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Simple Summary: A high risk of relapse and treatment resistance are among the major challenges
in locally advanced head and neck squamous cell carcinoma (HNSCC). Data show that common
germline alterations in genes regulating angiogenesis may modulate treatment sensitivity, cancer pro-
gression, and prognosis, but relatively little is known about their role in HNSCC. Thus, our goal was
to examine the effect of variation in these genes on survival outcomes in HNSCC patients receiving
radiotherapy and cisplatin-based chemoradiotherapy. We identified genetic variants significantly
affecting therapy results, constituting independent prognostic factors in these patients. Our results
suggest that some polymorphisms in angiogenesis genes may be determinants of treatment efficacy
and tumor aggressiveness in HNSCC, which may be of importance in standard therapy. These
findings emphasize the potential value of the host genetic profile related to angiogenesis in assessing
the risk of treatment failure.

Abstract: Fibroblast growth factor (FGF)/FGF receptor (FGFR), and platelet-derived growth factor
(PDGF)/PDGF receptor (PDGFR) systems, as well as some matrix metalloproteinases (MMPs) and
their tissue inhibitors (TIMPs), are involved in various steps of angiogenesis. Data indicate that
common germline variations in angiogenesis-regulating genes may modulate therapy results and
cancer progression. However, whether these variants affect clinical outcome in head and neck squa-
mous cell carcinoma (HNSCC) is unclear. Hence, we assessed the relationship between FGF/FGFR,
PDGF/PDGFR, MMP, and TIMP genetic variants and treatment outcomes in HNSCC patients re-
ceiving radiotherapy (RT) alone or combined with cisplatin-based chemotherapy. In multivariate
analysis, FGF2 rs1048201 CC homozygotes showed a higher risk of death (p = 0.039), while PDGFRA
rs2228230 T was strongly associated with an increased risk of locoregional relapse (HR 2.49, p = 0.001)
in the combination treatment subgroup. In the RT alone subset, MMP2 rs243865 TT carriers had a
higher risk of locoregional recurrence (HR 2.92, p = 0.019), whereas PDGFRB rs246395 CC homozy-
gotes were at increased risk of metastasis (HR 3.06, p = 0.041). The MMP2 rs7201 C and TIMP2
rs7501477 T were associated with a risk of locoregional failure in the entire cohort (p = 0.032 and 0.045,
respectively). Furthermore, rs1048201, rs2228230, rs246395, rs243865, rs7201, and rs7201/rs7501477
were independent indicators of an unfavorable outcome. This study demonstrates that the FGF2,
PDGFRA, PDGFRB, MMP2, and TIMP2 variants may contribute to treatment failure and poor prog-
nosis in HNSCC.

Keywords: head and neck cancer; polymorphism; FGF; PDGFR; MMP; TIMP; angiogenesis; treatment
outcome; prognosis; radiotherapy; chemoradiotherapy
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1. Introduction

Head and neck squamous cell carcinoma (HNSCC) is one of the most common ma-
lignant neoplasms in the world, very often diagnosed in an advanced stage [1]. Although
progress has been made in the treatment of this cancer, locoregional and distant relapse
occurring in a large number of patients is still a serious problem leading to poor survival
outcomes. In HNSCC, decreased sensitivity, or resistance to treatment, is one of the major
challenges in terms of patient prognosis. In locally advanced and unresectable HNSCC, ra-
diotherapy (RT) and cisplatin-based chemotherapy (CT) are the mainstays of treatment [2].
Their effectiveness is highly influenced by hypoxia and dysregulated angiogenesis [3,4].

