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HMG-CoA reductase or HMGCR (3-hydroxy-3-methylglutaryl-CoA reductase) is a rate-limiting enzyme involved in cholesterol
biosynthesis. HMGCR plays an important role in the possible occurrence of hypercholesterolemia leading to atherosclerosis and
coronary heart disease. This enzyme is a major target for cholesterol-lowering drugs such as “statin” which blocks the synthesis of
mevalonate, a precursor for cholesterol biosynthesis. This study is aimed at characterizing deleterious mutations and classifying
functional single nucleotide polymorphisms (SNPs) of the HMGCR gene through analysis of functional and structural evaluation,
domain association, solvent accessibility, and energy minimization studies. The functional and characterization tools such as SIFT,
PolyPhen, SNPs and GO, Panther, I-Mutant, and Pfam along with programming were employed to explore all the available SNPs
in the HMGCR gene in the database. Among 6815 SNP entries from different databases, approximately 388 SNPs were found to be
missense. Analysis showed that seven missense SNPs are more likely to have deleterious effects. A tertiary model of the mutant
protein was constructed to determine the functional and structural effects of the HMGCR mutation. In addition, the location of the
mutations suggests that they may have deleterious effects because most of the mutations are residing in the functional domain of
the protein. The findings from the analysis predicted that rs147043821 and rs193026499 missense SNPs could cause significant
structural and functional instability in the mutated proteins of the HMGCR gene. The findings of the current study will likely be
useful in future efforts to uncover the mechanism and cause of hypercholesterolemia. In addition, the identified SNPs of HMGCR
gene could set up a strong foundation for further therapeutic discovery.

1. Introduction

Hypercholesterolemia, or elevated blood cholesterol levels, is a
condition associated with an increased risk of atherosclerosis
and coronary heart disease [1]. These cardiovascular diseases
are the result of elevated serum non-high-density lipoprotein
cholesterol (non-HDLC) levels. The variations in non-HDL
cholesterol among individuals are a result of disparities among

the genes involved in the biosynthesis of cholesterol as well as
environmental factors such as diet and lifestyle [2–4]. Choles-
terol is one of the three major classes of lipids; the complex
procedure of cholesterol biosynthesis is essential for all animal
life. The process of cholesterol biosynthesis begins with the
mevalonate pathway, and the rate-limiting enzyme of this
pathway is called 3-hydroxy-3-methyl-glutaryl-coenzyme A
reductase (HMG-CoA reductase or HMGCR) [5, 6].
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HMGCR is regulated via a negative feedback mecha-
nism mediated by sterols and nonsterol metabolites
derived from mevalonate. Normally, cholesterol produced
from the internalization and degradation of low-density
lipoprotein (LDL) via the LDL receptor suppresses the
activity of this enzyme in mammalian cells. The expres-
sion of LDL receptors in the liver is induced by compet-
itive inhibitors of the reductase, which in turn upsurges
the catabolism of plasma LDL and lessens the plasma
concentration of cholesterol, an important factor of ath-
erosclerosis [7–11]. Thus, HMGCR serves as a target for
the cholesterol-lowering drug, statin. Statins are a class
of drugs that act as competitive inhibitors of the enzyme.
The inhibition of the enzyme by the drug reduces the
rate by which HMGCR can produce mevalonate, the next
molecule in the cascade that eventually produces choles-
terol. This is significant because most circulating cholesterol
comes from internal manufacture rather than a diet. When
the liver can no longer produce cholesterol, the liver cells begin
to express LDL receptors on their surface, which bind LDL cho-
lesterol particles and internalize them and the levels of choles-
terol in the blood will fall [12]. Despite the fact that statin
medicines are effective at decreasing cholesterol, the patient’s
response to them varies greatly among individuals [13, 14]. Sev-
eral pharmacogenetics investigations and genome-wide associa-
tion studies (GWAS) have revealed genetic variants in genes
involved in cholesterol homeostasis as a significant contributor
of the diversity in statin response reported among patients
[15–17]. These studies have shown that the SNPs (single nucle-
otide polymorphisms) are related to not only the therapeutic
effect of statin but also blood lipid level, consequently the risk
of developing cardiovascular disease [18–20].

