
Hindawi Publishing Corporation
Clinical and Developmental Immunology
Volume 2011, Article ID 819724, 16 pages
doi:10.1155/2011/819724

Research Article

Gender-Specific Cytokine Pathways, Targets, and Biomarkers for
the Switch from Health to Adenoma and Colorectal Cancer

Patrizia Pellegrini, Ida Contasta, Tiziana Del Beato,
Fabiana Ciccone, and Anna Maria Berghella

National Council of Research (CNR), Institute of Translational Pharmacology (IFT), 67100 L’Aquila, Italy

Correspondence should be addressed to Anna Maria Berghella, annamaria.berghella@cnr.it

Received 29 June 2011; Revised 2 September 2011; Accepted 4 September 2011

Academic Editor: Clelia M. Riera

Copyright © 2011 Patrizia Pellegrini et al. This is an open access article distributed under the Creative Commons Attribution
License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly
cited.

Studies focusing on gender have shown that differences exist in how the immune system responds to disease and therapy. Under-
standing how gender influences immunological mechanisms in health and disease and identifying gender-specific biomarkers
could lead to specifically tailored treatment and ultimately improve therapeutic success rates. T helper1 (Th1) and Th2 cytokines
(Th1/Th2) have pivotal roles in the homeostasis of Th1 and Th2 cell network functions in the immune response but sex steroids
affect Th1/Th2 production in different ways and a natural sexual dimorphism in the immune response has been shown. In order to
investigate these differences further, we developed Th-cytokine data-driven models of the immune response and evaluated healthy
subject peripheral blood samples. Independent cohorts of colorectal cancer and adenoma patients were also studied for compa-
rison purposes. Our results show that the interferon (IFN)γ production pathway for immune response homeostasis is specific to
men whilst the interleukin- (IL-) 6 production pathway for immune response homeostasis is specific to women. The IL-10 pathway
for restoring immune system resting homeostasis was common to both but was controlled by the respective gender-specific
pathways. These gender pathways could well be used as targets and biomarkers in translational research into developing new clini-
cal strategies.

1. Introduction

Advances in the understanding of pathological mechanisms
and the identification of disease targets and biomarkers have
had a considerable impact on clinical practice [1]. One
change has been the shift from generalized medicine to a stra-
tified approach, with patients being placed in clinical diag-
nostic or therapeutic subgroups according to specific bio-
markers [2, 3]. It is hoped that this approach will lead to
more specific and effective treatment in the not too distant
future but this success depends upon the identification of
specific biomarkers that can be measured easily from disease
onset. Peripheral blood targets/biomarkers are currently the
most practical, noninvasive means of diagnosing disease,
predicting prognosis, and therapeutic response [4]. The
identification of gender-specific biomarkers in peripheral
blood would therefore open up an interesting field for re-
search given gender-related susceptibility to disease [5]. Sex

steroids, for example, have been shown to influence the regu-
lation of Th cell network balance, shifting the balance toward
a Th1 and/or Th2 type response, and both clinical and ex-
perimental data have demonstrated the presence of a natural
sexual dimorphism in the immune response [5–8]. During
their reproductive years, females have a more vigorous cellu-
lar and humoral immune response than males and a greater
ability to reject tumors and homografts [9–14]. Evidence
suggests that physiological levels of estrogen affect humoral
and cell-mediated immune responses, while the male hor-
mone, testosterone, does the opposite [15–17]. Ironically,
this enhanced baseline immune function is associated with
a higher prevalence of autoimmune disorders in females of
reproductive age [6], than in postmenopausal women or men
[18–21]. Sex steroids seem to affect Th1/Th2 production
in different ways: during pregnancy, the Th1/Th2 network
balance is skewed toward Th2 [22], thereby preventing re-
jection of the antigenically foreign fetus by a cell-mediated
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immune attack [23–26]. The in vitro influence of sex steroids
on T-cell cytokine production has been studied extensively
[27–30], showing, however, complex and diverse effects.

We believe that differences in Th1/Th2 production path-
ways in men and women are responsible for differences in the
immune response in health and disease. Gender differences
in immunological pathways imply different reactions to
disease as well as different reactions to drugs and hence the
identification of these gender-specific pathways could lead to
more successful treatment.

In order to demonstrate these differences, we developed
Th-cytokine data-driven models of the immune response
and evaluated peripheral blood samples taken from healthy
men and women. Independent cohorts of colorectal cancer
and adenoma patients were also evaluated for comparison
purposes. Our study indicates, for the first time, that gender-
specific Th1/Th2 pathways operate in maintaining the home-
ostasis of the immunological cell network. These gender-spe-
cific pathways may well be responsible for differing gender-
dependent responses to disease and therapy and open up an
exciting new field for research.

2. Materials and Methods

2.1. Experimental Design. Human studies were performed
in accordance with the standards of the Ethics Committee
and all persons gave their informed consent prior to their
inclusion in the study. To establish whether gender-specific
Th1/Th2 cytokine production pathways could be at the basis
of differences in immunological responses we designed an
experimental approach based on the use of cytokine data-
driven computational models of the immune response
(Figure 4).

Whole blood levels of Th1 and Th2 cytokines, indicative
of Th1 or Th2 cell differentiation, were used (Figure 4); the
relative proportion of each Th cell-type generation depends
on the cytokines produced by APCs (cellular network) and
released into the cell environment during resting and activa-
tion states of the immune response. Whole blood contains
all blood cells and the cell environment and so it includes
the cytokine levels from the “cellular network” and the “envi-
ronment network”, reflecting in vivo physiological conditions
more accurately and so appropriate to this study.