Angiogenesis is recognized as playing a crucial role in the development and progres-
sion of solid tumors [5]. Several growth factors are involved in different steps of new blood
vessel formation. Angiogenesis is primarily mediated by the vascular endothelial growth
factor (VEGF)/VEGF receptor (VEGFR) system; however, other proangiogenic growth
factors, such as fibroblast growth factor 2 (FGF2, also known as basic FGF, or bFGF), are
also very potent regulators of the process. FGF/FGF receptor (FGFR) signaling leads to
proliferation, migration, and differentiation of endothelial cells and fibroblasts [6]. The
FGF pathway may indirectly control angiogenesis by coordinating other growth factor
signaling (e.g., VEGF) and various cell–cell interactions [7]. Platelet-derived growth factor
(PDGF) is another angiogenesis-inducing cytokine that exerts its effects by interacting with
PDGF receptors α (PDGFRA) and β (PDGFRB). The PDGF/PDGFR system is critical for the
proliferation, migration, and recruitment of mesenchymal cells, including vascular smooth
muscle cells, pericytes, and fibroblasts [8]. Both networks, FGF/FGFR and PDGF/PDGFR,
are implicated in embryogenesis, tissue regeneration, and wound healing, and when dereg-
ulated, are also involved in tumor growth, survival, and metastasis [9,10]. High levels of
these proteins have been associated with a worse prognosis in various cancers [6,8,11,12].

The structure and composition of the extracellular matrix (ECM) are important factors
in the regulation of angiogenesis. Angiogenesis is accompanied by the degradation of
the vascular basement membrane and ECM components by matrix metalloproteinases
(MMPs). These calcium-dependent zinc endopeptidases, produced by stromal and tumor
cells, are involved in inflammation, tumor invasion, and metastasis. MMPs are essential
for tumor angiogenesis, as they participate in vascular remodeling, cell migration, and
sprout formation [13]. Two gelatinases, MMP2 and MMP9, are believed to play particularly
important roles in this process. They are known to activate and release proangiogenic
growth factors (e.g., VEGF and FGF2) from ECM, as well as generate antiangiogenic
molecules [14,15]. The enzymatic activity of MMPs is regulated by the family of endogenous
tissue inhibitors of metalloproteinases (TIMPs). In addition to the inhibitory role against
MMPs, TIMPs may participate in the MMP activation. Moreover, TIMP2 is able to suppress
endothelial cell proliferation in response to angiogenic factors, while TIMP3 has the ability
to interact with VEGFR2 and block VEGF binding [16,17]. Growth factors such as VEGF,
FGF, and PDGF can stimulate production of MMPs [10]. The overexpression of MMPs,
observed in many cancers, has been found to correlate with tumor aggressiveness and poor
prognosis [18,19].

Growing evidence suggests that common germline alterations, such as single nu-
cleotide polymorphisms (SNPs), in angiogenesis-regulating genes may not only increase
individual susceptibility to cancer, but may also be implicated in modulating sensitivity to
anticancer treatment, thereby affecting therapy results and patient survival [17,20–22]. In
HNSCC, very few studies have so far addressed the role of SNPs in angiogenesis genes in
the context of treatment outcome and prognosis. In a previous report, we demonstrated the
predictive and prognostic potential of inherited genetic variants in the ANGPT2/TEK and
VEGF/VEGFR2 systems in HNSCC [21]. In the present study, we aimed to evaluate the
possible association between a panel of 19 variants in the FGF2, FGFR2, PDGFB, PDGFRA,
PDGFRB, MMP2, MMP9, TIMP1, TIMP2, and TIMP3 genes and the clinical outcomes in
non-surgically treated HNSCC patients who received radical RT alone or in combination
with cisplatin-based CT.
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2. Materials and Methods
2.1. Patients

The study group comprised 422 Caucasian patients diagnosed with primary T1–4N0–3M0
HNSCC of the larynx (LSCC), oropharynx (OPSCC) or hypopharynx (HPSCC). The patient
characteristics are shown in Table S1. There were 290 (69%) patients with stage III–IVB.
Most of the patients were males (80%), cigarette smokers (80%), and alcohol users (77%).
All subjects had a WHO performance status of 0 or 1. The treatment and follow-up details
have been previously described [21]. Briefly, all patients were treated with curative intent
with RT alone (n = 219, 52%) or combined with cisplatin-based CT given as induction
treatment (docetaxel/cisplatin/5-fluorouracil or cisplatin/5-fluorouracil; n = 72, 17%) or
administered concurrently (n = 131, 31%). Patients who received surgery were excluded
from the study. Clinical and demographic data were obtained from medical records and
the Silesian Cancer Registry. The study endpoints were overall survival (OS), locoregional
recurrence-free survival (LRFS), and metastasis-free survival (MFS). OS was calculated
from the date of diagnosis to the date of death from any cause, or the last known date alive.
LRFS and MFS were defined as the time from treatment completion to clinically detectable
local and/or regional recurrence (for LRFS) or distant metastasis (for MFS), or the last
examination without evidence of disease.

