Joe CA). FlowJo software (Tree Star,
Ashland OR) was used to analyze the data. The experiments
were triplicated.

Measurement of Reactive Oxygen Species
(ROS) Generation
DCFDA fluorescent assay (Sigma Aldrich, United States) was
used to label intracellular reactive oxygen species (ROS) and
then detected with flow cytometry. Briefly, 5×105 cells were
pretreated with different concentrations of juglone derivatives
for 6 h and then loaded with DCFDA (10 μM) probe. After
incubation at 37°C for 30 min, cells were harvested, washed,
resuspended with PBS, and fluorescence intensity was measured
by flow cytometry. FlowJo software was used to analyze the
mean fluorescence intensity (MFI). The experiments were
repeated three times.

Network Pharmacology Construction and
Target Prediction
The potential targets of juglone (SMILES: C1 = CC2 = C(C(=O)
C=CC2 = O)C (=C1)O) were obtained from SwissTargetPrediction
(http://swisstargetprediction.ch/). The top 100 genes were selected
for the construction of a protein-protein interaction (PPI) network
(https://string-db.org/). The TSV format file was downloaded from
string and imported into Cytoscape software (version 3.8.0) for
visualization. Molecular docking was performed using UCSF
Chimera (Pettersen et al., 2004). The structure data of CDC25B
and DUSP1 for docking were obtained from alpha fold (https://
alphafold.com/) (Jumper et al., 2021; Varadi et al., 2022).

Western Blot Assay
After treating with different concentrations of juglone derivatives for
48 h, total protein of glioma cell lines of U87 and U251 were
obtained from RIPA lysis buffer with 1% PMSF (Beyotime,
China). The protein concentration was determined by BCA assay
(Beyotime, China), and samples were separated on 10% SDS-PAGE,
and then transferred onto NC membranes (0.45 μm, Millipore,

FIGURE 1 | Juglone was oxidized in a time-dependent manner. (A) A dark brown color change of juglone occurred in a time-dependent manner. (B) The maximum
absorbance wavelength widened as juglone was oxidized. (C) The cytotoxic effects of juglone decreased dramatically after being oxidation. (D) Mass spectrometry
revealed several unknown oxidation products of juglone.

Frontiers in Pharmacology | www.frontiersin.org June 2022 | Volume 13 | Article 9117603

Zhang et al. Juglone Derivatives Inhibit Glioma Proliferation

http://swisstargetprediction.ch/
https://string-db.org/
https://alphafold.com/
https://alphafold.com/
https://www.frontiersin.org/journals/pharmacology
www.frontiersin.org
https://www.frontiersin.org/journals/pharmacology#articles


United States). The membranes were incubated with primary Abs
against cleaved-PARP (1:1000, Cell Signaling Technology, China)
and β-actin (1:10000, Cell Signaling Technology, China) overnight at
4°C, followed by HRP conjugated secondary Ab (1:3000, Cell
Signaling Technology, China). The protein bands were visualized
using enhanced chemiluminescence (ECL, Millipore, United States)
and a detection system (ChemiDoc Touch, Bio-Rad)

Cytotoxicity of Juglone Derivatives on
Glioma Cells In Vivo
All animal procedures were conducted according to protocols
approved by the Institutional Animal Care and Use Committee at
Fudan University.

Female BALB/c-nu mice (3–4 weeks old) provided by SLAC
Laboratory Animal Company (Shanghai, China) were used as