We worked on the assumption that the network profile of
the production levels of Th1 and Th2 cytokines (level network
profile) reflected Th1 or Th2 differentiation: balance between
the levels of Th1 and Th2 cytokine production indicated
normal Th1 and Th2 cell differentiation and so a productive
immune response.

We determined level network profiles in whole blood cul-
ture supernatants without activation (APC and T cells in
resting conditions) and with LPS (activated APCs) and PHA
(activated T cells). We also analyzed (i) the PHA-level net-
work profiles of separated (Ficoll/Hypaque gradient) periph-
eral blood mononuclear cells (PBMCs), in order to discover
whether T cellular components affect Th1/Th2 interaction;
and (ii) the level network profiles in blood serum, to identify
gender-specific Th1/Th2 biomarkers. The level network pro-

files were also determined in colorectal cancer and colon ade-
noma patient groups divided by sex, as independent cohorts
for comparison purposes.

The cytokines used in our Th-cytokine data-driven com-
putational models of the immune response were as follows:
IL-2, IFNγ, IL-4, IL-6, and IL-10, to make up our basic net-
work model, to establish if the direction in T cell differentia-
tion was Th1 and/or Th2 type; tumor necrosis factor (TNF)
α and IL-1β as serum biomarkers and IFNγ, IL-6, and IL-10
as LPS whole blood biomarkers, to determine if antigen pre-
senting cells (APCs) direction on T cell differentiation was of
Th1 or Th2 type; and soluble (s) IL-2 receptor (R) and sIL-6R
to estimate cell activation. Indeed, IL-2 and IFNy support
Th1 functions [31] promoting cell-mediated immunity;
IL-4, IL-6, and IL-10 are associated with Th2 responses and
IL-10 is a powerful inhibitor of IFNγ and macrophages [32].
IL-6 also supports Th17 functions, suppressing Th1 function
[33, 34], and has a key function in homeostasis influencing
Th differentiation into T regulatory (Treg) or Th17 cell
subsets. TNFα and IL-1β, on the other hand, are some of the
key mediators produced by APCs that dictate the course of
immune responses. sIL-2R and sIL-6R are activation markers
[35, 36].

2.2. Healthy Subjects. A group of 66 healthy subjects were
studied (33 men and 33 women). None of the subjects were
receiving concurrent drug treatment including widely used
pharmaceuticals, such as salicylates and sex hormones (con-
traceptive pill, hormone replacement therapy). Distribution
of age in the male and female groups was the same (men:
N = 33 mean ± SD = 41 ± 12.00 years; women: N = 33
mean ± SD = 41 ± 15.00 years; P = 0.14).

2.3. Independent Validation Cohorts of Colorectal Cancer and
Adenoma Patients. A group of 110 patients, 64 men and 46
women, who were diagnosed for the first time as having col-
orectal cancer and had to undergo colectomy were studied.
Distribution of age in male and female groups was the same
(men: mean ± SD = 65.60 ± 10.90 years; women: mean ±
SD = 65.90 ± 10.40 years; P = 0.89). Clinical diagnosis was
confirmed histopathologically and patients were subtyped
using the pTNM classification (according to the diagnostic
criteria of the American Joint Committee on Cancer and the
Committee of the International Union Against Cancer), as
follows: men 16 stage I, 30 stage II, 8 stage III, 10 stage IV; and
women 4 stage I, 23 stage II, 13 stage III, and 6 stage IV. None
of the patients received radiation or chemotherapy before
surgery. Distribution of stage in male and female groups was
the same (P = 0.87). Tumors varied from 2.5 to 9.0 cm in
diameter.

A group of 8 colon adenoma patients, 4 men and 4
women, were also studied. Distribution of age in the male
and female groups was the same (men: mean ± SD = 64.75
± 4.99 years; women mean ± SD = 69.50 ± 13.02 years, P =
0.52). Clinical diagnosis was confirmed histopathologically.
Distribution of age in male and female groups between
colorectal cancer and adenoma patients was also the same
(P = 0.61).
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2.4. Blood Samples. Blood was collected at the same time of
day to minimize the effects of diurnal variation. A 15 mL
sample of heparinized (Liquemin-Roche) blood (20 IU hepa-
rin/mL blood) was taken from each subject, and the samples,
kept at room temperature, were used immediately in whole
blood cell cultures. Additionally, 5 mL sample of peripheral
blood without heparin was also taken and, within 1 h of
withdrawal, the serum was stored in aliquots at −80◦C until
use.

2.5. Whole Blood Cell Cultures. Heparinized venous blood
[37] was diluted 1 : 10 with RPMI-1640 medium (Sigma,
endotoxin tested), which was supplemented with L-glu-
tamine 0.2 mM, penicillin 50 IU/mL, and streptomycin
50 μg/mL (Sigma) and distributed in 0.5 mL aliquots in
12 mm polystyrol tubes. 10 μg/mL of PHA and 10 μg/mL
of LPS (Sigma) were used for stimulation; aliquots without
stimuli were also prepared. Cell cultures were incubated at
37◦C in a humidified atmosphere of 5% CO2. After 24 h
and 72 h of culture without a change of medium, 320 μL
supernatant was removed from each tube to be assayed for
cytokine levels and stored in aliquots at −80◦C until used.
The effect of adding heparin which prevents clotting in whole
blood cultures was tested (data not shown).

Experimental conditions were as follows: with stimuli
(+PHA and +LPS) in order to recreate an activation situation
and without stimuli to evaluate immune response in resting
conditions. PHA was used to study T cell contribution [38]
and LPS the influence of antigen presenting cells [39]. As
mentioned in the “experimental design” the whole blood cul-
ture method was used [40]. It is a simple procedure and thus
reduces the potential for error and offers the added advantage
of not requiring the separation of cellular subpopulations
which would represent an additional source of potential
variation both in individuals and among individuals.