2.2. SNP Identification

A total of 19 candidate SNPs were analyzed in this study, including rs5757573,
rs2285094 in PDGFB, rs2228230, rs1800812 in PDGFRA, rs2302273, rs246395 in PDGFRB,
rs1449683, rs1048201 in FGF, rs2981582 in FGFR2, rs243865, rs7201 in MMP2, rs17576,
rs17577 in MMP9, rs4898, rs2070584 in TIMP1, rs2277698, rs7501477 in TIMP2, and rs9862,
rs9619311 in TIMP3 (Table S2). These were SNPs that had a minor allele frequency
(MAF) ≥10% in the European Caucasian population [23] and functional significance,
and/or were located in coding or regulatory regions, and/or were reported as associ-
ated with cancer risk or outcome for other solid cancers [22,24–41]. Genomic DNA was
isolated from frozen peripheral blood with Genomic Maxi AX kit (A&A Biotechnology,
Gdynia, Poland). The SNPs were determined using TaqMan SNP Genotyping Assays
(Applied Biosystems, Foster City, CA, USA), according to the manufacturer’s standard
protocol. Genotyping was repeated in 50 randomly selected samples, and the concordance
was 100%.

2.3. Statistical Analysis

The associations between SNPs and survival endpoints were examined using the
Kaplan–Meier method and log-rank test. All SNPs were tested under dominant, recessive,
and codominant genetic models, and the model with the most significant p value was
selected for the final analysis. The Cox proportional hazards regression method was used in
univariate and multivariate analysis. Multivariate models were adjusted for the following
variables: median age at diagnosis (<59 versus ≥59 years), sex (male versus female),
cigarette smoking or alcohol use (ever versus never), T stage (T1–2 versus T3–4), N stage
(N0 versus N1–3), primary tumor site (LSCC versus OPSCC versus HPSCC), CT use (yes
versus no), local and regional relapse (for OS and MFS only; yes versus no), as well as
metastasis and second primary cancer, SPC (for OS only; yes versus no). Backward stepwise
regression was performed to identify independent risk factors. The proportional hazards
assumption was examined using Schoenfeld residuals. Since the assumption was not met in
some cases, all hazard ratios should be interpreted as weighted averages of the true values
over the follow-up period [42]. A Spearman’s correlation and Pearson’s chi-square test
were used to evaluate the associations between variables. To account for multiple testing,
the Bonferroni correction was applied, with the significance level set at ≤0.003. However,
given the exploratory character of this study, uncorrected p values were presented, and
p ≤ 0.05 was considered statistically significant. All tests were two-sided and Statistica 13.1
(TIBCO Software Inc., Palo Alto, CA, USA) was used for calculations.
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3. Results

During the median follow-up period of 72 months, 125 patients (30%) had locoregional
recurrence, 48 patients (11%) developed metastasis, and 198 died (47%). The median OS was
105 months in the group treated with RT alone and 70 months in the combination treatment
subgroup. The median LRFS and MFS were not reached. Patient baseline characteristics
are shown in Table S1. The genotype frequencies were consistent with the Hardy-Weinberg
equilibrium (HWE) except for the rs2285094, rs1800812, rs4898 and rs2070584 SNPs, which
were excluded from further analysis (Table S2).