FIGURE 2 | Chemical synthesis of juglone derivatives and identification with NMR spectra. (A) Chemical synthesis process of juglone derivatives. (B)(D)(F)(H)
Identification of juglone derivatives with 1H NMR spectra (D1, D2, D3, D4 respectively). (C)(E)(G)(I) Identification of juglone derivatives with 13C{1H} NMR spectra (D1,
D2, D3, D4 respectively).
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orthotopic xenograft recipients. Mice were housed in an
environment with a 12-h light/dark cycle. At least 1 week time
was provided for mice to acclimatize new environment
before experimentation. Human primary GBM cells were
labeled with lentivirus expressing luciferase. Before intracranial
transplantation, cells were digested into single cells and
suspended with PBS at a density of 1×105 cells/μL. Mice were
anesthetized intraperitoneally with 10% chloral hydrate and
secured into a stereotaxic apparatus. GBM cells in 10 uL PBS
via a Hamilton syringe were injected into the right forebrain
(2.5 mm lateral and 1 mm anterior to bregma, at a 2.5 mm depth
from the skull surface). The mice were randomly divided into
three groups (control group, D2, and D3 treatment group). The
number in each group was five. D2 and D3 were dissolved in

DMSO and diluted in PBS; the final concentration of DMSO was
20 mg/ml. PBS containing the same concentration of DMSO was
used as vehicle control. Juglone derivatives treatment group was
injected intraperitoneally with D2 and D3 (1 mg/kg) every 2 days,
which was the same as the previous dosage. Bioluminescent
imaging was performed on the twenty-eighth day after
transplantation with IVIS-200 (Xenogen, United States) to test
the tumor volume. Before anesthesia, D-luciferin (Yeason, China)
was injected intraperitoneally at 150 mg/kg body weight. Images
of different groups were captured with the same parameters.
Bioluminescence values of intracranial tumors were quantitated
using the Living Image software. Mice were euthanized when
neurological symptoms appeared and perfused with 4%
paraformaldehyde in PBS.

FIGURE 3 | Juglone derivatives could exert a cytotoxic effect against glioma cells. (A-B) CCK-8 assay showed D1, D2, and D3 could inhibit cell viability of U87 and
U251 cell lines. (C-D) Edu assay revealed D2 and D3 could inhibit the proliferation of U87 and U251 cell lines. *p<0.05, **p<0.01, ***p<0.001.
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Hematoxylin and Eosin Staining
The whole brain, heart, liver, and kidney of each mouse were
collected. Fixation with 4% paraformaldehyde in PBS,
dehydration with gradient ethanol, embedded in paraffin,
and section cut in 5 μm thickness were performed. The
sections were stained with hematoxylin and eosin (H&E).
Cell morphology of different tissue was observed under a
light microscope.

Statistical Analysis
All quantified data were presented as mean ± SEM. For
comparison between the two groups, two-tailed student’s
t-tests were used to calculate p values. A p value < 0.05 was
considered statistically significant.

RESULTS

Juglone Was Gradually Oxidized in a
Time-Dependent Manner
The phenomenon that juglone is easy to be oxidated has
previously been observed. Juglone solution took on dark
brown color changes in a time-dependent manner when
preserved at 4°C in an EP tube (Figure 1A). The maximum
absorbance wavelength of the samples changed, which indicated
several compounds existed after oxidation (Figure 1B). The
cytotoxicity of juglone oxidation products was assessed by
using the CCK-8 assay. Interestingly, juglone oxidation
products had pro-tumor effects in low concentrations and
antitumor effects in high concentrations. The cytotoxic effects

TABLE 1 | Brief summary of juglone and derivatives.

Names Molecular structures Properties Molecular weights IC50(μM)

U87 U251

Juglone Brown solid 174 27.44 32.04

Juglone-D1 Yellow solid 188 3.99 7.00

Juglone-D2 Yellow solid 230 3.28 5.43

Juglone-D3 Brown oil 214 7.60 8.64

Juglone-D4 Orange solid 264 11.84 18.05
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of juglone were decreased dramatically in the same concentration
after oxidation (Figure 1C). To figure out what the oxidation
product was, we tested the solutions of juglone in fresh, 1 day, and

1 week after dissolution by using mass spectrometry
(Supplementary Material S1). The peak of juglone could be
detected in fresh solution (Molecular Weight: 174kD), while

