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Humans and other animals often infer spurious associations among unrelated events.
However, such superstitious learning is usually accounted for by conditioned associa-
tions, raising the question of whether an animal could develop more complex cognitive
structures independent of reinforcement. Here, we tasked monkeys with discovering
the serial order of two pictorial sets: a “learnable” set in which the stimuli were implic-
itly ordered and monkeys were rewarded for choosing the higher-rank stimulus and an
“unlearnable” set in which stimuli were unordered and feedback was random regardless
of the choice. We replicated prior results that monkeys reliably learned the implicit
order of the learnable set. Surprisingly, the monkeys behaved as though some ordering
also existed in the unlearnable set, showing consistent choice preference that transferred
to novel untrained pairs in this set, even under a preference-discouraging reward sched-
ule that gave rewards more frequently to the stimulus that was selected less often. In
simulations, a model-free reinforcement learning algorithm (Q-learning) displayed a
degree of consistent ordering among the unlearnable set but, unlike the monkeys, failed
to do so under the preference-discouraging reward schedule. Our results suggest that
monkeys infer abstract structures from objectively random events using heuristics that
extend beyond stimulus–outcome conditional learning to more cognitive model-based
learning mechanisms.
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Learning is vital for survival. Learning mechanisms have been extensively studied in
laboratory tasks that are learnable i.e., contain objective regularities that can be discov-
ered through trial and error. However, in natural environments animals must not only
learn but decide what to learn—that is, distinguish between true relationships that can
be successfully learned and spurious associations that are random and unlearnable. For
example, upon seeing a red Toyota driving by in the rain one may attempt to learn the
mechanisms by which the Toyota prevents skids (a learnable question) but should not,
ideally, attempt to learn if there is a relationship between red Toyotas and rain (a ran-
dom unlearnable question) (1). However, humans (2–8) and nonhuman animals
(9–12) learn spurious associations in a variety of conditions, making it unclear if they
can reliably distinguish between learnable and unlearnable patterns.
Spurious learning is generally explained in terms of simple associative mechanisms

that overestimate causal relationships between external events or between the animal’s
actions and outcomes (13–16). Indeed, simple associative learning models, like the
Rescorla–Wagner model, depend heavily on correlations between events and can be
easily fooled into strengthening associations based on coincidences (17). However,
since animals can construct elaborate cognitive structures, it is an open question if they
also inappropriately impose complex structures on objectively random events.
Here, we examined this question in the context of a “transitive inference” (TI) task that

tested monkeys’ ability to infer the ordinal relationships among a set of pictorial stimuli
that had a hidden order. The task is well-suited to our question because it has been exten-
sively characterized in multiple species (18–21) and shown to require mechanisms beyond
reward associations (22–24). In our current task, monkeys viewed pairs of pictures drawn
from an ordered, learnable set as in the classical TI task. In randomly interleaved trials,
they viewed pairs from an unlearnable image set that had no hidden order and their
choices were rewarded randomly. We analyzed whether choices on each stimulus set were
consistent with a hidden order, how they were affected by different reward schedules, and
if they could be reproduced by associative Q-learning algorithms.

Results

Subjects Learned Latent Order by Trial and Error. In each trial, rhesus monkeys
(n = 3) saw two pictures and touched one to proceed. The pictures available for each
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trial were both drawn from one of two sets of five pictorial
stimuli. The stimuli in one set had an underlying rank order
and subjects were rewarded for choosing the stimulus that had
a higher rank in each pair (Fig. 1A, Top; the letter denotes the
rank with A the highest and E the lowest rank). The stimuli in
the other set were unordered and subjects were rewarded proba-
bilistically regardless of their choices (Fig. 1A, Bottom; the letter
only represents the serial number of each stimulus, but not
rank). Because the objectively “correct” order of the stimuli
could be learned from trial-and-error feedback for the former
but not the latter set, we refer to the sets as, respectively,
“learnable” (L) and “unlearnable” (U).
During each session, the subjects interacted with a new set of