For greater homogeneity in terms of treatment, the data analysis was carried out
separately in the subgroup treated with RT alone (n = 219) and in patients receiving
combined therapy (RT + CT, n = 203), as well as in the entire group of patients. In the
univariate analysis, TIMP3 rs9619311, MMP2 rs243865, and PDGFRB rs246395 SNPs were
associated with clinical outcome in the RT alone subgroup. Both the rs9619311 TT and
rs243865 TT homozygotes showed shorter LRFS than C allele carriers (p log-rank = 0.013,
hazard ratio (HR) 1.86, p = 0.019 and p log-rank = 0.050, HR 2.17, p = 0.072, respectively;
Figure 1A,B). Patients with PDGFRB rs246395 CC genotype were at nearly three-fold
higher risk of metastasis compared to those with the T allele (p log-rank = 0.032, HR 2.88,
p = 0.041; Figure 1C). In the RT + CT subgroup, MMP2 rs7201 C and FGF2 rs1048201
CC were associated with an unfavorable OS (p log-rank = 0.030, HR 1.63, p = 0.035 and
p log-rank = 0.032, HR 1.61, p = 0.036, respectively; Figure 1D,E). The PDGFRA rs2228230 T
variant demonstrated a strong association with an increased risk of locoregional relapse
(p log-rank = 0.004, HR 2.07, p = 0.006; Figure 1F). The TIMP3 rs9862 C carriers showed
decreased LRFS (p log-rank = 0.029, HR 2.08, p = 0.053), while FGFR2 rs2981582 CC
homozygotes were at elevated risk of distant failure (p log-rank = 0.022, HR 2.36, p = 0.024)
(Figure 1G,H). In the whole group, the MMP2 rs7201 C variant conferred an increased
risk of locoregional recurrence (p log-rank = 0.025, HR 1.55, p = 0.037; Figure 1I), while the
association of TIMP2 rs7501477 T allele with poor LRFS was only marginally significant
(p log-rank = 0.068, HR 1.40, 95% confidence interval (CI) 0.95–2.07, p = 0.085. None of
these associations remained statistically significant after the Bonferroni correction.

Subsequently, the effect of six of the above SNPs on the outcome was confirmed in
multivariate models integrating genetic, clinical, and demographic factors (Table 1). In the
RT alone subset, MMP2 rs243865 TT homozygotes had an almost three-fold higher risk
of locoregional recurrence compared to variant C carriers (HR 2.92, p = 0.019), while the
PDGFRB rs246395 CC genotype was associated with an over three-fold increase in the risk
of metastasis (HR 3.06, p = 0.041). In the combination treatment subgroup, patients with
FGF2 rs1048201 CC showed a higher risk of death (HR 1.66, p = 0.039), while PDGFRA
rs2228230 T allele carriers were at a significantly increased risk of locoregional relapse
(HR 2.49, p = 0.001). The MMP2 rs7201 C and TIMP2 rs7501477 T alleles were associated
with elevated risk of locoregional failure in the entire cohort (HR 1.59, p = 0.032 and
HR 1.49, p = 0.045, respectively). Only the effect of the PDGFRA rs2228230 T variant on
LRFS survived the correction for multiple testing (Bonferroni adjusted p = 0.015).

The final multivariate models for OS, LRFS, and MFS are presented in Table 2. The
analysis identified five SNPs as independent risk factors affecting clinical outcome in the
studied HNSCC cohort. In patients treated with RT alone, MMP2 rs243865 TT was a
predictor of poor LRFS, together with T3–4, N > 0 and non-oropharyngeal primary site,
whereas the PDGFRB rs246395 CC genotype and regional recurrence were independent
risk factors for shorter MFS. In the RT + CT subgroup, FGF2 rs1048201 CC, in addition
to HPSCC local and regional recurrence, SPC and alcohol use independently predicted
unfavorable OS. The PDGFRA rs2228230 T variant and non-OPSCC were independent risk
factors for poor LRFS in these patients. In all patients, only MMP2 rs7201 C was found to
be an indicator of shorter LRFS, together with T3–4, N > 0 and non-OPSCC.
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Table 1. Multivariate analysis for association of SNPs (only SNPs with p ≤ 0.100 are shown) with OS,
LRFS, and MFS.