FIGURE 4 | Juglone had a broad spectrum of potential targets. (A) The predicted targets of juglone via SwissTargetPrediction. (B) KEGG pathway enrichment
analysis of the predicted targets of juglone. (C) Topological network of juglone targets. Colors of genes are coded for different pathways (apoptosis, cell-cycle,
metabolism, epigenomics, immune, and other pathways). (D)Molecular docking of juglone with CDC25B. The blue and red ribbons represent the juglone and CDC25B,
respectively. The blue and orange dots represent the hydrophilic and hydrophobic amino acids, respectively. (E)Molecular docking of juglone with CDC25B. The
blue and yellow ribbons represent the juglone and DUSP1, respectively. The blue and orange dots represent the hydrophilic and hydrophobic amino acids, respectively.
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TABLE 2 | Juglone targets from SwissTargetPrediction.

Target Gene
symbol

Uniprot id Target class Go annotation Probability

Indoleamine 2,3-dioxygenase IDO1 P14902 Enzyme Tryptophan catabolic process to kynurenine 0.739,304
Regulation of activated T cell proliferation

Dual specificity phosphatase Cdc25B CDC25B P30305 Phosphatase G2/M transition of mitotic cell cycle 0.739,304
Protein phosphorylation

Dual specificity protein phosphatase 1 (by homology) DUSP1 P28562 Enzyme Cell cycle 0.221,211
Cellular response to chemokine

Histone acetyltransferase p300 EP300 Q09472 Writer Histone acetylation 0.159,648
Apoptotic process

Dual specificity mitogen-activated protein kinase kinase 1 MAP2K1 Q02750 Kinase MAPK cascade 0.08057
Cell motility

Monoamine oxidase B MAOB P27338 Oxidoreductase Dopamine catabolic process 0.08057
Serine/threonine-protein kinase/endoribonuclease IRE1 ERN1 O75460 Enzyme mRNA cleavage 0.071787

Protein phosphorylation
Monoamine oxidase A MAOA P21397 Oxidoreductase Dopamine catabolic process 0.071787

Cellular biogenic amine metabolic process
Beta-secretase 1 BACE1 P56817 Protease Positive regulation of neuron apoptotic

process
0.071787

Amyloid-beta formation
Hematopoietic cell protein-tyrosine phosphatase
70Z-PEP

PTPN22 Q9Y2R2 Phosphatase Lipid metabolic process 0.071787
Autophagy

Leukocyte common antigen PTPRC P08575 Enzyme Protein dephosphorylation 0.071787
T cell activation

Serine/threonine-protein kinase PIM1 PIM1 P11309 Kinase Apoptotic process 0.071787
Protein phosphorylation

Glutathione reductase GSR P00390 Oxidoreductase Cell redox homeostasis 0.071787
Glutathione metabolic process

FIGURE 5 | Juglone derivatives could induce apoptosis of glioma cells. (A) Flow cytometry detection showed D2 and D3 induced glioma cell apoptosis.
(B) Western blot assay showed the expression level of cleaved-PARP was increased after D2 or D3 treatment on U87 and U251 cells.
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many unknown compounds could be found, and juglone itself
decreased obviously after oxidation (Figure 1D).