L and U stimuli. L and U trials were randomly interleaved and
there was no explicit cue signaling which set the stimulus pair
was drawn from. The sessions consisted of a training phase,
during which subjects only experienced the four adjacent stim-
ulus pairs from the L set and four randomly selected pairs from
the U set, followed by a testing phase with all possible pairs
(Fig. 1B). This design allowed us to examine if the subjects
inferred an order during training and spontaneously transferred
it to the new pairs during testing.
To better understand how subjects approached the U trials, each

session used one of two different reward schedules for the U trials
(while using the same schedule for L trials). Under the “preference-
neutral” schedule (PN), the reward probability for U pairs was
equated to that for L pairs by dynamically adjusting it to match the
mean reward rate for L pairs on the preceding 10 L trials (while
remaining independent of which U stimulus was chosen). Under
the second, “preference-discouraging” reward schedule (PD), the
reward probability for each U stimulus was inversely related to how

recently the subject had selected it. The PD schedule thus discour-
aged repeated choice of any specific U stimulus and yielded maxi-
mal rewards if differences in U stimuli preferences were minimized
and each U stimulus was selected equally (seeMaterials and Methods
for details). Each subject finished 20 sessions for each schedule,
with each session consisting of 25 to 50 training blocks (presenting
the training pairs for each set) and 10 testing blocks (presenting all
pairs). Consistent with the reward schedule design, the reward rates
for the U and L sets were indistinguishable for the PN schedule
(L: 0.7581 ± 0.0107, U: 0.7473 ± 0.0109) but differed apprecia-
bly for the PD schedule (L: 0.7801 ± 0.0121, U: 0.4626 ±
0.0035) (SI Appendix, Fig. S1A).

As expected from previous studies, all the subjects reliably
learned the order of the L sets, shown by above-chance response
accuracies and by a robust symbolic distance effect (SDE), whereby
reward rates increased as a function of the difference in rank
between the two stimuli presented on each trial. The SDE for
L sets was significant on average (Fig. 1C, Left; PN: F(3,236) =
93.391, p < .001; PD: F(3,236) = 76.34, p < .001) and in each
individual monkey (SI Appendix, Fig. S1B). In contrast, there was
no significant SDE for the U set, as expected given that SD was
calculated as the difference in arbitrary serial numbers assigned to
the stimuli (Fig. 1C, Right; PN: F(3,236) = 0.747, p = .524; PD:
F(3,236) = 0.917, p = .432; SI Appendix, Fig. S1B).

Subjects Chose As If Imposing an Order on Unordered
Stimuli. Despite the lack of objective order among the U stimuli,
subjects seemed to treat them as if they were ordered. Fig. 2A,
Top shows this result for an example session with the PN reward
schedule, in which the subject developed a clear choice preference
in the L set (which was consistent with the objective stimulus
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Fig. 1. Task paradigm. (A) Subjects were tasked with discovering the implicit ordering of sets comprising five pictorial stimuli. In “learnable” sets (L), the
stimuli were assigned an order that could be inferred by trial and error. In learnable trials, the picture–outcome association was consistent and predictable:
The picture with a higher rank was always associated with reward, whereas the other was not (Top). In the “unlearnable” sets (U), there was no predefined
order and feedback was delivered probabilistically. In unlearnable trial, either response could potentially result in reward. Under the preference-neutral (PN)
condition, reward probabilities for U pairs were yoked to recent performance on L pairs; under the preference-discouraging (PD) condition, the reward
probability for each stimulus was inversely related with how recently it had been selected. See Materials and Methods for details. (B) Subjects were first pre-
sented with training blocks consisting of only the adjacent pairs (SD = 1). After training, they transitioned to testing blocks consisting of all the possible pairs
(SD = 1 to 4). The transition from training to testing let us evaluate performance on novel pairs that rely on TIs. (C) Reward rates over all the L and U pairs
across subjects. Error bars denote the SEMs.
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label) and also a clear preference within the U set (despite the
arbitrary stimulus labels). Under the PD schedule, a similar result
for the L set was found, and the U set still manifested differential
preferences over stimuli (Fig. 2A, Bottom).
To estimate the strength of these apparent preferences

among U stimuli and test if they could occur by chance, we
used a model-based subjective ordering analysis (SOA). The
analysis fit choices in each session based on the assumption that
subjects represented stimuli along a linear continuum with
some uncertainty about stimulus positions (Fig. 2B, Materials
and Methods, and ref. 22). For data acquired during the testing
phase of each session, the analysis produced a z-score indicating
the relative rank of each stimulus. A stronger z-score gradient
indicated stronger preference, more consistent choices, and less
overlap between inferred stimulus ranks. For the L sets, the gra-
dients (slopes) over the z-scores were significantly higher than
would be expected from a baseline of random responding dur-
ing the testing phase (PN: all p < .001; PD: all p < .001, rank-
sum test; Fig. 2C, Left). Furthermore, the gradients for the L
sets were equivalent whether stimuli were ranked according to
the objective ordering defined by the experiments or according
to the subjective ordering estimated by the analysis (testing
phase: PN: all p > .2; PD: all p > .7, rank-sum test). Put
another way, when an objective ordering existed, the SOA of
behavior reliably recovered the true stimulus ranks from each
subject’s preferences, confirming the validity of the SOA.
The z-score gradients for U sets for all three subjects dis-