2.6. PBMC Cell Cultures. PBMCs were separated by centri-
fugation over a Ficoll/Hypaque gradient (20 min, 1000×g)
and washed with RPMI-1640 medium (Gibco). Isolated cells
were cultured at a concentration of 1×106 cells/mL in RPMI-
1640 complete medium (supplemented with 10% fetal calf
serum, L-glutamine 0.2 nM, penicillin 50 UI/mL, strepto-
mycin 50 μg/mL; Sigma). Supernatants were obtained from
PBMC cultures in RPMI-1640 complete medium. The cells
(with and without PHA, 3 μg/mL) were incubated at concen-
trations of 1 × 106 cells/mL at 37◦C in a humidified atmo-
sphere of 5% CO2. After 24 h of culture without a change of
medium, 120 μL supernatant was removed from each well,
centrifuged at 250x g, and stored in aliquots at −80◦C until
use.

2.7. Cytokine Detection. ELISA assays were used. This met-
hod has been described in detail elsewhere [41]. For intraas-
say precision, standard samples of known cytokine concen-
trations were assayed in replicates of 10, and the coefficient of
variation was <10%. For interassay precision standard sam-
ples were assayed 30 times in multiple assays to determine
precision between assays, and the coefficient of variation was
<10%.

The sensitivity of these ELISA assays was as follows:
sIL-2R <50 IU/mL, TNFα <1.5 pg/mL, (T Cell Diagnostics-
Cambridge, USA), IL-1β, IL-2 <5 pg/mL, and IL-4 <1 pg/mL
(Endogen, Cambridge, USA); sIL-6R <4, 3 ng/mL (Bio-
source, Belgium); IL-6 <2 pg/mL, IFNγ <4 pg/mL, and IL-10
<5 pg/mL, (Benfer-Scheller, Keystone, USA). Cytokine val-
ues were obtained using a specific software program (ELISA-
AID, Eurogenetics).

2.8. Statistical Analyses. In physiological systems compo-
nents operate as a network and individual network com-
ponents vary dynamically and covary with respect to one
another. Therefore, the identification of Th-cytokine phys-
iological pathways in this study and correlated biomarkers
can only be achieved through evaluations that take into
account systems biology characteristics [42, 43]. This entails
determining the level of cytokines, the study of the rela-
tionships between cytokine levels, and then the behaviour of
this multicomponent system as a network. Due to the com-
plexity of biological systems, this requires the use of math-
ematical models that provide a framework for determining
the outcome of numerous and simultaneous time-dependent
and space-dependent processes [44–46]. Hence, in addition
to the study of statistical differences between Th1 and Th2
cytokines, using the Mann-Whitney U test or the Student’s t-
test (as appropriate), we studied data-driven Th1/Th2 cyto-
kine models through multivariate statistical analyses using
“Statgraphics software systems” (full system 5.25 version 4.0;
graphics system by statistical graphics corporation ed., USA,
1989). Values of P ≤ 0.05 were considered significant.

We used the multivariate statistical procedure that anal-
yses the correlation between parameters and produces a
matrix of correlation coefficients (that vary from −1 to +1)
and significance (P), allowing a dynamic analysis of how
network components vary with respect to one another at
any moment in time. A positive correlation indicates that the
parameters vary in the same direction, while negative corre-
lation indicates that the parameters vary in the opposite dir-
ection. In fact, the multivariate statistical procedure that
analyses the correlation measures the linear associations bet-
ween all parameters, and if parameters increase or decrease
at the same time, the correlation is positive, whilst other
changes are considered negative. Statistically independent
parameters have an expected correlation of zero.

The multiple regression analysis, which provides a mod-
eling technique that allows us to relate a dependent variable
to one or more independent variables, was also used. Reg-
ression analysis allows us to summarize data and quantify
the nature and strength of the relationships among variables.
Hence, the multiple regression and stepwise multiple regres-
sion analyses (which assume that a variable can be predicted
from a set of other variables and seek the best mathe-
matical relationship between them) were used to study the
weight of each cytokine in the normal balance of Th1/Th2
physiological network. This procedure may be helpful in
building a model when we have a large number of possible
independent variables and are unsure which to include.
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Table 1: Cytokine levels were determined in (1) whole blood (wb) and PBMC supernatant (s) in physiological conditions (basic conditions)
and after stimulation with PHA (to study T cell network contribution) and LPS (to evaluate the influence of antigen presenting cells) (2)
in blood serum. The levels are expressed as mean ± SD and statistical differences between men and women were assessed using the Mann-
Whitney U-test or Student’s t-test as appropriate. Production levels of cytokines did not differ significantly with the exception of IL10 (using
the wb method) which was higher in men than in women when PHA stimulus was used (P = 0.038).

(a) Whole blood and PBMC supernatants

Healthy subjects

Men

Basic condition PHA LPS

pg/mL meanwb± SD means± SD meanwb± SD means± SD meanwb± SD

IL10 5 ± 13 26 ± 40 38 ± 43 94 ± 117 61 ± 96

IFN 149 ± 194 162 ± 146 1752 ± 2344 416 ± 389 1473 ± 2408

IL6 133 ± 376 391 ± 496 236 ± 303 1386 ± 2138 573 ± 715

IL2 256 ± 182 64 ± 78 249 ± 233 290 ± 197

IL4 15 ± 32 7 ± 10 22 ± 29 22 ± 24

Women

Basic condition PHA LPS

pg/mL meanwb± SD means± SD meanwb± SD means± SD meanwb± SD

IL10 26 ± 46 155 ± 181 7 ± 9 143 ± 155 73 ± 150

IFN 70 ± 110 173 ± 74 1300 ± 2294 1071 ± 1102 1603 ± 4603

IL6 35 ± 68 243 ± 239 104 ± 156 1921 ± 1654 317 ± 323

IL2 154 ± 140 239 ± 247 222 ± 193 573 ± 438

IL4 29 ± 48 24 ± 37 77 ± 116 10 ± 5

(b) Blood serum

∗U/mL Healthy subjects Colorectal cancer patients Adenoma patients
∗∗ng/mL Men Women Men Women Men Women