Functional genomics and mutational analysis with the
advancement of bioinformatics tools have already provided
the key advances in disease diagnosis, prognosis, and
therapeutic efficacy [21–35]. The mutational effect upon the
protein structure and disease prognosis has been identified
by the in silico techniques which further could be validated
by the wet lab research [36–42]. However, the in silico analysis
of coding SNPs of the HMGCR gene is still yet to be explored
to observe the mutational effect. Among which missense cod-
ing SNPs are thought to have the principal impact on pheno-
type and may exert deleterious effects on the structure,
function, solubility, or stability of proteins. Hence, this inves-
tigation is aimed at characterizing the deleterious mutations
of HMGCR gene. Our study involved the following: (a)
retrieval of SNPs in the HMGCR gene from available data-
bases, (b) detecting deleterious missense SNPs that can change
splicing and gene expression patterns using sequence- and
structure-based homology search, (c) predicting the precise
effects of the substitutions of amino acids on secondary struc-
tures via solvent accessibility and stability of the structure, and
(d) prediction of change in the domain constructions due to
the mutations. This study is the first extensive in silico analysis
of the HMCGR gene and expected to establish a strong foun-
dation for structure-function relationship of the enzyme and
population-specific variation studies in years to come. Further,
it might explore the specific mutation-based drug discovery
against hypercholesterolemia.

2. Materials and Methods

2.1. Retrieval of SNP Datasets. SNP of the HMGCR gene and
their protein sequences (FASTA format) were retrieved from
the dbSNP database (http://www.ncbi.nlm.nih.gov/SNP/)
for computational analysis. Various filters were used for
the selection of SNPs related to HMGCR, such as missense,
inframe deletion, inframe insertion, initiator codon variant,
and synonymous.

2.2. Analysis of Functional Consequences of Missense SNPs.
Sorting Intolerant from Tolerant (SIFT) [43] is an algorithm
that predicts the potential impact of amino acid substitu-
tions on protein function. This program assumes that evolu-
tionarily conserved regions tend to be less tolerant of
mutations, and hence, amino acid substitutions or inser-
tions/deletions in these regions are more likely to affect func-
tion [43]. SIFT considers the composition of amino acids
and calculates the score after searching a query protein
against a protein database to obtain homologous protein
sequences. All the retrieved mutations were submitted to
this tool. A SIFT score ranges from 0 to 1; it is a standardized
probability of perceiving the new amino acid at that posi-
tion. It also calculates the tolerance index (TI) of a particular
amino acid substitution. SIFT score is classified as tolerant
(ranging from 0.201 to 1.00) or intolerant (0.051–0.10) and
borderline (0.101–0.20). Hence, an SNP’s functional conse-
quence is inversely proportional to the tolerance index (TI)
[44]. In this study, the reference SNP cluster identification
(rsID) of each SNP of human HMGCR gene obtained from
NCBI was submitted as a query sequence to SIFT for homol-
ogy searching. The SIFT score of ≤0.05 indicates the delete-
rious effect of missense variants on protein function.

2.3. Functional Consequences of Missense SNPs by Structural
Homology. To comprehend the functional significance of a
protein, it is essential to scrutinize the damaged coding mis-
sense SNPs at the structural level. Polymorphism
Phenotyping-2 or PolyPhen-2 [45] is an automatic tool for
the prediction of the possible impact of an amino acid sub-
stitution on the structure and function of a human protein.
To understand the functional consequence, the protein
sequence of our gene along with mutational position and
two amino acid variants was submitted as the query. The
PolyPhen-2 calculates the posterior probability that a mis-
sense SNP is damaging by a Bayesian classifier [46]. The
conservation of a position in the MSA and the deleterious
effect on the protein structure results in the Position-
Specific Independent Count (PSIC) score that ranges from
0 to 1 [45]. The categorization of the missense SNPs results
in possibly damaging and probably damaging (PSIC > 0:5)
or benign (PSIC < 0:5). PolyPhen-2 predicts the possible
functional impact of the SNPs on structure based on the dif-
ference of the PSIC score.

2.4. Characterization of Functional Missense SNPs. SNP&GO
(Gene Ontology) [47, 48] was used for the characterization
of functional missense SNPs. The impact of protein varia-
tions was predicted via the SNP&GO algorithms, using func-
tional information categorized by GO terms of the three
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main roots: molecular function, biological process, and cel-
lular component. The selected SNPs were submitted into
this tool to determine the functional insights. The sequence
profile is then calculated by performing one run of BLAST
against the UniRef90 dataset to select homologous sequences
with an E value lower than 10-9. The algorithm uses a sup-
port vector machine (SVM) based analyzing method, which
includes the sequence environment of the variation and a
log-odd score calculated considering all the Gene Ontology
terms connected to the mutated protein and their parents
in the GO graph. A probability score higher than 0.5 reveals
the disease-related effect of mutation on the protein func-
tion [48].

PANTHER cSNP (Protein ANalysis Through Evolution-
ary Relationship coding_SNP), the most popular online pro-
tein fold identification server, calculates the likelihood of a
single AA change on protein function, and it is based on
the PANTHER-PSEP (Position_Specific Evolutionary Pres-
ervation) method [49]. PMUT is based on the use of differ-
ent kinds of sequence information to label mutations and
neural networks to process this information. FASTA
sequence was inputted, and result was based on the differ-
ences among disease related and neutral variations of pro-
tein sequence. Probability score higher than 0.5 reveals the
disease-related effect of mutation on the protein function
[50]. MutPred2 is a machine learning-based method and
software package that integrates genetic and molecular data
to reason probabilistically about the pathogenicity of amino
acid substitutions [51]. MutPred2 was utilized to predict the
pathogenicity of all the nsSNPs of the HMGCR gene. Finally,
SNAP-2 uses neural networks to anticipate the impact of

single amino acid substitutions (SNPs). Prediction scores
are visualised as a heat map [51].