played slopes that were significantly steeper than baseline in
both PN and PD schedules (Fig. 2C, Right; PN: all p < .001;
PD: all p < .001, rank-sum test) and were stronger in the PN

relative to the PD schedule (all p < .001, rank-sum test). This
suggests that subjects displayed consistent preferences among
U stimuli, despite receiving rewards that were independent of
stimulus in the PN schedule, or actively discouraged preferen-
ces in the PD schedule. Evidence for subjective ordering among
U stimuli was also found during the training phase of each ses-
sion (SI Appendix, Fig. S2A). The strength of the subjective
ordering did not systematically change across sessions
(SI Appendix, Fig. S2B) and was not correlated with the gradi-
ent in L sets (SI Appendix, Fig. S2C), suggesting these preferen-
ces are stable over the long term and are not explained by
general engagement with the task. Thus, the monkeys’ prefer-
ences appeared to reveal a tendency to impose order on unor-
dered stimulus sets, even under a reward schedule in which
such preferences incurred a cost by reducing the rate of reward.

Subjects Transferred the Subjective Ordering from Training
to Testing. Comparisons of training and testing stages for the
U sets showed that the subjective preferences that developed dur-
ing training remained consistent during the testing stage. Fig. 3A
illustrates this result for a representative subject under PN and PD
schedules, in which the rank order preference for stimuli during
testing (shown by the color labels) was the same as the rank order-
ing during training (shown by the relative position of the traces).
Two analyses verified this result quantitatively. First, the z-scores
over each U stimulus estimated from training and testing data
were significantly correlated for the PN schedule (SI Appendix,
Fig. S3A, r > 0.59, p < .001) and for two of three subjects in the
PD schedule (SI Appendix, Fig. S3A, r > 0.18, p < .001). Second,
during testing on the U sets, subjects showed a robust effect of
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Fig. 2. Subject created abstract ordering upon the unlearnable stimuli. (A) Example session showing moving averages across trials (n = 80 for training and
n = 50 for testing) of choice frequency for over L and U stimuli. (B) A schematic depiction of the SOA. The model assumed that a subject represented each
stimulus as a position along a linear continuum with normally distributed uncertainty. Each stimulus had its own mean (Z-score) and SD parameter. The
model was used to infer the most probable Z-scores for each stimulus given the subject’s history of choices across all pairs. All stimuli could be subjectively
labeled subA to subE based on their Z-scores. The L set was expected to display a subjective order that was consistent with the true order (Top). If a subject
selected U set items randomly, the inferred Z-scores would shrink together close to zero (Middle). However, if a subject created a subjective order, then the
Z-scores would spread out to reduce their overlapping uncertainties (Bottom). Baseline estimates for the Z-scores were obtained by simulating random
responding, in order to have a rigorous null against which to compare behavior. (C) Estimated subjective item positions for both L and U sets under both
reward schedules during the testing phase. All subjects showed stronger preference orderings (i.e., steeper slopes) than baseline. Error bars represented
the SEMs.
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subjective symbolic distance (subSDE)—i.e., symbolic distances
coded based on the subjective ordering inferred during train-
ing)—that was similar to the objective symbolic distance effect for
the L set (where distances were coded based on objective order; SI
Appendix, Fig. S3B and Fig. 3B). This further supports the idea
that subjects were choosing as if there were a consistent order and
thereby showed stronger subjective bias on pairs with larger
subSD. A logistic regression during the testing stage revealed
slopes for subSDE that were significantly higher relative to a ran-
domized control for each subject in the PN schedule (Fig. 3B, Top
Right; U 95% CI for the subSD regressor N: [0.3675, 0.3707],
W: [0.4065, 0.4100], S: [0.4564, 0.4604]; subSD regressor shuf-
fled N: [0.0010, 0.0040], W: [0.0421, 0.0452], S: [�0.0216,
�0.0182]) and for two of three subjects in the PD schedule
(Fig. 3B, Bottom Right; U 95% CI for the subSD regressor
N: [0.1588, 0.1618], W: [0.1298, 0.1328], S: [0.0154, 0.0183];
shuffled N: [�0.0437, �0.0408], W: [0.0298, 0.0327],
S: [�0.0372, �0.0343]). Thus, subjective orderings estimated
from training could be used to make predictions about perfor-
mance for novel U pairs presented during the testing phase.

