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Abstract: Blood vessels and lymphatic vessels are located in many tissues and organs throughout
the body, and play important roles in a wide variety of prevalent diseases in humans. Vascular
endothelial growth factor-D (VEGF-D) is a secreted protein that can promote the remodeling of
blood vessels and lymphatics in development and disease. Recent fundamental and translational
studies have provided insight into the molecular mechanisms by which VEGF-D exerts its effects in
human disease. Hence this protein is now of interest as a therapeutic and/or diagnostic target, or as
a potential therapeutic agent, in a diversity of indications in cardiovascular medicine, cancer and the
devastating pulmonary condition lymphangioleiomyomatosis. This has led to clinical trial programs
to assess the effect of targeting VEGF-D signaling pathways, or delivering VEGF-D, in angina,
cancer and ocular indications. This review summarizes our understanding of VEGF-D signaling in
human disease, which is largely based on animal disease models and clinicopathological studies,
and provides information about the outcomes of recent clinical trials testing agonists or antagonists
of VEGF-D signaling.

Keywords: VEGF-D; lymphatic vessels; endothelium; metastasis; growth factor; receptor; signaling;
angiogenesis; lymphangiogenesis

1. Introduction

Vascular endothelial growth factor-D (VEGF-D) is a secreted glycoprotein that can activate
VEGF receptors on the endothelium, is a mitogen for endothelial cells and promotes the growth
and remodeling of blood vessels and lymphatic vessels [1,2] (see Section 3 for further information).
These vessels are located in many parts of the body and participate in a wide variety of prevalent
human diseases. It is, therefore, not surprising that VEGF-D has been implicated in a multitude
of disease processes from pulmonary indications to cancer. Furthermore, therapeutically targeting
VEGF-D or its molecular signaling pathways in endothelial cells, or delivering VEGF-D to tissues,
is considered therapeutically relevant to various clinical conditions. Therefore, there has been a major
effort to develop reagents for manipulating VEGF-D signaling in diseases that are the subject of
clinical trial programs in cancer, cardiovascular medicine and ocular indications (see Section 4 for
further information). Importantly, insight into the function of this protein has led to improvements
in the diagnosis of the devastating pulmonary disease lymphangioleiomyomatosis (LAM) [3,4] so
research into the structure/function relationship, biochemistry and biology of VEGF-D in cell-based
systems, animal models and clinicopathological studies has already led to improved clinical practice.
Opportunities for further clinical impact are being developed through systems biology approaches to
build a comprehensive understanding of the molecular signaling networks controlling the remodeling
of blood vessels and lymphatics in disease [5,6], thereby enabling us to delineate how VEGF-D
signaling is integrated with other signaling systems in the endothelial cells of blood vessels and
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lymphatics. These signaling systems are central to key biological processes in vascular biology such
as cell proliferation, migration, tube formation and regression of excess vessels. Here we review the
biology and clinical relevance of VEGF-D, with a particular focus on the potential impact of this insight
on therapeutics and diagnostics for human disease.

2. Cloning, Gene Regulation and Biosynthesis of VEGF-D

VEGF-D was first identified as a c-fos-induced growth factor (FIGF), the expression of which
was induced by the transcription factor c-fos, via mRNA differential screening of fibroblasts differing
in the expression of c-fos [7]. Subsequently, VEGF-D was shown to be a ligand for VEGF receptor
(VEGFR)-2 and VEGFR-3 (Figure 1), cell surface receptor tyrosine kinases expressed on blood vessels
and lymphatic vessels [2]. VEGF-D activates both VEGFR-2 and VEGFR-3, is a mitogen for blood
vascular and lymphatic endothelial cells and is closely related to VEGF-C (another member of
VEGF family of ligands) from a structural perspective [2,8]. VEGF-D, as with other members of
the VEGF family, falls within a structural superfamily of growth factors containing a cystine knot motif,
which involves a highly distinctive clustered arrangement of three intrasubunit cystine bridges [9].
Most members of the VEGF family exist as covalent-linked homodimers, however, VEGF-D can also
exist as a non-covalent homodimer as well as a monomer [10]. The crystal structure of a covalent
VEGF-D homodimer, similar to other VEGF family members, involves monomers with an antiparallel
4-stranded β-sheet, three connecting loops and an N-terminal α-helix that folds on top of the second
monomer [11]. This antiparallel homodimer is stabilized by two intersubunit disulfide bridges.Biomolecules 2018, 8, 1 3 of 16 