SNP Genotype
RT Alone RT + CT Total

HR (95% CI) p HR (95% CI) p HR (95% CI) p

OS

rs1048201 CC 0.76 (0.49–1.17) 0.208 1.66 (1.03–2.68) 0.039 1.10 (0.81–1.48) 0.544

LRFS

rs2228230 CT/TT 0.83 (0.44–1.57) 0.572 2.49 (1.42–4.36) 0.001 1.41 (0.93–2.14) 0.106
rs243865 TT 2.92 (1.20–7.11) 0.019 0.74 (0.23–2.42) 0.620 1.38 (0.69–2.73) 0.360

rs7201 AC/CC 1.50 (0.82–2.75) 0.191 1.54 (0.84–2.81) 0.159 1.59 (1.04–2.42) 0.032
rs7501477 GT/TT 1.41 (0.79–2.52) 0.250 1.57 (0.91–2.72) 0.107 1.49 (1.01–2.21) 0.045

rs9862 TC/CC 0.91 (0.51–1.63) 0.749 2.12 (0.98–4.57) 0.055 1.18 (0.76–1.82) 0.459

MFS

rs246395 CC 3.06 (1.05–8.95) 0.041 0.36 (0.08–1.70) 0.198 1.29 (0.56–2.99) 0.548
rs1048201 CC 3.08 (0.92–10.25) 0.067 1.31 (0.57–3.01) 0.519 1.70 (0.89–3.24) 0.111

RT, radiotherapy; RT + CT, combination treatment; HR, hazard ratio; CI, confidence interval; OS, overall survival;
LRFS, locoregional recurrence-free survival; MFS, metastasis free survival; p ≤ 0.050 shown in bold.
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Table 2. Independent risk factors for OS, LRFS, and MFS—the final models.

RT Alone RT + CT Total

Variables HR (95% CI) p Variables HR (95% CI) p Variables HR (95% CI) p

OS

Stage N > 0
SPC

Metastasis
Local recurrence

2.24 (1.49–3.36)
2.29 (1.37–3.84)
1.89 (1.08–3.32)
3.95 (2.62–5.97)

0.0001
0.0016
0.026

<1 × 10−6

rs1048201 CC
Alcohol: ever

HPSCC
Local recurrence

Regional recurrence
SPC

1.61 (1.01–2.55)
2.11 (1.18–3.74)
2.01 (1.25–3.24)
5.51 (3.33–9.11)
1.73 (1.06–2.84)
2.07 (1.09–3.93)

0.044
0.011
0.004

<1 × 10−6

0.029
0.026

Alcohol: ever
Stage N > 0

Local recurrence
Regional recurrence

Metastasis
SPC

1.51 (1.06–2.16)
1.81 (1.31–2.49)
4.84 (3.52–6.67)
1.49 (1.01–2.18)
1.72 (1.17–2.54)
2.32 (1.56–3.46)

0.024
0.0003

<1 × 10−6

0.044
0.006

4 × 10−5

LRFS

rs243865 TT
Stage T3–4
Stage N > 0

Non-OPSCC

2.92 (1.23–6.94)
2.97 (1.72–5.14)
2.19 (1.23–3.91)
2.29 (1.20–4.39)

0.015
0.0001
0.008
0.012

rs2228230 CT/TT
Non-OPSCC

2.26 (1.33–3.84)
1.74 (1.05–2.87)

0.003
0.032

rs7201 AC/CC
Stage T3–4
Stage N > 0

Non-OPSCC

1.56 (1.02–2.37)
1.69 (1.14–2.50)
1.68 (1.11–2.55)
1.66 (1.11–2.49)

0.038
0.008
0.015
0.013

MFS rs246395 CC
Regional recurrence

2.79 (1.01–7.69)
5.56 (1.71–18.13)

0.048
0.004 Regional recurrence 3.65 (1.62–8.22) 0.002 HPSCC

Regional recurrence
2.36 (1.13–4.89)
4.60 (2.37–8.92)