Q-Learning Does Not Explain Observed Behavior. A difficulty
in evaluating behavior under an ostensibly “uninformative”
condition is that subjects may draw spurious conclusions from
the random feedback that was provided. Put another way, rein-
forcement learning (RL) models that depend on experiential
reward can sometimes form preferences even when feedback is
random and uninformative. To evaluate this possibility, we
simulated behavior using a model-free Q-learning RL algorithm
(25), which is often considered a canonical example of reward
prediction error learning. In addition to having a “learning
rate” parameter, our Q-learning implementation used a softmax
decision rule (26, 27) with a “temperature” parameter that gov-
erned how much random variation was introduced into deci-
sions. Posterior parameter distributions for each subject were
estimated numerically using the Stan programming language
(28, 29), as described in Materials and Methods. As expected,
Q-learning succeeded in learning the veridical order in L set

and showed matching reward rates between L and U sets under
the PN schedule but decoupled reward rates under the PD
schedule (SI Appendix, Fig. S4A).

While Q-learning developed preferences (and thus a subjective
ordering) among U stimuli when rewarded using the PN sched-
ule, it failed to display reliable preferences under the PD schedule.
Under the PN schedule, applying the SOA to the model choices
showed that Q-learning produced significant subjective ordering
for the U sets relative to baseline of random response, in a manner
similar to the monkeys (Fig. 4A, averaged behavior: top, mean
slope baseline: �0.1671; Q-learning: �0.7314; 95% CI Monkey:
[�0.7503, �0.7375], SI Appendix, Fig. S4B, Top). Applying the
transfer analysis showed that Q-learning produced significant
transfer from training to testing, albeit to a lesser extent than
shown by the monkeys (Fig. 4B, averaged behavior: top, U subSD
regressor 95% CI Monkey: [0.4095, 0.4143], mean Q-learning:
0.2234; subSD regressor shuffled 95% CI Monkey: [0.0068,
0.0107], mean Q-learning: 0.0092, SI Appendix, Fig. S4C, Top).
However, under the PD schedule, Q-learning performed worse
than baseline in forming subjective orderings (Fig. 4A, averaged
behavior: bottom, mean slope baseline: �0.1671; Q-learning:
�0.1211; 95% CI Monkey [�0.4058, �0.3916], SI Appendix,
Fig. S4B, Bottom) and showed no transfer effect (Fig. 4B, averaged
behavior: bottom, U subSD regressor 95% CI Monkey: [0.0997,
0.1059], mean Q-learning: �0.0026; subSD regressor shuffled
95% CI Monkey: [�0.0176, �0.0135], mean Q-learning:
0.0028, SI Appendix, Fig. S4C, Bottom). Therefore, our model
simulations showed that the subjective ordering is unlikely to be
due to experienced reward and instead may rely on mechanisms
that extend beyond standard model-free Q-learning.

Discussion

While spurious learning has been intensively studied, it is usually
explained by associative learning and little is known about whether
animals superstitiously infer more complex relationships from ran-
dom events. Here we provide evidence that, in an unstructured
environment, animals do not respond randomly but act as if there
was a structure. We exposed nonhuman primates to unordered
sets of stimuli within the context of a TI paradigm and discovered
that they treated the sets as though they were ordered. Subjects
developed preferences consistent with the stimuli’s being rank-
ordered, and these “subjective orderings” persisted throughout the
session and were predictive of choices made to new pairs.