pg/mL mean ± SD mean ± SD mean ± SD mean ± SD mean ± SD mean ± SD

sIl2R∗ 233 ± 104 258 ± 191 520 ± 306 558 ± 240 237 ± 23 258 ± 52

SIl6R∗∗ 49 ± 38 64 ± 45 115 ± 62 139 ± 73 178 ± 47 181 ± 37

IL2 37 ± 29 68 ± 95 15 ± 36 17 ± 60 19 ± 3 86 ± 157

IFN 57 ± 121 67 ± 84 160 ± 193 146 ± 215 124 ± 89 68 ± 50

IL4 11 ± 11 11 ± 9 160 ± 244 141 ± 214 10 ± 4 21 ± 7

IL6 4 ± 11 5 ± 15 178 ± 783 68 ± 110 0.1 ± 0.2 8 ± 10

IL10 3 ± 5 3 ± 9 20 ± 25 52 ± 114 7 ± 5 6 ± 4

TNF 3 ± 9 3 ± 8 13 ± 25 11 ± 24 37 ± 4 131 ± 172

IL1 161 ± 215 171 ± 250 297 ± 300 343 ± 408 66 ± 30 77 ± 27

A forward or backward selection procedure is possible in
the latter method. The forward selection begins with no
variables (step 0) and adds them one at a time (steps 1, 2, etc.)
according to the highest F-statistic values. This allows us to
control the entry of variables into the model. The backward
selection procedure begins with a model containing all the
variables (step 0) and eliminates them one at a time (steps
1, 2, etc.) according to the lowest F-statistic values. The
forward selection is comparable to onset and evolution of the
immune response whilst the backward selection procedure is
comparable to the physiological return to equilibrium. When
we have finished entering and removing variables, the system
then estimates the final model using the Graham-Schmidt
algorithm to get the most accurate estimates possible and
display the model fitting results.

3. Results

3.1. Healthy Subjects: Differences in the Level Network Profiles
of Men and Women Are Not, in Theory, Responsible for the
Sexually Dimorphic Generation of the Immune Response in
Healthy Subjects. Pathological conditions have been found to
arise from alterations in the environment Th1/Th2 cytokine
network since the relative proportion of each Th1 and/or Th2
cell-type generation, and so the type of immune response,
depends on the level of each Th1 and/or Th2-type of cyto-
kine. Our results show that gender-related differences in the
immune response in health are not the result of differences
between male and female level network profiles, because no
significant differences were observed in these profiles, with
the exception of IL-10 which was higher in men when PHA
stimulus was used (see Table 1).
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3.2. Differences in the Relationships in the “Level Network
Profiles” However, Could Be Responsible for the Sexual Dimor-
phism of the Immune Response in Health. In fact, in the
evaluation of the Th-cytokine data-driven models of the
immune response (Figure 4) it emerged that the level
network profile with activated APCs (+LPS, Figure 1) affects
the direction of the immune response in both men and
women under resting (Basic, Figure 1) and activated (+PHA,
Figure 1) conditions.

Hence, APCs (+LPS, Figure 1) regulate the starting type
(Basic) and evolution (+PHA) of immunological responses
in both men and women, but the effect under resting con-
ditions (Basic, Figure 1), resembling the onset of the immune
response (because the cells are in the resting state), appears
to be exerted by IFNγ production in men, and by IL-6
in women, whilst in activated conditions (PHA, Figure 1),
resembling the evolution of the immune responses (because
the cells are in the activation state), by IL-6 production again
in women but by IFNγ and IL-6 in men.

The network profile of the production levels of Th1 and
Th2 cytokines (level network profile) in resting (Basic, in the
sense of unstimulated) conditions does not appear to have a
specific role in T cell differentiation in men since no signifi-
cant relationships were found in whole blood culture super-
natants without stimulus (Figure 1). In women, this regu-
lation would appear to be exerted through a Th1 and Th2
linked production of IL-2 (Th1) and IL-4 (Th2), IFNγ (Th1)
and IL-6 (Th2) cytokines (Figure 1). Interestingly, this IL-2
and IL-4 Th1/Th2 interregulation in women seems to have
both an early and late role in the control of the Th1 and Th2
cell network since the relationships between their levels are
significant in both the 24-hour and 72-hour culture super-
natant cytokine assays. The interregulation between IL-6
and IFNγ levels is only significant in the 72-hour assay (cyto-
kine assay of the whole blood supernatant after 72 h of cell
culture).

Additionally, in Figure 1 it would appear that the early
differentiation of activated T cells (+PHA after 24 h of cul-
ture) is influenced by the positive linked production of IL-6
and IL-4, IFNγ and IL10 cytokines in men, and the negative
linked production of IL-6 and IL-10 cytokines in women.
Likewise the late Th1 or Th2 differentiation of activated T
cells (+PHA after 72 h of culture) seems to be influenced
by the positive linked production of IFNγ and IL-4 in men,
while by IL-6 and IFNγ in women.