Juglone Derivatives Were Synthesized in
the Chemical Method
The chemical protocol of synthesizing the target compounds is
shown in Figure 2A. Compounds D1-D4 showed the
characteristic peaks in 1H NMR spectra at corresponsive ppm
respectively. 5-Methoxy-1,4-naphthoquinone (D1): Yellow solid.
Yield: 84%. 1H NMR (400 MHz, CDCl3): δ 7.70 (m, 2H), 7.31 (d,
J = 8.4 Hz, 1H), 6.86 (m, 2H), 4.00 (s, 3H). These data are identical
with those reported in the literature (Mitchell et al., 2013)
(Figure 2B, Figure 2C). 5-Allyloxy-1,4-naphthoquinone (D2):
Yellow solid. Yield: 82%. 1H NMR (400 MHz, CDCl3): δ 7.73 (d,
J = 7.6 Hz, 1H), 7.65 (t, J = 8.4 Hz, 1H), 7.29 (d, J = 8.4 Hz, 1H),
6.87 (m, 2H), 6.10 (m, 1H), 5.66 (d, J = 17.6 Hz, 1H), 5.37 (d, J =
10.4 Hz, 1H), 4.73 (m, 2H). These data are identical with those
reported in the literature (Clive et al., 2004) (Figure 2D,
Figure 2E). 5-Buthoxy-1,4-naphthoquinone (D3): Brown oil.
Yield: 81%. 1H NMR (400 MHz, CDCl3): δ 7.70 (d, J = 7.2 Hz,
1H), 7.65 (t, J = 8.0 Hz, 1H), 7.29 (d, J = 8.4 Hz, 1H), 6.85 (m, 2H),
4.14 (t, J = 6.4 Hz, 2H), 1.89 (m, 2H), 1.60 (m, 2H), 1.01 (t, J = 7.6
Hz, 3H). 13C{1H} NMR (100 MHz, CDCl3): δ 185.2, 184.0, 159.1,
140.7, 135.9, 134.7, 133.8, 119.6, 118.8, 118.7, 69.0, 31.0, 19.0,

13.7. HRMS (EI) Calcd for C14H15O3
+ (M + H+): 231.1016.

Found: 231.1019 (Figure 2F, Figure 2G). 5-Benzyloxy-1,4-
naphthoquinone (D4): Orange solid. Yield: 86%. 1H NMR
(400 MHz, CDCl3): δ 7.74 (d, J = 7.6 Hz, 1H), 7.65 (t, J = 8.4
Hz, 1H), 7.58 (d, J = 7.6 Hz, 2H), 7.42 (t, J = 8.4 Hz, 2H), 7.34 (d,
J = 8.4 Hz, 2H), 6.89 (s, 2H), 5.30 (s, 2H). These data are identical
with those reported (Li and Shen, 2020) (Figure 2H, Figure 2I).
The purity of compounds (>95%) was measured with GC-MS
(Supplementary Material S2).

New Derivatives of Juglone Could Exert a
Cytotoxic Effect Against Gliomas In Vitro
Cell viability of U87 and U251 were evaluated by CCK-8 assay
after treatment with four juglone derivatives for 48 h. As
shown in Figure 3A and Figure 3B, D1, D2, and D3 could
dramatically decrease the viability of glioma cells. IC50 of four
kinds of derivatives for U87 were 3.99, 3.28, 7.60, and
11.84 μM, respectively. In the U251 cell line, IC50 were
7.00, 5.43, 8.64, and 18.05 μM, respectively (Table 1). D2
and D3, which had better cytotoxicity and lipid-solubility,
were chosen for further experiments. EdU assay was used to
evaluate the D2 and D3 effects on glioma cell proliferation. As
shown in Figures 3C,D, both D2 and D3 could attenuate cell
proliferation in a dose-dependent manner.

FIGURE 6 | The cytotoxic effect of juglone derivatives is dependent on ROS generation. (A) The ROS generation was increased after treatment of D2 and D3.
(B) NAC, a ROS scavenger, could reverse the cytotoxic effect of ROS. *p<0.05, **p<0.01, ***p<0.001, ****p<0.0001.
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Juglone Had a Broad Spectrum of Potential
Targets
To further reveal the underlying mechanism of anti-glioma
effects, a pharmaceutical network was established among the
predicted targets of juglone. SwissTargetPrediction showed
juglone had a broad spectrum of potential targets, most of
which are enzymes (25.0%), protease (15.0%), and kinase
(13.0%, Figure 4A). KEGG analysis showed apoptosis pathway
can be most significantly enriched (Figure 4B). Apart from
apoptosis, the protein-protein interaction (PPI) network
indicated that juglone could affect biological processes such as
cell cycle, metabolism, immune reaction, and epigenomic status
to a large extent (Figure 4C). CDC25B and DUSP1 were the two
most likely candidates of juglone targets (Table 2), which were
reported to be associated with apoptosis (Miyata et al., 2001;

Robitaille et al., 2017). Molecular docking further provided
interaction details between juglone and these two targets.
Figure 4D showed juglone could insert into the pocket of
CDC25B and interact with L477 and R479. In the meantime,
juglone could protrude into a hydrophobic pocket of DUSP1, and
the aromatic ring of juglone could interact with the hydrophobic
residues of DUSP1 (A33 and F287) via hydrophobicity
(Figure 4E).