Importantly, we show that subjective orderings were inferred
through mechanisms that go beyond simple associative learning.
For unlearnable sets, in stark contrast with learnable sets, subjects
were insensitive to past feedback and showed equal probability of
win–stay and lose–stay strategies (SI Appendix, Fig. S5 and refs. 5,
6, and 11). Moreover, choices consistent with subjective ordering
remained strong in a PD schedule that actively disrupted them by
dynamically increasing reward probability for whichever alterna-
tive had been selected least often. In contrast, a Q-learning algo-
rithm failed to show subjective ordering under this schedule,
although it replicated it under a PN schedule that did not discour-
age consistent preferences, capturing the well-known vulnerability
of associative models to spurious reward correlations (13–17).
These results are consistent with a wealth of studies showing that
pure associative learning is not sufficient to explain TI learning
(22–24, 30). Importantly, they show that monkeys ascribe subjec-
tive structure to objectively random events based on inferential
mechanisms that rely on more complex assumptions than retro-
spective reward maximization.
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Fig. 3. Subject transferred the subjective order on the U set from training
to testing. (A) Moving averages across trials (n = 16) of choice frequency of
each U stimulus during training for an example subject. Here, the
subA–subE labels were determined using the testing data. Shaded regions
correspond to the bootstrapped 95% CI. (B) Logistic regression estimates of
preference as a function of symbolic distance between the subjective ranks
of U stimuli at the start of testing. Solid lines denote subject estimates, and
dashed lines represent a null case with the distance shuffled. Error bars
denote the SEs over all the posterior Bayesian regression coefficients. How-
ever, the error bars are invisible because they are smaller than the size of
the lines.
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The mechanisms generating subjective ordering are unknown.
One possibility is that subjective preferences rely on a memory
buffer that retains a record of recent items and reward history,
consistent with the proposal that a working memory buffer
encodes sequences and serial order (31, 32). However, these
approaches track reward value similar to associative learning, mak-
ing it unlikely that they would perform better than the Q-learning
algorithms we tested (as both mechanisms track reward value,
with the slight difference being whether such value represents the
transient or accumulated reward history).
A second possible mechanism involves generalization. Encour-

aged by the fact that U and L stimuli were unsignaled and ran-
domly interleaved in our task, subjects may have extrapolated
from their experience with serial learning and learnable trials and
treated all the sets they experienced as having a learnable order. If
subjects begin the task believing that each stimulus is preassigned
to a certain rank, it stands to reason that this a priori representa-
tion would be resilient against at least some counterfactual
information. This view is consistent with other studies in which
monkeys and humans were shown “derived” pairings that mixed
stimuli from two different pretrained objectively ordered sets. In
such tasks, subjects rely on the known ranks held by each stimulus
in their original sets to judge the novel across-set combinations,
suggesting that they spontaneously assume that the two sets use
the same ranking scale even when there is no logical necessity for
this being the case (33–35).
More broadly, this view is consistent with the proposed role of

generalization heuristics in guiding exploration in complex con-
texts under high uncertainty (36–38). Popular methods for coding
generalization in RL algorithms involve inferring an abstract latent
state φ from one context and applying it to guide learning in a
new context (39). In our case, since each state (each trial) is inde-
pendent of every other, generalization may be operationalized
with the equation E ðRjs,aÞ = E ðRjφðsÞ,aÞ, where E (R js, a) is
the expected reward given state s and action a and φ refers to an
internal ranking over all stimuli analogous to those proposed in
positional inference models in the previous TI literature (35).
A third, not mutually exclusive, mechanism is related to the

idea that conflict, uncertainty, and ambiguity are aversive and
pose cognitive costs (40–42). In humans, choices among food
items with similarly high value are associated with higher anxiety
relative to choices among more distinct items (43), providing
direct evidence that making decisions under higher uncertainty
has affective costs. Should animals attempt to avoid these costs by
reinterpreting the situation, this could result in irrational behaviors

like illusions of causality and superstitious choices (44, 45).
Thus, our monkeys’ behavior may have been motivated by a
desire to reduce the conflict they experienced between the sub-
jective order they inferred and the reward feedback they
received that was random and unrelated to that order. This
process may be modeled using variations in learning rates like
those proposed by the Pearce–Hall model (46) or more recent
implementations (47), by postulating that, when animals
receive feedback that is inconsistent with an inferred structure,
this suppresses learning rates, leading to superstitious learning
that is insensitive to reward outcomes. Because this mechanism
assumes that animals derived a subjective order, it would com-
plement rather than replace a generalization-based mechanism
that potentially gave rise to this order.

We note, however, that while the above mechanisms may
reproduce the fact that fictitious learning occurs, they do not
necessarily account for the specific order that a subject adopts
for a specific stimulus set. Predicting this feature of our data
will require an account of how animals derive intrinsic pre-
ferences, as has been recently attempted (48, 49). Thus, the
relative roles of generalization, attitudes to uncertainty, and
intrinsic preferences in motivating inferences of spurious struc-
tures will be important areas for future investigations.