0.021
6 × 10−6

RT, radiotherapy; RT + CT, combination treatment; HR, hazard ratio; CI, confidence interval; OS, overall survival; LRFS, locoregional recurrence-free survival; MFS, metastasis free
survival; HPSCC, hypopharyngeal squamous cell carcinoma; Non-OPSCC, non-oropharyngeal squamous cell carcinoma; SPC, second primary cancer.
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Next, the cumulative effect of unfavorable genotypes on treatment outcomes was
assessed. The SNPs with p ≤ 0.05 in multivariate analysis were included; therefore, the
only combination to be studied comprised rs7201 and rs7501477 in relation to LRFS in the
whole group (see Table 1). The rs7201 C and rs7501477 T were assumed to be risk alle-
les. Patients with both unfavorable variants (i.e., rs7201 AC/CC + rs7501477 GT/TT)
had shorter LRFS than carriers of other variant combinations (Figure 2). The rs7201
AC/CC + rs7501477 GT/TT combination was associated with an over two-fold increased
genetic risk of locoregional recurrence (HR 2.21, 95% CI 1.25–3.91, p = 0.006). The combi-
nation was also an independent genetic predictor of unfavorable LRFS (HR 1.67, 95% CI
1.09–2.57, p = 0.020), together with clinical features such as T3–4, N > 0, and non-OPSCC.
Furthermore, when we tested the rs7201/rs7501477 combination in both treatment sub-
groups, the AC/CC + GT/TT elevated the risk of locoregional relapse (HR 2.43, 95% CI
1.11–5.29, p = 0.026), and it was an independent risk factor for LRFS in the RT + CT subset
(HR 1.79, 95% CI 1.00–3.19, p = 0.050).
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4. Discussion

The individual angiogenic potential of the patient may be of great importance for the
natural course of the disease and the effectiveness of radiotherapy, as well as systemic, treat-
ment [20]. To date, however, relatively little is known about the impact of common germline
variation in genes regulating angiogenesis on therapy outcomes in cancer, especially in
HNSCC, and the existing data are often inconsistent. In this study, we identified FGF2
rs1048201, PDGFRB rs246395, PDGFRA rs2228230, MMP2 rs243865, rs7201, and TIMP2
rs7501477 as predictors of the clinical outcome in HNSCC patients receiving radiotherapy
alone or combined with chemotherapy. In multivariate analysis, four of these SNPs were
associated with LRFS, one with MFS, and one with OS. Furthermore, the rs1048201 CC,
rs2228230 T, rs246395 CC, rs243865 TT, and rs7201 C showed an independent negative
effect on the outcome in the final models.

In our HNSCC group, FGF2 rs1048201 was found to be the only SNP related to OS
as observed in the subset treated with combination therapy. The rs1048201 CC genotype
increased the risk of death in these patients in a multivariate model. To the best of our
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knowledge, this SNP has not been studied in cancer before. However, several reports have
shown its importance in other pathological conditions such as osteoporosis, non-syndromic
orofacial cleft, or diabetic peripheral neuropathy [24,43,44]. The rs1048201 C>T is located in
the 3′ untranslated region (UTR) involved in controlling mRNA stability, localization, and
translation. The SNP may alter the potential target site for several microRNAs (miRNAs),
e.g., hsa-miR-496 [24], hsa-miR-196a-3p [44], and hsa-miR-545 [43], implying its role in
the regulation of gene expression. FGF2 aberrant expression has been found in a variety
of human malignancies [12]. For example, in head and neck [45–47] and lung [48,49]
cancers, elevated FGF2 levels in tumor or serum have been correlated with an aggressive
phenotype and unfavorable prognosis. Deregulated FGF/FGFR signaling promotes disease
progression by increasing angiogenesis and driving the growth, migration, and invasion
of cancer cells. Thus, the impact of the rs1048201 SNP on a long-term endpoint such as
OS, found in the combination treatment group, could be supported by the direct effect of
FGF2 on tumor survival and metastasis. Moreover, it has been shown that upregulated
FGF2 confers resistance to anticancer drugs, including cisplatin [50–52]. It is therefore
plausible that this SNP is of some importance in response to systemic therapy, and in-depth
functional studies in the context of cancer treatment would be warranted.