Juglone Derivatives Could Induce
Apoptosis of Gliomas In Vitro
To further validate the effect of juglone derivatives on apoptosis,
U87 and U251 cells were stained with Annexin V/PI after
treatment of D2 (2 μM, 6 μM) and D3 (5 μM, 10 μM). Flow

FIGURE 7 | Juglone derivatives could inhibit glioma growth in vivo. (A) Tumor growth was evaluated by detection of bioluminescence, and revealed D2 and D3
inhibit glioma growth in orthotopic glioblastoma mouse model. (B) H and E staining of brain sections confirmed the glioma inhibition effect of D2 and D3. Scale bar =
2 mm. (C-D) Luminescence values and tumor volume were measured. (E) Kaplan-Meier analysis revealed increased survival of D2 and D3 group relative to controls.
**p<0.01, ***p<0.001, ****p<0.0001.
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cytometry analysis showed that D2 and D3 could induce
apoptosis and increase the percentage of Annexin V+/PI +
cells both in U87 and U251 groups (Figure 5A). To
substantiate these phenomena, the expression of cleaved-PARP
was evaluated by western blot. As shown, cleaved-PARP was up-
regulated after treatment of D2 and D3 in a dose-dependent
manner, which indicated these derivatives could induce apoptosis
in gliomas (Figure 5B).

The Cytotoxic Effect Is Dependent on ROS
Generation
As reported in our previous work, juglone could induce ROS
generation via p38-MAPK pathway activation. In this study, ROS
production was also measured with a ROS assay kit by flow
cytometry. As demonstrated, D2 and D3 could significantly
induce ROS generation in U87 and U251 cells (Figure 6A). In
addition, NAC, a ROS scavenger, reversed the cytotoxic effect,
indicating the involvement of ROS generation in the anti-glioma
effect of D2 and D3 (Figure 6B).

New Juglone Derivatives Could Exert a
Cytotoxic Effect Against Gliomas In Vivo
To investigate whether D2 and D3 could effectively inhibit
glioma in vivo, the orthotopic glioblastoma model was first
established (n = 15) and then assigned to the following groups
randomly: control (n = 5), D2 (n = 5), D3 (n = 5). Three days
after brain implantation of human primary glioma cells
infected with lentivirus expressing luciferase into nude
mice, vehicle, D2 (1 mg/kg) or D3 (1 mg/kg) were
administrated intraperitoneally every other day. Both D2
and D3 had an inhibitory effect on glioma growth
confirmed with in vivo imaging systems 28 days later after
tumor transplantation (Figures 7A,B). HE staining showed
that both D2 and D3 could inhibit tumor growth (Figures
7B,D), and no obvious histological harm to the heart and
kidney could be observed in the group D2 and D3 compared to
the vehicle group. However, there was partial necrosis of liver
cells in the D2 and D3 groups (Supplementary Material S5).
Kaplan–Meier analysis of survival data demonstrated a
statistical difference between the control and the D2 or D3
group (Figure 7E).

DISCUSSION

Juglone has been widely used in traditional medicine for
centuries. Recently, the antitumor property of juglone are
reported in many human cancer such as pancreatic cancer
(Avci et al., 2016), ovarian cancer (Fang et al., 2015), lung
cancer (Zhang et al., 2015), colon cancer (Bayram et al., 2019),
and cervical cancer (Lu et al., 2017). Our previous work also
demonstrated that juglone could inhibit the proliferation of
glioma cells with an IC50 value of 40 μM via the reactive
oxygen species (ROS) generation mechanism (Wu et al.,
2017). Many researchers had studied the anti-glioma effect of

juglone before. The EC50 of juglone on rat C6 cells was estimated
to be 10.4 ± 1.6 μM (Meskelevicius et al., 2016). Wang et al.
investigated the anticancer effect on human U251 cells, and the
IC50 in this study was about 50 μM. All these studies showed that
only a high concentration of juglone could exert effective
cytotoxicity.