Whatever the eventual mechanism turns out to be, our result
that subjective ordering persisted through the PD schedule,
which reduced reward rates, suggests that it is a powerful phe-
nomenon that may lead to suboptimal choices. This may be
particularly important in “strategic learning” scenarios, in
which learners must decide how to allocate time and effort
among competing learning activities. A recent report showed
that humans devoted disproportionate effort to random and
unlearnable tasks at the expense of improving on alternative
learnable tasks (8). A theoretically efficient method for avoiding
“randomness traps” is to value competing activities in propor-
tion to learning progress—the extent to which one’s success
rates improve over time (1, 50). However, this strategy may
be considerably weakened if people, similar to the monkeys
we studied, are less sensitive to actual reward rates—or, more
precisely, to the contingency between their choices and
outcomes—and act based on their assumption that a structure
exists. Future work could further probe the mechanisms of
superstitious learning and allow participants to freely choose
between learnable and unlearnable trials to test whether they, as
our results hint, exert disproportionate effort to learning super-
stitious structure from random feedback.

A B

Fig. 4. Q-learning cannot explain monkeys’ behavior (A) Subjective ordering analysis of RL simulations using Q-learning, as compared with that of subjects.
(B) Mean performance at the start of testing, sorted by symbolic distance (solid lines) and a null case (dashed lines). Error bars denote the SEs over all the
posterior Bayesian regression coefficients.

PNAS 2022 Vol. 119 No. 35 e2202789119 https://doi.org/10.1073/pnas.2202789119 5 of 7



Materials and Methods

Subjects. Subjects were three adult male rhesus macaques (Macaca mulatta),
N, W, and S. All subjects had different amounts of prior experience with the clas-
sic TI task (single ordered set, transfer paradigm) from years (N and S) to only a
month (W). However, none of the subjects had been exposed to the unordered
U sets, or to the PN and PD schedules. Subjects were water-restricted for main-
taining high motivation. Subjects earned the reward by receiving water drops,
each drop having a volume of about 0.1 mL. Typical performance per session
yielded between 150 mL and 300 mL. Subjects were also provided a ration of
biscuits each day before the task and fruit as an extra bonus after the task. The
study was implemented obeying to the guidelines provided by the Guide for the
Care and Use of Laboratory Animals of the NIH. This work was also approved by
the Institutional Animal Care and Use Committees at Columbia University.

Apparatus. Subjects performed the task by using touchscreen connected to a
computer (Windows 10) while sitting on the chair. The touchscreen (Elo Touch
Solutions) presented subjects with a 15- × 12-inch high-definition display
(1,280 × 1,024 resolution at 60 Hz); both showed the objects and recorded the
response. Tasks were programmed in MATLAB (version 2018a; MathWorks)
using Psychophysics Toolbox (51). To deliver fluid rewards, the computer sent
out the command to the Arduino Uno interface, which then relayed the signal to
the solenoid valve with 0.1 mL of water or juice being delivered through a tube
installed on the primate chair.

Procedure. Pictorial stimuli were selected at random from a large bank of stock
photographs and further processed to equalize their size (250 × 250 pixels).
Sets were examined in advanced to confirm that they did not include stimuli
that could be easily confused for one another. Each day, subjects performed one
session and presented with two pictorial sets with five stimuli each. Different
sets were used over days and across subjects. Over the two sets, one set is learn-
able (L), meaning the stimuli were preassigned an arbitrary rank order. To earn
rewards, the subject was required to learn to infer the veridical order by trial and
error (denoted as LA LB LC LD LE). Another set is unlearnable (U), meaning the
stimuli were not ordered, and the subject would acquire zero knowledge of
order because of the random feedback (denoted as UA UB UC UD UE; Fig. 1A).