2.5. Prediction of Modification in Stability upon Mutation.
To predict the change in stability owed to mutations, the I-
Mutant 2.0 server was used. This is a support vector machine
(SVM) based tool server, which analyzes the structure or the
sequence of the protein. I-Mutant 2.0 is a classifier that can
automatically predict the change in protein structural stabil-
ity upon mutations, and it also acts as a regression estimator
which predicts the change in Gibbs free energy differences
between the mutated and wild-type protein in kcal/mol [52].

2.6. Missense SNP in Functional Region. The Pfam server was
used to discern the location of missense SNP into the func-
tional region in protein structure. This is a database of pro-
tein families, their annotations, and multiple sequence
alignments, which provides a complete and accurate classifi-
cation of protein families and domains [53]. The identifica-
tion of domains that occur within proteins can provide
insights into their function; thus, Pfam was to analyze the
functional region of the HMGCR.

2.7. Modeling of the Mutated Protein. Then, a Virtual Muta-
tion (VM) procedure was applied to substitute amino acids
in the atomic models [54]. Accelrys Discovery Studio 4.0
was then used to generate a mutated sequence for the corre-
sponding amino acid substitutions [55]. The regenerated
mutant sequences were used further for mutant modeling,
which was performed through HHpred Modeller [56]. Later,
the InterEvDock2 server was used to calculate the degree of
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Figure 1: Flow diagram of the overall work.
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evolutionary conservation at each amino acid position of the
HMGCR protein [56]. HHpred chooses the best suitable
template and generates a protein model through successive
steps, such as profile construction, similarity analysis, and
structural properties. Then, the Swiss model also confirmed
the same template as HHpred Modeller selected [57]. A rig-

orous manner of protein modeling was nominated to get a
perfect model.

2.8. Location and Structural Conformation of Mutations.We
have utilized the STRIDE server to predict the mutational
site upon the 3D structure. This server offers an interactive
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interface to the secondary structure assignment program
STRIDE [58].

2.9. Molecular Dynamic Simulation. In order to evaluate the
impact of the SNPs rs147043821 and rs193026499 on the
stability of HMGCR gene product under physiological con-
ditions, 50 ns molecular dynamic simulation was performed
in using GROMACS (version 2021.1). The GROMOS9643a1
force field was applied on the protein-ligand complex [59].
The physiological condition of the system was defined
(300K, pH 7.4, 0.9% NaCl). The structures were solvated
in a dodecahedral box of the SPC (simple point charge)
water model with its edges at 1 nm distance from the protein
surface. The overall charge of the system was neutralized
using the genion module. Energy minimization of the neu-
tralized system was carried out using the steepest descent
minimization algorithm with maximum number of minimi-
zation steps to perform set at 50000. The ligand was
restrained before carrying out the isothermal-isochoric
(NVT) equilibration of the system for 100 ps with short-
range electrostatic cutoff value of 1.2 nm. Isobaric (NPT)
equilibration of the system was carried out for 100 ps follow-
ing the NVT with short-range van der waals cutoff fixed at
1.2 nm. Finally, a 50ns molecular dynamic simulation was
run using periodic boundary conditions and time integra-
tion step of 2 fs. The energy of the system was saved every
100 ps. For calculating the long-range electrostatic potential,
the Particle Mesh Ewald (PME) method was applied. Short-
range van der waals cutoff was kept at 1.2 nm. The modified
berendsen thermostat was used to control simulation tem-
perature while the pressure was kept constant using the
Parrinello-Rahman algorithm. The simulation time step
was selected as 2.0 fs. The snapshot interval was set to
100 ps for analyzing the trajectory data. Finally, all of the tra-
jectories were concatenated to calculate and plot root mean
square deviation (RMSD), root mean square fluctuation
(RMSF), radius of gyration (Rg), and solvent accessible sur-
face area (SASA) data.

2.10. Data Analytics and Presentation. Figures and tables
were used to present the results of our investigation. Based
on the information from our results, the figures and tables
were created using Excel, PowerPoint, and BioRender. The
tools were also used to create the majority of the figures.

3. Results

The flowchart illustrates the overall procedure of identifica-
tion and categorization of detrimental SNPs in HMGCR
along with the structural and functional consequence analy-
sis upon mutation (Figure 1).