3.3. Differences between Men and Women in the Relationships
of Serum “Level Network Profiles” Could Represent Possible
Gender Biomarkers for Sexually Dimorphic Generation of Im-
mune Responses in Health and Disease States. Gender-specific
and gender-common significant Th1/Th2 network relation-
ships were found in serum in men and women (Figure 2).
A gender-specific biomarker in resting conditions (Figure 4)
may be the positive relationship between IL-2 and IL-6
cytokines which was significant in men but not women (Fig-
ures 2 and 5: “T cell”). Gender-specific biomarkers in activa-
tion conditions (Figure 4) may be the positive relationships
between sIL-2R and IFNγ, sIL6-R, and sIL-2R (Figures 2 and
5: “T cell”) which again were significant in men, but not in

women. No women gender-specific relationships were found
in resting conditions but positive relationships between sIL-
2R and IL-4, sIL-6R and IFNγ were identified in activation
conditions (Figure 5) that could be used as biomarkers.
The positive relationship between sIL-6R and IL-4 and the
negative one between sIL6R and IL6 may represent common
activation biomarkers for both men and women.

The negative relationships between IL-1β and IL-2, TNFα
and IL-1β, TNFα and IFNγ, and TNFα and IL-4 and the pos-
itive one between TNFα and IL-6 (Figures 2 and 5: “APC”),
are possible male gender specific biomarkers for APC T cell
differentiation in men in resting conditions (Figure 5). There
were no female APC gender-specific biomarkers in resting
conditions, whilst a common biomarker in resting condi-
tions appears to be the positive relationship between IL-1β
and IL-4 (Figures 2 and 5). Finally, the positive relationships
between IL-1β and sIL6R in men and IL-1β and sIL-2R in
women (Figure 2) are possible gender-specific biomarkers
for APC T cell differentiation in activated conditions,
whereas the negative relationship between TNFα and sIL-6R
a common APC biomarker (Figure 5).

Additionally age in men was related to IL-1β (c.coef. =
0.45, P = 0.010) and in women to IFNγ (c.coef. = 0.71, ∗P <
0.0001), sIL-6R (c.coef. = 0.51, P = 0.004) and IL-10 (c.coef.
= −0.35, P = 0.047).

3.4. Colorectal Cancer and Adenoma Patients: Differences
between Men and Women in “Level Network Profiles” Are Not
Responsible for the Sexually Dimorphic Generation of Immune
Responses in Disease but as Discussed in the Last Section,
Differing Responses May Arise from Differences in the Relation-
ships within “Level Network Profiles”. In order to confirm our
results on healthy subjects, independent cohorts of colorectal
cancer and adenoma patients were also assessed using the
same Th-cytokine data-driven computational models. No
significant differences were found between men and women
in serum “level network profiles” in both colorectal cancer
and adenoma patients, confirming our results concerning
healthy subjects (Table 1). In addition, significant alterations
in the IFNγ and IL-6 gender-specific pathways and IL-10
gender-common pathways were found in colorectal cancer
patients (Figure 2). Further confirmation also came from the
finding that in adenoma patients, gender-specific pathways
IFNγ and IL-6 still partially regulate immune response
homeostasis in men and women and in neither sex was
a significant relationship observed between IL-10 and the
other Th1/Th2 network components (Figure 3).

3.5. Colorectal Cancer Patients: Alterations in the Relationships
of IFNγ and IL-6 Gender-Specific Pathways and of IL-10 Gen-
der-Common Pathways Are Biomarkers for the Loss of Immune
Response Homeostasis and Disease Progression in Both Men
and Women, but through Gender-Specific Mechanisms. No
significant relationships with IFNγ were observed in the
male group or with IL-6 in the female group indicating
alterations in the gender-specific Th-cytokine pathways
(Figure 2, healthy subjects and colorectal cancer patients).
Significant relationships between IL-10 and other Th1/Th2
network components were observed in both men and women
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Figure 1: Continued.
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Figure 1: Relationships using the whole blood assay method (72h assay, black): (black triangle) Positive relationships. Relationships using
PBMC cells separated by Ficoll/Hypaque gradient procedures (24 h assay, white): (white triangle) positive and (crescent shape) negative
relationships. Basic Condition: resting state; +LPS: APC activated condition; +PHA: T cell activated condition. Basic condition (b), LPS (L),
PHA (p). In healthy subjects, differences in the relationships in the “level network profiles” could be responsible for the sexual dimorphism of
the immune response in health. Gender-specific relationships in “level network profiles” affect the direction (Th1 or Th2) of the immune
response under resting (Basic) and activated (+PHA) conditions. APCs (+LPS) regulate the starting type and evolution of immunological
responses in both men and women: the starting type (+LPS → Basic,) appears to be regulated by IFNγ production in men, and by IL6 in
women; the evolution (+LPS → +PHA) by continuing IL6 production in women and by IFNγ in men. No significant relationships were
found in whole blood culture supernatants without stimulus (basic conditions) in men. In women, this regulation would appear to be
exerted by the linked production of IL2, IL4 and IFNγ, IL6 cytokines (relationships in basic conditions). The IL2 and IL4 interregulation in
women seems to have both an early and late role since the correlation between their levels are significant in both the 24h and 72h culture
supernatant cytokine assays; the interregulation between IL6 and IFNγ levels only has a late function because it is only significant in the 72h
assay. The earlier evolution of activated T cells (+PHA 24h culture) seems to be influenced by the linked production of IL6 and IL4, IFNγ
and IL10 cytokines in men; while by IL6 and IL10 cytokines in women. The late evolution of activated T cells (+PHA 72h whole blood of
culture) on the other hand seems to be influenced by the linked production of IFNγ and IL4 in men, while by IFNγ and IL6 in women.

groups, but through different Th1/Th2 pathways, indicating
alterations in gender common Th-cytokine pathways. How-
ever, sexual dimorphism in cytokine relationships included
(Figures 2 and 5) the following: (1) a positive relationship
between serum levels of IL-6 and IL-4 in the male group,
which in its turn was positively correlated to IL-10 levels;
(2) a negative relationship between IL-2 and IFNγ in the
female group; (3) positive relationships between serum
levels of sIL-2R activation biomarker and IL-10 in men,
in addition to the relationship between sIL-2R and IL-4;
and (4) a negative relationship between sIL-2R and IL-2,
and a positive one between sIL-2R and IL-10 in the female
group. Finally, positive relationships between TNFα, the APC
biomarker, and IFNγ and IL-4 were again found in the female
group (Figure 2). However, no relationships between APC
biomarkers in activation conditions (Figure 4) were found in
either group (Figures 2 and 5).