In the present study, the effect on MFS was only noted for PDGFRB rs246395 SNP. The
CC genotype was an independent prognostic factor associated with an almost three-fold
increase in the risk of distant failure after RT alone. Although rs246395 is a synonymous
SNP at codon 867 (L867L) in exon 19 and therefore, should not directly affect the amino acid
sequence of the protein, it may nevertheless influence mRNA splicing, stability, and struc-
ture, as well as protein translation and folding [53]. Similar to our observations, the only
study on this SNP demonstrated shorter survival in colorectal cancer patients carrying the
C variant [27]. In addition, the CC genotype was correlated with increased PDGFRB protein
levels and pathway activation in colorectal cancer cell lines. PDGFRB upregulation has been
linked to poor outcome, treatment resistance, and metastasis in several cancers [54–56].
Recently, in a large study on early-stage breast cancer, high PDGFRB expression was associ-
ated with the risk of recurrence after RT [57]. In oral cancer, a positive correlation was found
between elevated PDGFRB levels and lymph node metastases [58]. PDGFRB signaling
is implicated in covering new blood vessels with pericytes, providing their remodeling,
stabilization, and maturation, as well as the regulation of vascular perfusion, contributing
to tumor growth [59,60]. It can be speculated that rs246395 SNP (and/or other variants
in linkage disequilibrium, LD) may influence this process by modifying PDGFRB protein
function, resulting, for example, in perturbed pericyte–endothelial cell–cell interactions
and an increased likelihood of metastatic spread.

Another interesting finding of our study was the strong effect of PDGFRA rs2228230
on the risk of locoregional recurrence after combination treatment. Importantly, this effect
remained significant even after adjusting for multiple comparisons using the conservative
Bonferroni method. The magnitude of risk was also larger than that of the independent
clinical risk factor in the model. The rs2228230 V824V is located in exon 18, encoding
the tyrosine kinase domain II. It is the second synonymous SNP relevant for predicting
treatment outcomes in our HNSCC cohort, although data on its functional significance
and prognostic role in cancer are very limited and contradictory. Consistent with our
findings, in a Spanish study, the rs2228230 TT genotype was correlated with unfavorable
disease-free survival rates in patients with renal cell carcinoma [26]. In contrast, a Chinese
report showed a protective effect of variant T on OS and progression-free survival in acral
melanoma [25]. In the same study, the T allele was associated with decreased stability
and expression of PDGFRA mRNA and protein, as well as reduced downstream signaling
activity. Nevertheless, PDGFRA overexpression was observed in many cancers, which
correlated with malignant progression [11,61,62]. For example, high levels of PDGFRA have
been associated with regional metastasis and decreased survival in oral carcinoma [58,63].
Therefore, it seems that the sparse data obtained so far on rs2228230 suggest that the effect
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of this synonymous SNP is likely context-dependent and may vary according to e.g., the
ethnic origin of the population and/or type of cancer.

Furthermore, we demonstrated that the MMP2 gene variants were independently
associated with locoregional failure in our HNSCC group. The MMP2 SNPs have been
studied fairly extensively in the context of susceptibility to various cancers and non-
malignant pathologies, but the results were inconclusive [64,65]. In contrast, there is little
data on these SNPs as risk factors for cancer progression and clinical outcome, especially in
HNSCC. The rs243865 SNP causes -1306C>T transition in the gene promoter region that
abolishes the Sp1 binding site, reducing its transcriptional activity [28]. In the current study,
the TT genotype conferred a three-fold increase in the risk of recurrence after RT alone. This
corresponds to our previous report on inoperable NSCLC patients receiving RT with or
without chemotherapy, in which we found a significant association between the rs243865 T
and earlier progression [22]. The T allele also correlated with an unfavorable prognosis in
colorectal [66], ER negative breast [67], and cervical cancer [68], while in bladder cancer,
the rs243865 T carriers were at an increased risk of recurrence [69]. However, oral cancer
patients with T variant showed lower metastasis rates after surgery [70]. In addition,
it was shown that the MMP2 expression levels in HNSCC cell lines and tumors with
the CC genotype were higher compared to those carrying the CT genotype [71]. At the
same time, variant T was found to be protective with respect to head and neck cancer
susceptibility [70–72]. Thus, the present study indicates, for the first time, that the rs243865
TT may be a risk factor for HNSCC recurrence. Our findings support the functional
importance of this SNP; however, the direction of its effect in terms of different types of
cancer and treatments remains to be elucidated. Moreover, the complexity of the MMP2 role
in cancer should be mentioned here, since MMP2 may be involved in blocking angiogenesis
by cleaving plasminogen and producing angiostatin [15,73].