3.1. HMGCR Gene Is Prone to Point Mutation and Rich in
Missense Type. The HMGCR gene (25783 bp) consists of
23 exons. The SNP data for the HMGCR gene were collected
from dbSNP as it contains the largest polymorphism data-
base, despite housing both validated and nonvalidated poly-
morphism information [22]. The dbSNP contains a total of
6815 SNPs for the gene HMGCR where 388 SNPs were mis-
sense SNPs (Figure 2). Among 388 submitted missense SNP
rsIDs from dbSNP, SIFT analyzed 7 missense SNPs to bear a
deleterious effect with TI score ≤ 0:05; results are shown in
Table 1. The corresponding 7 missense SNPs rs112503211,
rs113949962, rs147043821, rs147818666, rs148335635,
rs193026499, and rs368129510 had the tolerance index 0.1
and considered as damaging in the HMGCR gene (Table 1).

3.2. Coding Missense SNPs rs147043821 and rs193026499 are
the Two Most Probable Damaging Mutations in HMGCR.
The PolyPhen program was used to determine the missense
SNPs with the potential to cause structural modifications
due to the amino acid substitution. A total of 388 missense
SNP rsIDs were submitted to the PolyPhen server, and in
the resulting output, 27 amino acid substitutions have been
reported to be probably damaging with a PSIC score ranging
from 0.539 to 1. Seven missense SNPs (rs112503211,
rs113949962, rs147043821, rs147818666, rs148335635,
rs193026499, and rs368129510) were identified by SIFT as
deleterious, also marked to be damaging by the PolyPhen-2
program as well (Table 2).

To further validate the results of the tools used before-
hand, we analyzed the missense SNPs with the following in
silico SNP prediction algorithms: PMUT, SNAP, PAN-
THER, MUTPRED, and SNP&GO. The missense SNPs
which are marked as deleterious by both SIFT and
PolyPhen-2 server were principally selected. The results gen-
erated from the abovementioned tools were further com-
bined and compared with the result of SIFT and PolyPhen
server. In the combined results of 388 missense SNPs, only
7 (rs114166108, rs113949962, rs182539049, rs145415894,

Table 1: Impact of amino acid substitution on protein function using the SIFT.

SI SNP
Ref
allele

Alt
allele

Amino acid
change

Gene ID Transcript ID Protein ID Region
Sift

prediction

1 rs112503211 T C S147P ENSG00000113161 ENST00000287936 ENSP00000287936 CDS Deleterious

2 rs113949962 G A M1I ENSG00000113161 ENST00000287936 ENSP00000287936 CDS Deleterious

3 rs147043821 G C L218F ENSG00000113161 ENST00000287936 ENSP00000287936 CDS Deleterious

4 rs147818666 G C G663A ENSG00000113161 ENST00000287936 ENSP00000287936 CDS Deleterious

5 rs148335635 A G N204S ENSG00000113161 ENST00000287936 ENSP00000287936 CDS Deleterious

6 rs193026499 C T R595C ENSG00000113161 ENST00000287936 ENSP00000287936 CDS Deleterious

7 rs368129510 C T R159C ENSG00000113161 ENST00000287936 ENSP00000287936 CDS Deleterious
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rs142939718, rs35896902, and rs150721457) were predicted
as disease related by at least 5 out of the 7 tools (Figure 3).
Two missense SNPs, rs147043821 and rs193026499, showed
positive results in all the 7 tools (Tables 3–7).

3.3. High-Risk Missense SNPs are Located in the Conserved
Region. Biological processes rely on functional sites of pro-
teins such as catalytic sites, allosteric sites, and protein-
protein interaction sites. Amino acids present in these

SIFT

PMUT

POLYPHEN

SNAP2

PANTHER

SNP & GO

MUTPRED

rs112503211 rs113949962 rs147043821 rs147818666 rs148335635 rs193026499 rs368129510

Damaging
Not damaging

Figure 3: Damagicity of the functional missense SNP polymorphism.

Table 2: Functional characterization of missense SNPs by PolyPhen.