It is well-documented that the capability of a substance to
penetrate the blood–brain barrier (BBB) into brain parenchyma
depends on the biological features and the physicochemical
properties of the compound such as molecular weight,
hydrogen bonding capacity, and lipophilicity. And the unstable
property or the poor BBB penetrating power of juglone hinders its
effective use in clinical brain tumor therapy. It is indispensable to
block potential oxidation susceptibility to preserve bioactivities.
In general, adding halogen or alkyl chemical group could increase
the lipophilicity of molecules, facilitating drug active substances
crossing the BBB, and entering the central nervous system.

In the current study, we utilize a chemical modification
method to substitute the hydroxyl with alkyl, synthesizing
different derivatives of juglone, which could increase molecular
lipophilicity and better oxidation resistance. We observe the
IC50 values of four kinds of derivatives in U87 are 3.99 μM
(D1), 3.28 μM (D2), 7.60 μM (D3), and 11.84 μM (D4),
compared with 40 μM of juglone in our previous study (Wu
et al., 2017). EdU and apoptosis assay reveal new derivatives
with allyl (D2) or butyl (D3) substitution of juglone could
inhibit proliferation and promote apoptosis of glioma cells
effectively via the ROS-based pathway. Mice are given an
intraperitoneal injection of D2 and D3 at a dose of 1 mg/kg.
The dose selection of these two derivatives is based on juglone
used in our previous research, as the intraperitoneal median
lethal dose is 25 mg/kg according to the manufacturer’s
instructions of juglone (Wu et al., 2017). In vivo experiment
also confirms the anti-glioma effect of D2 and D3 with low
cardio-nephrotoxicity. However, hepatotoxicity remains, which
needs to be improved in a future experiments. In conclusion,
our present study demonstrates that juglone derivatives could
exert stronger growth-inhibitory and cytotoxic effects on
glioma cells after being modified with an allyl or butyl
chemical group substitution.

It is reported that ROS has a dual role in tumor cell
progression, as excessive generation of ROS and imbalance
of redox reaction results in cell death while moderate increase
promotes cell proliferation (Trachootham et al., 2008; Zou
et al., 2015). In general, low/physiological concentrations of
ROS, like vitamin C, acts as a signal to promote cell survival
and prevent DNA injury (Subramani et al., 2014;
Velauthapillai et al., 2017). The same phenomenon is also
found in our research that juglone at low concentration could
promote glioma cell growth, whereas exert anti-glioma effect
at high concentration. Hence, ROS-based pathways are well-
known mediators in the intracellular signaling cascade, which
is also investigated most in the juglone-induced antitumor
effect. Marco et al. investigated the voltammetric pattern and
confirmed a redox mechanism underlies juglone-induced
biological activity in GLI36 human glioma cells (Redaelli
et al., 2015). Kastytis etc. revealed that juglone could
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generate ROS by interacting with mitochondrial respiration in
mouse C6 glioma cells (Sidlauskas et al., 2017). It has been
proved that excessive levels of ROS production could induce
DNA damage, growth arrest, apoptosis, and cell death
(Martindale and Holbrook, 2002). Our previous study
revealed that juglone could generate a high level of ROS
and activate the p38-MAPK pathway, inducing tumor cell
apoptosis (Wu et al., 2017). In our current work, we
confirm the activation of the p38-MAPK pathway via ROS
generation is still involved after chemical group modification
of juglone. And exogenous antioxidant NAC could diminish
the amount of ROS generation of juglone derivatives.

The future drug of these new juglone derivatives surely needs
further clinical validation. These novel chemical reagents would
be good candidates, especially for those MGMT unmethylated
gliomas or recurrent gliomas.
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