During each trial, a pair of stimuli was shown side-by-side on the
touchscreen. Both stimuli were drawn either from the L set or the U set. The sub-
ject touched one of the stimuli to indicate their choice. At the beginning of each
trial, a solid blue square (100 × 100 pixels) was presented at the center of the
screen to attract the subject’s attention. The subject was allowed 3 s to touch
the square to initiate the trial; otherwise, the current trial would be aborted, and
the same trial would be presented again until a response was made. After the
initiation, the blue square disappeared and the randomly drawn stimulus pair
was shown with each picture at an equal distance (289 pixels) from the center.
The subject had 4 s to make a decision by touching one of the stimuli; other-
wise, the trial would be skipped and missed forever and the task would move
on to the next trial. If the pair came from the L set, the subject would receive
positive feedback (green check sign, followed by two drops of reward and sound
cue) or negative feedback (red X sign, followed by 3-s time-out with the screen
being dark) based on whether the decision accorded with the order in the L set.
Therefore, choosing the stimulus with higher rank always resulted in a positive
outcome. If the current stimulus pair came from the U set, the feedback would be
delivered probabilistically independent of which pair of stimuli was displayed.

Each subject was exposed to two schedules that kept the design for L set the
same but varied for the U set with the same number of sessions (20 per subject
for each schedule). Under the PN schedule, the reward was independent of
which stimulus was chosen. Reward probability for each U trial was yoked to the
average reward rates over the 10 past L trials to the current trial.

Under the PD schedule, the reward probability over all stimuli started from
0.3 when each was presented the first time but was inversely correlated with the
recent chosen frequency over all the subsequent presentations by following
the equation

�
1� ð1� 0:3Þn+1Þ, where n denotes the number of trials that

the stimulus remained unchosen since the last time it was chosen. Therefore,
the degree of preference over all U stimuli did not affect the reward rates under
the PN schedule since it is totally dependent on the subject’s performance on
the L trials, whereas the PD schedule punished persistent preference for any

U stimulus because any repetitive selection of the same stimulus would result in
lower reward rates than choosing each stimulus equally.

Each session comprised multiple adjacent pair training blocks (N and S: 25;
W: 50), followed by multiple all-pairs testing blocks (all subjects: 10). Each
training block contained 16 trials (4 different stimulus pairs per set [AB, BC,
CD, DE] × 2 stimulus sets × 2 for spatial counterbalancing) and each testing
block contained 40 trials (10 different stimulus pairs from each set × 2 stimulus
sets × 2 for spatial counterbalancing) (Fig. 1B). Within each block, the sequence
of the trials was randomized with L and U trials interleaved to ensure that
subjects could not predict the future trials. Overall, N and S completed up to
800 trials per session, whereas W completed up to 1,200 trials.

Data Analysis.
SOA. To best infer the subjective ordering over all L/U stimuli and evaluate the
ordering strength, we assumed a model-based representation where each stimu-
lus i normally distributed along the same positional continuum with its own
mean μi and variance σi. When a given pair (XY) was presented, the stimulus
with higher mean was more likely to be chosen. For example, the probability to
choose X was given by

p XjXYð Þ = θ

2
+ 1� θð Þ ∫

∞

0
NðxjμX � μY ,

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
σX2 + σY 2

p
Þdx: [1]

Here, θ denotes the degree to which subject ignored the current presentation
and made random responses. Thus, subjects had probabilities that could be
computed simultaneously for four pairs (during training) or 10 pairs (during
testing) per session in each schedule [we only considered p ABð Þ but not p ABð Þ
since p ABð Þ = 1� p ABð Þ, and so on, for other pairs]. These simultaneous equa-
tions were solved using Bayesian multilevel model fitting using Markov chain
Monte Carlo (MCMC) method in the Stan programming language (28). For
more details on this procedure see ref. 22.

After model fitting, each parameter μi was Z-scored relative to other position
estimates; that is, the mean value of all stimuli in a set was centered at zero. The
subjective ordering was manifested by performing linear regression over the
sorted Z-scores in descending order, by which we could use the slope to measure
the ordering strength and sorted Z-scores to label the subA–subE over each set
of L/U stimuli. Since even random responses are expected to display a nonzero
slope due to the sorting step, we simulated sessions in which each subject
responded entirely randomly. Then, each session of the simulated data went
through the aforementioned subjective ordering procedure, which gave us the
“baseline” slopes that were expected from this null model of random respond-
ing, in order to better evaluate how far that the subjective ordering is from ran-
dom responding.
Logistic regression. To look at whether subject carried the subjective ordering
from training to testing stage, we applied the following logistic regression
model:

p Consistent to the orderingð Þ = ð1 + exp �μÞð Þ�1
μ = β0 + βt � t + βD � D + βtD � t � D:

[2]