SI SNP Protein acc Position AA1 AA2
Prediction/confidence

Probability HumDiv Probability HumVar

1 rs112503211 P04035 147 S P Probably damaging
Score: 1.000

Sensitivity: 0.00
Specificity: 1.00

Probably damaging
Score: 0.993

Sensitivity: 0.47
Specificity: 0.96

2 rs113949962 P04035 1 M I Probably damaging
Score: 0.97

Sensitivity: 0.77
Specificity: 0.95

Possibly damaging
Score: 0.650

Sensitivity: 0.79
Specificity: 0.84

3 rs147043821 P04035 218 L F Probably damaging
Score: 1.000

Sensitivity: 0.00
Specificity: 1.00

Probably damaging
Score: 1.000

Sensitivity: 0.00
Specificity: 1.00

4 rs147818666 P04035 663 G A Possibly damaging
Score: 0.659

Sensitivity: 0.86
Specificity: 0.91

Possibly damaging
Score: 0.519

Sensitivity: 0.82
Specificity: 0.81

5 rs148335635 P04035 204 N S Probably damaging
Score: 1.000

Sensitivity: 0.00
Specificity: 1.00

Probably damaging
Score: 0.999

Sensitivity: 0.09
Specificity: 0.99

6 rs193026499 P04035 595 R C Probably damaging
Score: 0.999

Sensitivity: 0.14
Specificity: 0.99

Probably damaging
Score: 0.983

Sensitivity: 0.56
Specificity: 0.94

7 rs368129510 P04035 159 R C Probably damaging
Score: 1.000

Sensitivity: 0.00
Specificity: 1.00

Probably damaging
Score: 0.939

Sensitivity: 0.66
Specificity: 0.91
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biologically active sites tend to be highly conserved, com-
pared to any other residues in the protein. Any substitution
of these residues generally leads to complete loss of biologi-
cal functions and renders severe damaging effect to the bio-
logical process itself [25]. The retrieved amino acid sequence
corresponding to missense SNPs was utilized to identify the
suitable template to build the 3D structure. To predict the
3D structure, retrieved amino acid sequence was submitted
to the NCBI protein BLAST tool to recognize the structure
of the closest related proteins. The structure PDB ID: 3cd5
with 99.8% identity was selected and built 3D structure.
InterEvDock2 identifies putative structural and functional
residues and determines their evolutionary conservation

[26]. Although a complete analysis was done, we focused
on the conservation profile of the selected 7 high-risk mis-
sense SNP locations. The analysis showed that residues
S147, M1, L218, G663, N204, R595, and R159 are highly
conserved (Figure 4). These conserved residues in HMGCR
might have imperative functional importance and are identi-
fied as functional or structural based on their location rela-
tive to the protein surface or the protein core.

3.4. High-Risk Missense SNPs are Capable of Inducing
Protein Unfolding. The neural network-based routine tool
I-Mutant 2.0 was used for examining the potential modifica-
tions in protein stability due to mutations. Models with the
following mutations S147, M1, L218, G663, N204, R595,
and R159 were submitted to the server for DDG stability
prediction and RSA calculation. All the mutations decreased
protein stability except rs113949962, which is shown to be
increasing structural stability (0.58 kcal/mol). Mutation
rs368129510 accounted for the lowest DDG value
(−3.34 kcal/mol), meaning to be more unstable due to this
mutation (Figure 5). All other mutations rs112503211,
rs147043821, rs147818666, and rs193026499 have the
DDG values, respectively, -0.88 kcal/mol, -1.27 kcal/mol,
-0.67 kcal/mol, and -0.56 kcal/mol; this suggests decreased
protein stability, due to DDG values being less than 0
(Figure 5). Further, we have also analyzed the surface acces-
sibility surface area (SASA) and angles of the protein struc-
ture of alpha helix and beta sheet in both wild and mutant
models of HMGCR. All the mutations reside in alpha helix
and beta sheet which can induce the conformational change
in protein (Table 8).

SASA may change due to mutation when the amino acid
substitution occurred. Here, the SASA value has been

Table 5: Damagicity prediction of polymorphism by PANTHER.

SI SNP Substitution
Preservation time
(millions of years)

Message

1 rs112503211 S147P 673
Probably
damaging

2 rs113949962 M1I 3807
Probably
damaging

3 rs147043821 L218F 673
Probably
damaging

4 rs147818666 G663A 3806
Probably
damaging

5 rs148335635 N204S 673
Probably
damaging

6 rs193026499 R595C 673
Probably
damaging

7 rs368129510 R159C 673
Probably
damaging

Table 3: Disease association study of missense SNPs by PMUT.

SI SNP Protein Position Mutation Prediction

1 rs112503211 P04035 147 S→P (Ser→Pro) 0.48 (83%) neutral

2 rs113949962 P04035 1 M→ I (Met→ Ile) 0.60 (83%) disease

3 rs147043821 P04035 218 L→ F (Leu→Phe) 0.55 (81%) disease

4 rs147818666 P04035 663 G→A (Gly→Ala) 0.43 (85%) neutral

5 rs148335635 P04035 204 N→ S (Asn→ Ser) 0.48 (83%) neutral

6 rs193026499 P04035 595 R→C (Arg→Cys) 0.79 (89%) disease

7 rs368129510 P04035 159 R→C (Arg→Cys) 0.48 (83%) neutral

Table 4: Prediction of damaging effect of SNP in HMGCR gene by SNAP2.