In fact, we found that patient disease progression (stage
correlation) was related to an increase of IL-10 (men: c.coef.

= 0.61, P = 0.002; women: c.coef. = 0.81, P = 0.002) and
sIL-2R (men: c.coef.=0.39, P = 0.048; women: c.coef.=0.70,
P = 0.009) ) in both sexes, but in men disease progression is
also related to an increase of IL-4 (c.coef. = 0.49, P = 0.014)
and IL-6 (c.coef. = 0.42, P = 0.034), while in women to a
decrease in IL-2 (c.coef. = −0.58, P = 0.031). Moreover in
women age is linked to a decrease of TNFα (c.coef. = −0.67,
P = 0.012) and sIL-2R (c.coef.= −0.57, P = 0.033).

3.6. Adenoma Patients: The Relationships Described Represent
Gender-Specific Biomarkers for the Passage from Health to
Adenoma and Colorectal Cancer Disease. Gender-specific
IFNγ (men) and IL-6 (women) pathways still partially
regulate Th1 and Th2 cell network homeostasis in adenoma
patients, in contrast to colorectal patients (Figure 3). Under
immune resting conditions (Figure 4), the significant posi-
tive relationship between IL-6 and IL-4 indicates that IL-6
pathways were still operating within the Th1/Th2 network in
the group of female patients (Figures 3 and 5). No significant
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Figure 2: Continued.
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Figure 2: Differences between men and women in the relationships of serum “level network profiles” could represent possible gender
biomarkers for sexually dimorphic generation of immune responses in health and disease states. In healthy subjects (a), significant gender-
specific and gender-common Th1/Th2 network relationships were found in serum which could be used as biomarkers to identify the
direction of T cell differentiation. However, in neither sex did the IL10 cytokine interact with other network components. In colorectal cancer
patients (b) no significant relationships with IFNγ in the male group were observed or with IL6 in the female group, indicating alterations in
the gender-specific Th-cytokine pathways; significant relationships between IL10 and other Th1/Th2 network components were observed in
both men and women groups indicating alterations in the gender-common pathways but through different Th1/Th2 pathways.

Th1 polarization biomarkers were found in either sex under
activation conditions; Th2 polarization biomarkers, on the
other hand, were linked to an increase of sIL-2R and IL-4 in
men, and sIL-2R and IL-6 plus sIL-2R and IL-4 in women
(Figures 3 and 5).

Under immune resting conditions (Figure 4) the signif-
icant negative relationship between TNFα and IFNγ, and
the positive one between IL-1β and IFNγ levels, in addition
to TNFα and IL-2, indicate that APC IFNγ pathways were
still operating within the Th1/Th2 network model under
basic conditions in men (Figures 3 and 5). In women, the
influence of APCs under basic conditions emerges from posi-
tive relationship between TNFα and IL-2 (Figures 3 and 5).
APCs do not seem to influence Th1 and Th2 cell network
homeostasis under activation conditions (Figure 4). In fact,
no statistically significant relationships were found between
soluble molecules (sIL-2R and sIL-6R) and TNFα or IL-1β in
either group (Figures 3 and 5).

Even if the results of the adenoma study should be
handled with prudence considering the number of patients,
IFNγ and IL-6 pathways partially regulate Th1 and Th2 cell
network homeostasis (IFNγ in men and IL-6 in women,
resp.). However, in neither sex was a significant relationship
observed between IL-10 and other Th1/Th2 network com-
ponent which should be short-lived in both sexes. Therefore,
IL-10 environment persistence is a biomarker for the loss
of the regulatory mechanisms responsible for restoring the
initial Th1/Th2 physiological equilibrium [47] in men and
women.

4. Significant Independent Factors for
Predicting Alterations in Immune Response
Homeostasis Regulation of Common and
Gender-Specific Th-Pathways

The stepwise multiple regression analysis, using the forward
procedure, allowed us to identify the greatest weighting pa-
rameters on IFNγ and IL-6 gender-specific pathways and
IL-10 gender-common pathways. The results also indicate

that the serum level of IFNγ (P = 0.0001) in men could
be a significant independent factor for predicting a possible
alteration in IL-10 regulation of the balance between Th1
and Th2 cell types (Figure 6). The independent factors sIL-
2R (P = 0.0004) and IL-10 (P = 0.0001) are, on the other
hand, important for predicting an alteration in the normal
regulation that IFNγ exerts over the balance between Th1
and Th2 cell types. In women (Figure 6) sIL-2R (P = 0.041)
and IL-4 (P = 0.003) may prove useful as significant
independent factors to predict alterations in the normal reg-
ulation that IL-10 exerts over the balance between Th1 and
Th2 cell types; likewise sIL-6R (P < 0.0001) and IFNγ (P <
0.0001) may prove useful as significant independent factors
to predict alterations in the normal regulation that IL-6
exerts over the balance between Th1 and Th2 cell types. The
results of multiple regression analysis show that age could
also be a significant independent factor for IFNγ (P = 0.01)
and IL-10 (P = 0.03) in men; whilst in women age appears to
be significant for sIL-6R (P = 0.002) and IFNγ (P = 0.04).