In the regression model, the response variable represented whether subject’s or
artificial agent’s choice during testing accorded to the veridical order in L set or
the subjective order in U set during training (Boolean output). Such dependent
variable indicating ordering transfer was predicted by trial number (t), symbolic
distance (D, based on ground truth order for the L set and subjective ordering
for the U set), and their interaction, yielding three slope terms βt , βD, and βtD.
The intercept term β0 and βD served to estimate p(Consistent to the ordering)
at trial zero with respect to different D for both sets. Therefore, typical symbolic
distance effect would show a significant positive βD. In other words, a larger
value of βD corresponds to a preference that is more consistent to the order
from training, and thus that the subjective order transferred from training to test-
ing. Both t and D were centered at zero to decrease the slope covariances before
Bayesian multilevel model fitting performed in the Stan programming language
using the MCMC method (28). Additionally, a separate analysis was performed
in which D was shuffled over trials, sessions, and subjects for both L and U sets
in order to provide a control case and help evaluate the significance of the SDE.
Q-learning simulation.We used a model-free RL algorithm Q-learning to exam-
ine the hypothesis that the subjective ordering could be solely driven by evalua-
tion of each stimulus’s reward value under the random feedback. Since each trial
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was totally independent of each other, the agent’s action on trial t ðatÞ had no
effect on the next state St+1: Therefore, the Q-learning model implied for both
sets were identical to the Rescorla–Wagner model (52):

Value Updating Rule :
Q atjstð Þ  Q atjstð Þ + δ ct � Q atjstð Þ½ � [3]

Action Policy :
p Otjstð Þ = softmax Q, Tð Þ

=
expðQðOtjstÞ=T + lt � γÞ

expðQðOtjstÞ=TÞ + lt � γÞ + expðQðNtjstÞ=TÞ , T ≥ 0:0:

[4]
In the model, st was the stimulus pair in each trial, at was the agent’s choice,
ct was the actual reward that agent received, the probability that subject chose
certain option Ot over the unchosen one Nt was calculated by the softmax func-
tion. The Q-learning model implemented here followed the asymmetrical updat-
ing rule assuming that only the Q value of the chosen stimulus got updated.
Three hyperparameters, δ (learning rate, determines how fast the value gets
updated), T (temperature, decides how much variability to introduce into choices),
and γ (spatial bias, l = +1 for left response and �1 for right response), under-
went Bayesian multilevel model fitting performed in the Stan programming
language using the MCMC method (28). The mean values of the best-fitting
parameters were shown as follows: PN: L set δ: N 0.0097 W 0.0036 S 0.0155; T:
N 0.0788 W 0.0527 S 0.0671; γ: N 0.3713 W �0.0879 S 0.4620; U set δ: N
0.0152 W 0.0082 S 0.0280; T: N 0.0726 W 0.0639 S 0.0785; γ: N 0.5957
W �0.1008 S 1.1292; PD: L set δ: N 0.0125 W 0.0040 S 0.0108; T: N 0.0849
W 0.0445 S 0.0413; γ: N 0.1437 W �0.6379 S 0.7093; U set δ:N 0.4601

W 0.5285 S 0.3048; T: N 15.8807 W 22.1249 S 0.9469; γ: N 0.5722
W �0.6415 S 2.3307. The parameters indicated that for the U set temperature
was much higher under the PD (T close to or higher than 1) than under the PN
schedule (T smaller than 1), indicating that subjects’ decisions relied less on the
retrospective reward history because of the high volatility of the feedback under
the PD schedule. Next, we simulated the Q-learning behaviors with 1,500 ses-
sions per subject under each schedule, which were thereby used for SOA and
logistic regression. It was noteworthy that the response variable no longer
referred to single trial (binary outcome) but rather to a percentage of trials consis-
tent to the order out of a collection of trials pooled over all sessions that shared
the same regressor value (t, D, or both). Such binomial regression would largely
lower the computational cost.
Past-trial effect analysis. To evaluate how a subject’s current decision was adap-
tive to the past-trial feedback, we quantified the percentage of win–stay and
lose–stay for each L and U pair separately from the testing stage session by session
for each subject and schedule, calculated as the chance of staying on the stimulus
in pair XY that was rewarded/punished when last time XY was presented. Finally,
we averaged the percent of win–stay and lose–stay over all L and U pairs.

Data, Materials, and Software Availability. Monkeys’ behavior data,
model fitting, and simulation results and the analysis codes sufficient to gener-
ate all the figures have been deposited in Figshare (https://figshare.com/articles/
dataset/Supplementary_data_package_zip/19175612) (53).
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