SI SNP Wild-type amino acid Position Variant amino acid Predicted effect Score Expected accuracy

1 rs112503211 S 147 P Neutral -22 61%

2 rs113949962 M 1 I Neutral -27 61%

3 rs147043821 L 218 F Effect 12 59%

4 rs147818666 G 663 A Effect 5 53%

5 rs148335635 N 204 S Effect 48 71%

6 rs193026499 R 595 C Effect 47 71%

7 rs368129510 R 159 C Effect 73 85%
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changed in all the mutations except rs147818666. The SASA
value of rs368129510 has been slightly decreased than the
wild-type model. The increasing SASA value of the muta-

tions rs147043821 and rs193026499 may lead to the unfold-
ing of the protein 3D structure, meaning the loss of the
biological functions of the HMGCR gene (Table 8).

Table 7: Disease probability prediction of SNP by SNP&GO.

SI SNP Mutation Prediction Reliability index (RI) Probability Method

1 rs112503211 S147P Disease 4 0.710 PhD-SNP: F S½ � = 52%, F P½ � = 0%, Nali = 66

2 rs113949962 M1I Neutral 3 0.352 PhD-SNP: F M½ � = 100%, F I½ � = 0%, Nali = 37

3 rs147043821 L218F Disease 4 0.713 PhD-SNP: F L½ � = 91%, F F½ � = 0%, Nali = 66

4 rs147818666 G663A Neutral 6 0.197 PhD-SNP: F G½ � = 62%, F A½ � = 33%, Nali = 377

5 rs148335635 N204S Disease 6 0.820 PhD-SNP: F N½ � = 75%, F S½ � = 0%, Nali = 66

6 rs193026499 R595C Disease 6 0.793 PhD-SNP: F R½ � = 51%, F C½ � = 0%, Nali = 356

7 rs368129510 R159C Disease 6 0.806 PhD-SNP: F R½ � = 52%, F C½ � = 0%, Nali = 66

Table 6: Effect in functional motif in HMGCR gene by MUTPRED tool.

SI SNP Substitution
MutPred2
score

Affected PROSITE and ELM motifs
Molecular mechanisms with P values ≤

0.05

1 rs112503211 S147P 0.652
ELME000063, ELME000064,

ELME000136, ELME000159, ELME000202,
ELME000239, ELME000249, ELME000

Gain of phosphorylation at S146,
Prob: 0.29, P value: 0.02

Altered transmembrane protein,
Prob: 0.17, P value: 9:1e − 03
Loss of ubiquitylation at K142,

Prob: 0.16, P value: 0.03
Loss of GPI-anchor amidation at N148,

Prob: 0.03, P value: 8:4e − 03

2 rs113949962 M1I 0.881 ELME000355

Altered disordered interface,
Prob: 0.39, P value: 5:1e − 03
Altered ordered interface,

Prob: 0.27, P value: 5:6e − 03
Altered signal peptide,

Prob: 0.18, P value: 8:8e − 04
Loss of N-terminal acetylation at M1,

Prob: 0.03, P value: 5:6e − 03

3 rs147043821 L218F 0.781 ELME000239, ELME000333, ELME000335

Loss of helix, Prob: 0.33,
P value: 1:2e − 03

Gain of strand, Prob: 0.28,
P value: 7:5e − 03

4 rs147818666 G663A 0.856 ELME000063, PS00008

Gain of helix, Prob: 0.28,
P value: 0.03; loss of allosteric

site at M659, Prob: 0.24, P value: 0.02;
loss of acetylation at K662,
Prob: 0.24, P value: 0.02

5 rs193026499 R595C 0.569 ELME000155

Altered ordered interface, Prob: 0.31, P
value: 0.01

Gain of allosteric site at R590,
Prob: 0.24, P value: 0.01

Loss of catalytic site at R590,
Prob: 0.22, P value: 8:8e − 03

Gain of ADP-ribosylation at R598,
Prob: 0.19, P value: 0.04

Altered transmembrane protein,
Prob: 0.13, P value: 0.02
Altered metal binding,
Prob: 0.05, P value: 0.04

6 rs368129510 R159C 0.304 — —
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3.5. High-Risk Polymorphisms Are Likely to Alter the Domain
Structures of HMGCR. The PROSITE-ExPasy tool was used to
search for domain structures in HMGCR and map the muta-

tions in the domains for determining the changes they might
cause in the domain structures. The tool searches the UNI-
ProtKB database for motifs and in the produced result showed
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Figure 5: Free energy calculation of polymorphisms.
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Figure 4: Conservation profile of functional missense SNPs. Map the conservation index as calculated by the Rate4Site algorithm. Color
code is a gradient from red (more conserved) to white (more diverse) through yellow (mild conservation).
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sterol-sensing domain (SSD) and hydroxymethylglutaryl-
coenzyme A reductase (HMG-Co-A) domain in HMGCR.
The SSD domain consists of 61–218 amino acid regions in
the HMGCR gene, and HMG-Co-A is composed of 464–871
amino acid residues in the HMGCR region. All mutations
S147, L218, G663, N204, R595, and R159C except 1MI are
located in the SSD and HMG-Co-A domain (Figure 6).