5. Discussion

We put forward the hypothesis that gender-dependent im-
mune responses in health and disease states and differing
reactions to disease and therapy could be due to gender-
specific Th1/Th2 production pathways. The identification of
these gender-specific pathways and the correlated targets/
biomarkers could lead to more specifically tailored treatment
and better therapeutic success rates. In order to test this
hypothesis, we decided to study and evaluate the possibility
of using Th1 and Th2 cytokines as biomarkers in immune
response models, as they are responsible for propelling the
immune response in a given Th1 or Th2 direction: the “level
network profile” (the network profile of the production
levels of Th1 and Th2 cytokines) by APCs is indicative of
the direction of T cell differentiation during the immune
response, and the balance between their levels and between
their relationships indicates a normal Th1 and Th2 cell dif-
ferentiation and so a productive immune response; a lack
of balance indicates pathology. We developed Th-cytokine
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Figure 3: In adenoma patients (a), gender-specific pathways partially regulate Th1 and Th2 cell network homeostasis. In neither sex was a
significant relationship observed between IL10 and other Th1/Th2 network components. IFNγ and IL6 pathways (in men and women, resp.)
still regulate, albeit partially, the sex-specific Th1 and Th2 cell network homeostasis (and so the immune response) in adenoma patients;
in neither sex was a significant relationship observed between IL10 and other Th1 and Th2 network cytokines. No significant relationships
for IFNγ or IL6 (in men and women, resp.) were observed in colorectal cancer patients (b), indicating alterations in the gender-specific
regulatory pathways responsible for Th1/Th2 physiological homeostasis. The persistence of IL10 within the environmental network is a
significant biomarker for the loss of Th1 and Th2 cell network homeostasis and disease progression in both men and women, mediated
however through different sex-related Th1/Th2 pathways. In normal immune response the influence of IL10 on Th polarization is short-
lived in both sexes.
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Figure 4: Th-cytokine models of the immune response in resting and activation conditions: whole blood levels of specific Th1 and Th2
cytokines were used as biomarkers in Th-cytokine data-driven computational models of the immune response to determine the direction of
T cell differentiation (Th1 or Th2). The cytokines used in our Th-cytokine data-driven computational models of the immune response
were: interleukin (IL)-2, interferon (IFN)γ, IL-4, IL-6, and IL-10, to make up our basic network model, to establish if the direction in T cell
differentiation was Th1 and/or Th2 type; tumor necrosis factor (TNF)α and IL-1β as serum biomarkers and IFNγ, IL-6, and IL-10 as LPS
whole blood biomarkers, to determine if APC direction on T cell differentiation was of Th1 or Th2 type; and soluble (s) IL-2 receptor (R) and
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data-driven models of the immune response (Figure 4) and
evaluated peripheral blood samples of healthy subjects. To
back up our results, independent cohorts of colorectal cancer
and adenoma patients were also evaluated. Our hypothesis
was confirmed since our results not only indicate that gen-
der-specific treatment should improve therapeutic success
rates but also highlight the importance of peripheral blood

Th1/Th2 network pathways as physiological targets/biomar-
kers in clinical investigations and translational pharmacology
research.

The results of this study indicate, for the first time, that
physiological gender-specific Th1/Th2 pathways regulate the
homeostasis of the Th1/Th2 cell network and hence the
immune response. These gender pathways are therefore
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probably responsible for gender-dependent reactions to
disease and therapy as a consequence of their specific, regu-
latory roles in Th cell polarization during the development
of the immune response and in restoring physiological
homeostasis.

The new points that emerge from our study can be sum-
med up as follows: (1) IFNγ and IL-6 production pathways
are respectively male and female gender-specific health
pathways for immune response homeostasis (Figure 1) and
consequently targets and/or biomarkers for the passage from
health to adenoma and colorectal cancer (Figures 2 and 3);
(2) the IL-10 pathway is a common-gender pathway involved
in restoring immune system resting homeostasis (Figure 1),
but only if controlled by the respectively gender specific path-
ways; otherwise it is a cancer progression target/biomarker
(Figures 2 and 3); (3) the gender specific differences in serum
“level network profiles” represent significant biomarkers that
could be used to develop more specific approaches (Figures
5 and 6).

In more detail, our results showed that gender specific
IFNγ and IL-6 pathways respectively regulate male and
female immune response homeostasis, however in neither
sex were significant relationships observed between IL-10
and other Th1/Th2 network components, apart from that
between IL-10 and IFNγ in the male group and IL-10
and IL-6 in the female group precociously in the cellular

network (24 h) (Figure 1). In order to maintain a normal
balance between Th1 and Th2 cells, the effect of IL-10 on
Th polarization must be, therefore, short-lived and in the
linked positive production of IFNγ and IL-10 cytokines in
men and the negative production of IL-6 and IL-10 in
women, IFNγ and IL-6 pathways could be considered gender
specific pathways for the regulation of immune system
homeostasis (Figure 1). APC regulation in Th1 and Th2 cell
network homeostasis also appeared to be exerted through
IFNγ production in men, and IL-6 production in women in
both resting and activated conditions (Figure 1, correlation
between the results of LPS and basic and PHA stimulus,
resp.). So it would appear that IFN and IL-6 Th-cytokine
pathways are gender specific targets and biomarkers for the
onset and development of the immune responses, whilst
IL-10 Th-cytokine pathways operate in the same way in both
sexes, regulating the recovery of homeostatic equilibrium
within the Th1 and Th2 cell network at the end of the im-
mune response.