Finally, we identified MMP2 rs7201 C and TIMP2 rs7501477 T variants as predictors
of locoregional recurrence in the whole group, both individually and in combination. The
rs7201/rs7501477 combination also showed an independent effect on the risk of recur-
rence in all patients and in the combination treatment subset. The rs7201 is 3′UTR SNP
in the miRNA binding site, suggesting its regulatory effect on gene expression, while
rs7501477 -4804G>T in the gene promoter region is predicted to create binding sites for
several transcription factors that may act as activators or repressors of target genes [74]. It
has been found that the rs7201 C variant reduced the silencing effect of miRNA-520 g and
was associated with an increased expression level in the reporter assay [29]. Unfortunately,
there is no data on the predictive or prognostic value of this SNP in cancer. The only avail-
able studies concerned the risk of laryngeal and nasopharyngeal carcinomas and showed
no association [75,76]. In turn, the rs7501477 TT was identified as a risk factor for breast
cancer in a single study, but with no effect on survival [30]. Both MMP2 and TIMP2 are
known to interact with each other in modulating the angiogenic response. By regulating
the MMP2 catalytic activity, TIMP2 not only inactivates the active form of the enzyme,
but it is also required for the pro-MMP2 activation [77]. It can therefore be assumed that
rs7201 and rs7501477 SNPs, by leading to the MMP/TIMP imbalance, as well as possibly
affecting MMP2 and TIMP2 functions, may partially contribute to locoregional relapse in
HNSCC patients.

In summary, our data demonstrate that common germline alterations in some angiogenesis-
related genes may constitute determinants of treatment efficacy and tumor aggressiveness
in HNSCC relevant to standard therapy, such as curative RT alone or combined with
cisplatin-based CT. The observed effects may be specific to a particular modality of stan-
dard treatment. Our findings may also be of some importance in anti-angiogenic therapy
and immunotherapy. Moreover, recent data show beneficial effects of combining immune
checkpoint inhibitors with anti-angiogenic agents in several cancers [78]. Given the com-
plex interplay between the vasculature and immune systems, and the immunosuppressive
role of VEGF and other angiogenic molecules (e.g., FGF2) in the tumor microenviron-
ment [79], it cannot be excluded that variation in angiogenesis genes may contribute to the
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modulation of these processes, affecting the response to the above-mentioned therapies.
As the FGF2 rs1048201, PDGFRB rs246395, PDGFRA rs2228230, MMP2 rs243865, rs7201,
and TIMP2 rs7501477 have not been previously examined in HNSCC in terms of survival
and treatment outcome, this is most likely the first report describing their prognostic and
predictive value in this type of cancer. Nevertheless, our study has limitations, including
a moderate size of the patient group and currently little understanding of the biological
mechanisms explaining the observed associations. In addition, it cannot be ruled out that
the SNPs we identified are not true causal variants. Hence, their potential clinical relevance
should be investigated in large datasets, and functional studies are also required.

5. Conclusions

In conclusion, the present study shows that the FGF2 rs1048201, PDGFRB rs246395,
PDGFRA rs2228230, MMP2 rs243865, and rs7201 variants may independently predict
therapy failure and poor survival in non-surgically treated HNSCC patients receiving
radical RT alone or combined with cisplatin-based CT. Information on individual host
genetic risk factors could be a valuable complement to the classical clinical factors used to
assess the risk of locoregional and distant relapse in HNSCC, ultimately contributing to
improved prognosis.
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