3.6. Molecular Dynamic Simulation. Following 50 ns molec-
ular dynamic simulation, RMSD, RMSF, Rg, and SASA cal-
culations were carried out for the SNPs rs147043821
(Figure 7) and rs193026499 (Figure 8). RMSD analysis
revealed that both rs147043821 and rs193026499 had a
destabilizing effect on HMGCR. In both cases, the mutant

exhibited higher structural deviation compared to the wild-
type protein. Both the mutants rs147043821 and
rs193026499 also showed regional flexibility as uncovered
by the RMSF values. In terms of compactness, the SNP
rs193026499 showed marked difference from its wild coun-
terpart. The mutant remained in an unfolded state through-
out the simulation while the wild type maintained a folded
conformation. For the mutant rs147043821 however, the
observed change in radius of gyration was not that drastic.
SASA calculations indicated that the mutant rs193026499
introduced susceptibility to disruption by solvents. The
mutant rs147043821 also followed the same trend, but its
susceptibility became equivalent to the wild type near the
end of the simulation.

1. rs112503211

2. rs113949962

3. rs147043821

4. rs147818666

5. rs148335635

6. rs193026499

7. rs368129510

SSD
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1 888
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HMG-CoA_red

HMG-CoA_red
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SSD
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SSD

R595C
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SSD

R159C
1 888
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Figure 6: Domain association of high-risk polymorphism.

Table 8: Structural variation upon the mutational impact.

SI Mutation Mutation type Residue name and number Structure SASA Phi angle Psi angle

1 rs112503211
Wild S147

Coil
15.4 -57.58 144.73

Mutant 147P 18.8 -60.07 140.74

2 rs368129510
Wild R159 Alpha helix 85.6 -57.10 -39.91

Mutant 159C Alpha helix 68.3 -66.57 -41.71

3 rs147043821
Wild L218 Alpha helix 21.4 -65.25 -40.28

Mutant 218F Alpha helix 78.2 -64.22 -44.63

4 rs193026499
Wild R595 Beta sheet 2.5 125.89 145.20

Mutant 595C Beta sheet 67.7 126.90 144.29

5 rs147818666
Wild G663 Alpha helix 0.0 -64.63 -39.48

Mutant 663A Alpha helix 0.0 -64.96 -39.53
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4. Discussion

Single nucleotide polymorphisms (SNPs) are the main cause
of most genetic diseases, because more than half of known
genetic disorders involve amino acid substitutions. SNPs
are exceptional genetic markers and play an important role
in disease research because they are dispersed throughout
the entire human genome. Although some disease-related
SNPs are found in exons or coding regions, there are also
SNPs that appear in the intronic regions of genes and inter-
fere with regulatory regions, which in turn affect the splicing
process and gene expression. Population-based surveys have
become tough with the growing number of reported and
recorded SNPs; utilizing the sheer number of SNPs data
makes it demanding to choose a target for scrutiny which
are most likely to contribute to disease development. The
dry lab method is a convenient way in these circumstances
to distinguish the deleterious SNPs using dedicated algo-
rithms that can discriminate between neutral and deleterious
SNPs by examining the databases and combining functional
and structural evidence about the ultimate effect of a
polymorphism.

The search for missense SNPs in dbSNP against
HMGCR resulted in 6815 hits. The rsIDs of which were que-
ried into SIFT and PolyPhen-2 servers. From the total SNPs
of HMGCR, we selected only missense type of polymor-
phism for further investigation as it can have an effect on
protein structure. We analyzed 388 missense polymor-
phisms by employing seven tools to observe how deleterious
effect they can exert upon the protein structure (Figure 2).
Seven SNPs were predicted deleterious in common in both
SIFT and recent studies have found several accounts indicat-
ing HMGCR linkage to cholesterol biosynthesis, but there
remains a significant amount of polymorphism data on
HMGCR that awaits extensive population-based and clinical
studies. In this current study, the SNP databases were ana-
lyzed to find out SNPs that might potentially be deleterious
for HMGCR through the employment of computational
methods, Polyphen-2 algorithms. Furthermore, we analyzed
the data with several other SNP analyzing algorithms, and in
a combined result, also 7 missense SNPs were predicted del-
eterious. We have employed SIFT, PolyPhen, PMUT, SNAP,
PANTHER, MUTPRED, and SNP&GO algorithms to char-
acterize the 388 missense SNPs found available in the data-
base. However, only seven polymorphisms rs112503211,
rs113949962, rs147043821, rs147818666, rs148335635,
rs193026499, and rs368129510 have shown the deleterious
effect upon the protein structure (Figure 3, Tables 1–7).
We have employed the InterEvDock2 server to find out the
conserveness of the wild residues. We have found these res-
idues are in the conserved region, and if these residues alter,
the protein structure would be hampered to initiate its nor-
mal activity (Figure 4). The predicted SNPs are located in the
SSD and HMG-CoA domains of the protein, which ulti-
mately may hamper the biological activity of HMGCR.
Mutations in SSD could be a barrier to sense the sterol for
cholesterol regulation into our body (Figure 6). For further
analysis, we have explored the protein data bank that con-
tained a structure (3cd5) with 99.8% identity with HMGCR.

