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ABSTRACT The complete genome sequence of Rhodococcus sp. strain SGAir0479 is
presented here. This organism was isolated from an air sample collected in an in-
door location in Singapore. The consensus assembly generated one chromosome of
4.86 Mb (G�C content of 69.8%) and one plasmid of 104,493 bp.

Members of the genus Rhodococcus are naturally present in diverse temperate and
extreme environments, and they can persist and grow in highly contaminated

soils and waters (1). Some strains show pathogenicity for humans, animals, and plants
(2). In addition, most of the described species are capable of metabolizing a wide
variety of environmental pollutants, including trichloroethene, haloalkanes, and diben-
zothiophene (3–6).

Rhodococcus sp. strain SGAir0479 was isolated from an air sample collected in an
indoor area in Singapore (1°20=42.5�N 103°40=44.2�E) using an Andersen single-stage
impactor (SKC BioStage, USA) operating at 28.3 liters/min for 3 min. The air was
impacted onto Trypticase soy agar (TSA) (Becton, Dickinson, USA) plates, which were
then incubated overnight at 30°C. CFU were manually isolated, and strain SGAir0479
was further cultured in lysogeny broth (LB; Becton, Dickinson, USA) overnight at 30°C,
followed by genomic DNA extraction with the Wizard genomic DNA purification kit
(Promega, USA). Preliminary taxon identification screening was performed with Sanger
sequencing using 16S rRNA universal primers 27F and 1392R (7) and subsequent
BLASTn search of the sequencing result. The PacBio library was prepared with the
SMRTbell template prep kit version 1.0 (Pacific Biosciences, USA) and subjected to
single-molecule real-time (SMRT) sequencing on the PacBio RS II platform, which
generated a total of 93,748 subreads with a combined total of 1,199,875,648 bases.

The sequencing reads were then assembled with the Hierarchical Genome Assembly
Process (HGAP) version 3 (8) implemented in the PacBio SMRT Analysis 2.3.0 package.
Polishing of the assembly was performed with Quiver (8). The consensus assembly
generated two contigs, one chromosome of 4.86 Mb (156.5-fold coverage) and one
plasmid of 104,493 bp (68.2-fold coverage). The chromosomal contig showed a mean
G�C content of 69.8%.

The NCBI Prokaryotic Genome Annotation Pipeline (PGAP) version 4.2 (9) was used
for genome annotation. Unless specified, all software was run using default settings. A
total of 4,616 genes were predicted with 4,461 protein-coding genes (PCGs), 12 rRNA
genes (4 each of 5S, 16S, and 23S rRNAs), 53 tRNAs, 3 noncoding RNAs, and 87
pseudogenes. Based on Rapid Annotations using Subsystems Technology (RAST) (10)
analysis (using the ClassicRAST annotation scheme and addition of the “fix frameshifts”
option), the three subsystem categories with the highest feature counts were amino
acids and derivatives (488), carbohydrate metabolism (400), and cofactors, vitamins,
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prosthetic groups, and pigment formation (321). In this respect, at least 66 genes were
found to be potentially involved in metabolism of aromatic compounds. Among these,
11 genes are part of the biphenyl degradation pathway (e.g., bphC, bphD, bphI, and
bphj2) previously described to be involved in polychlorinated biphenyl (PCB) degrada-
tion (6, 11). The PCB degradation is a particular metabolic capability which may provide
this microorganism with the ability to perform aerobic bioremediation (12).

Average nucleotide identity (ANI) analysis (13) showed that strain SGAir0479 has
only 84.0% sequence identity to the genome of the closest species, Rhodococcus
agglutinans. These values are below the ANI criteria for accurate taxonomic classifica-
tion of strain SGAir0479 on the species level (minimum of 95 to 96% identity required)
(14). However, it is sufficient to show the relationship between strain SGAir0479 and the
Rhodococcus genus. To further confirm or refute this taxonomic classification, Phyla-
AMPHORA (15) was run using MarkerScanner.pl with the added DNA flag and using
MarkerAlignTrim.pl with the options WithReference and OutputFormat phylip; 16S
identification was also performed. The results showed 92.9% identity to Rhodococcus
equi and 99.9% identity to Rhodococcus sp. strain DSD 51W, confirming the assignment
of this organism to the Rhodococcus genus.

Data availability. The complete genome sequences of Rhodococcus sp. strain

SGAir0479 and its plasmid have been deposited in DDBJ/EMBL/GenBank under the
accession numbers CP039432 and CP039433, respectively, and in the SRA under
accession number SRR9043824.
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