The above results in healthy subjects were confirmed
by the results in the adenoma and colorectal cancer disease
groups. In fact, within our colorectal cancer patient group
we noted alterations in the IFNγpathways in men and IL-6 in
women and persistence of IL-10 under both resting and acti-
vated conditions (Figure 2). In the adenoma group, on the
other hand, IFNγ and IL-6 pathways still partially regulated
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gender specific Th1 and Th2 cell network homeostasis but in
neither sex was a significant relationship observed between
IL-10 and other Th1/Th2 network components (Figure 3).

Our results indicate that in the normal mucosa through
adenoma to tumor progression, the host immune response
proceeds from a physiological condition, where gender-spe-
cific Th1/Th2 pathways regulate the homeostasis of the Th1/
Th2 cell network, to a type with partial or absent gender-spe-
cific Th1/Th2 pathways regulation and immunological sup-
pressive characteristics (adenoma and cancer patients). Mor-
eover, in the adenoma patients there was no IL-10 involve-
ment, while this parameter was implicated in the cancer
patients’ immune responses, suggesting that IL-10 may be
prognostic for the passage from adenoma to cancer as a dual
biomarker together with sIL-2R (Figures 1, 2, 3, and 6).

In fact in healthy subjects, the sIL-2R in men and sIL-6R
in women were principally related to IFNγ (Figures 2 and 6),
which plays an important role in the development of Th1
cells; in adenoma the TNFα in men and IL-4 in women

were, respectively, related to IFNγ and IL-6 (Figures 3 and 6).
So in the adenoma patients, gender-specific Th1/Th2 path-
ways were involved in the Th1/Th2 network, while IL-10
(immunologically suppressive) was excluded; in the patient
group there was an inverted situation.

Since the stepwise nature of colorectal cancer has been
well defined and colon adenoma has been identified as a pre-
cursor of colorectal cancer, colon adenoma is a particu-
larly meaningful intermediate outcome for studying fac-
tors related to colorectal cancer. Therefore, the differences
observed between colon adenoma and colorectal cancer pa-
tients confirm that the IFNy production pathway for immune
response homeostasis is specific to men, while the IL-6 pro-
duction pathway for immune response homeostasis is spe-
cific to women. The IL-10, pathway for restoring immune
system resting homeostasis was common to both but was
controlled by the respective gender-specific pathways. In this
way our hypothesis is confirmed: gender-dependent immune
responses in health and disease states and differing reactions
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to disease and therapy could be due to gender-specific Th1/
Th2 production pathways. These gender-specific pathways
and the correlated targets/biomarkers (Figure 6) could lead
to more specifically tailored treatment and better therapeutic
success rates.

In fact, the observations made in this study may be useful
for gender-specific therapeutic strategies. In men (Figures 2
and 6) changes in the level of IFNy, IL-10, and sIL-2R
within the physiological normal ranges and high levels of the
dual target sIL-2R/IFNy are biomarkers of immunological
homeostasis and therapeutic success. Instead, significantly
high levels of the dual target sIL-2R/IL-10 are biomarker of
immune deficiency and treatment failure. Likewise in women
(Figures 2 and 6) changes in the levels of sIL-6R, IFNy,
sIL-2R, IL-4, and IL-10 within the physiological normal
ranges and high levels of the dual targets sIL-6R/IFNy and
sIL-2R/IL-4 are biomarkers of immunological homeostasis
and therapeutic success. Instead, significantly high levels of
the dual target sIL-2R and IL-10 are biomarker of immune
deficiency and treatment failure.

The mechanisms responsible for gender-specific disease
susceptibility have yet to be clarified. However our data sug-
gest that the answer may lie in the differing capacity of cells
to defend themselves against oxidative stress [48]. The cells
of men and women differ greatly in terms of reactive oxygen
species production and oxidative stress susceptibility [48–50]
and this appears to be a promising new field of investigation.
In all cell types it has been found, for example, that oxygen
metabolism can lead to the production of reactive oxygen
species (ROS) such as radicals. All cell types, including lym-
phocytes and other immune system cells, present a complex
range of antioxidant compounds and enzymes, such as
glutathione (GSH) and thioredoxin reductasi (TRX) [51, 52]
to neutralize ROS and to preserve the cell oxidative balance.
Gender-associated redox features of cells have also been des-
cribed [49, 50]. The activities of ROS, for example, appear
to be regulated differently in males and females and can be
directly influenced by sex hormones [49, 50].

In vivo studies have further demonstrated the incapacity
in males, but not in females, of maintaining intracellular
reduced redox conditions, essential for normal cellular func-
tions [48]; this explains, at least in part, the differences bet-
ween the two sexes in the maintenance of the immune
system homeostasis which we observed. In fact, if as has been
proposed, IFNγ is a direct stimulator of PBMC thioredoxin
and thioredoxin reductase (RTrx) system gene expression in
human T cells [53, 54] and there is a positive feed-back
circuit involving IFN-γ and Trx/RTrx gene expression in the
regulation of intracellular reduced oxitative condition which
is essential for Th1 immune response, then we can assume
that the immunological response through the IFNγ pathway
in men reduces the intracellular oxidative levels to preserve
the cell oxidative balance control. In fact, male cells, as we
mentioned, are incapable of maintaining an intracellular
reduced oxidative condition and this would explain their
greater susceptibility to diseases in which the immunological
defense is prevalently Th1 type, such as tumors [47]. Simi-
larly if we consider that the key function of IL-6 is the
homeostasis within the Th cell differentiation in Treg or

Th17 cells [33, 34], it is clear why women are more sus-
ceptible to diseases characterized by a lack of regulatory cell
functionality such as autoimmune diseases [33, 55].
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