We performed a free energy calculation of the mutant and
wild-type models. The free energy of all the mutated models
declined considerably from the wild-type models. We have
found all the selected polymorphisms S147, M1, L218,
G663, N204, R595, and R159 have shown the protein desta-
bility upon the polymorphism except M1 (Figure 5). Fur-
ther, we have utilized the STRIDE server by which we have
observed the structural variation of the mutant models. A
mutation may alter the folding pattern of the protein due to
change in amino acid with another. Therefore, protein
function can be lost ultimately prompting the disease
condition. The selected polymorphisms rs112503211
(S147P), rs147043821 (L218F), rs193026499 (R595C), and
rs368129510 (R159C) changed the solvent accessible surface
area (SASA) and phi and psi angle than the wild-type models.
The polymorphism rs147818666 (G663A) did not show any
changes in the mutant model. It is to be noted that
rs368129510 (R159C) and rs147043821 (L218F) changed in
the alpha helix motif whereas rs193026499 (R595C) showed
the changes in the beta sheet motif. Therefore, these three
polymorphisms rs368129510 (R159C), rs147043821 (L218F),
and rs193026499 (R595C) might change the folding pattern
and stability of the protein. From the 50ns molecular dynamic
simulation carried out in GROMACS for wild-type HMGCR,
rs147043821 and rs193026499, it is clear that these two SNPs
have the ability to exert a significant destabilizing effect on
the protein and thus disrupt its function (Figures 7 and 8).

In the process of this study, it was observed that despite
some correct assumption, the web-based tools need to be
more precise in detecting deleterious SNPs and population-
based studies are essential to recognize and examine the pre-
dicted SNPs in different populations. By cross-referencing all
the data from the seven algorithms, we observed two SNPs
rs147043821 and rs193026499 have shown the damaging
effect in all seven algorithms; therefore, these two could be
the most promising polymorphism in the HMGCR.

HMGCR is embedded in the endoplasmic reticulum (ER)
membrane. It consists of two distinct domains: N-terminal
domain or sterol-sensing domain (SSD) and C-terminal
domain or catalytic domain. SSD anchors the protein in ER
membrane that senses sterol or cholesterol level in the cell. It
either directly or indirectly can sense the intracellular level of
sterol/cholesterol. The catalytic domain is protruded in the
cytosol and contains all the catalytic activities of HMGCR.
The SSD of HMGCR senses the excess level of sterol/choles-
terol in the cell, and the sensing result might induce a confor-
mational change in SSD. This causes the protein susceptible to
rapid sterol-induced degradation. Whenever there is enough
cholesterol present in the cell, HMGCR undergoes proteolysis,
and thereby, the quantity of HMGCR is decreased. When
SNPs are present in SSD, it may fail to sense intracellular cho-
lesterol levels; as a result, proteolysis of HMGCR does not
occur. When present in the catalytic domain, SSD can sense
cholesterol level but the further steps of endoplasmic
reticulum-associated degradation (ERAD) may be hampered,
and hence, catalytic domains fail to be degraded. So,
rs147043821 in SSD or rs193026499 in the catalytic domain
of HMGCR would hamper feedback regulation and upsurge
the hypercholesterolemia, which might be a great concern
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for health (Figure 9). Though the findings of this study suggest
that some SNPs, such as rs147043821 and rs193026499, may
cause damage to the HMGCR protein, it is strongly advised
that the mutational effect on the structure should be investi-
gated in a wet lab experiment before any conclusive confirma-
tion of their usefulness.

5. Conclusion

The present study analyzed the SNPs of HMGCR gene and
predicted seven deleterious SNPs, viz., rs112503211,
rs113949962, rs147043821, rs147818666, rs148335635,
rs193026499, and rs368129510 through SNP analyzing tools.
Among them, rs147043821 and rs193026499 are most likely

to have the detrimental effect in the HMGCR gene. Molecu-
lar dynamic study also showed that the presence of these two
SNPs in the HMGCR gene could have the destabilizing effect
in the structure; thus, these SNPs could disrupt the func-
tional effect of the HMGCR gene. Therefore, the results of
this study might increase the risk of cholesterol biosynthesis
in the human body. However, after the in silico discoveries,
wet lab confirmation is required.
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