 
Figure 1. Schematic diagram illustrating the interaction of vascular endothelial growth factor-D 
(VEGF-D), and other VEGFs, with VEGF receptors (VEGFRs) and Neuropilin (NRP) co-receptors. 
Biological processes influenced by binding of ligands to the receptors are shown below, and selected 
drug candidates that can restrict VEGF-D signaling are listed to the right with “Mab” denoting 
monoclonal antibody. Note that soluble VEGFR-3 and anti-VEGFR-3 Mab also modulate VEGF-C 
signaling. “PlGF” denotes placenta growth factor, Ig denotes immunoglobulin, CUB denotes 
complement-binding, PDZ denotes a domain found in post synaptic density protein 
(PSD95)/Drosophila disc large tumor suppressor (Dlg1)/zonula occludens-1 protein (zo-1) and MAM 
denotes domain with homology to meprin A5 and mu-phosphate. 
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VEGFR-2 or VEGFR-3, VEGF-D can also signal via VEGFR-2/VEGFR-3 heterodimers [28]. Signaling 
via these heterodimers is thought to promote VEGF-D-driven dilation of collecting lymphatic 
vessels in cancer by down-regulating expression of the enzyme 15-hydroxyprostaglandin 

Figure 1. Schematic diagram illustrating the interaction of vascular endothelial growth factor-D
(VEGF-D), and other VEGFs, with VEGF receptors (VEGFRs) and Neuropilin (NRP) co-receptors.
Biological processes influenced by binding of ligands to the receptors are shown below,
and selected drug candidates that can restrict VEGF-D signaling are listed to the right with
“Mab” denoting monoclonal antibody. Note that soluble VEGFR-3 and anti-VEGFR-3 Mab also
modulate VEGF-C signaling. “PlGF” denotes placenta growth factor, Ig denotes immunoglobulin,
CUB denotes complement-binding, PDZ denotes a domain found in post synaptic density protein
(PSD95)/Drosophila disc large tumor suppressor (Dlg1)/zonula occludens-1 protein (zo-1) and MAM
denotes domain with homology to meprin A5 and mu-phosphate.



Biomolecules 2018, 8, 1 3 of 17

The gene encoding VEGF-D (known as the FIGF gene) is expressed in a range of tissues during
development, and in adult tissues, with prominent expression in lung and skin [2,10]. However,
the molecular mechanisms that regulate expression of the FIGF gene are not fully understood.
The c-FOS transcription factor and cell–cell contact mediated by cadherin-11 have each been shown to
promote expression of VEGF-D in fibroblasts [7,12]. Hence, molecular signaling pathways that operate
via c-FOS can induce expression of VEGF-D—an example is the capacity of interleukin 7 to promote
VEGF-D production in a range of cancer cells via a c-FOS-dependent pathway [13,14]. Conversely,
expression of the FIGF gene can be downregulated by transforming growth factor-β1 in fibroblasts via
the Jun NH2-terminal kinase signaling pathway [15]. Moreover, the interaction of the orphan receptors
hepatocyte nuclear factor 4α (HNF-4α) and chicken ovalbumin upstream promoter transcription factor
(COUP-TF)-1/COUP-TF-2 with a proximal element of the FIGF gene are indispensable for transcription
from this gene [16]. Expression of VEGF-D can also be modulated at the mRNA level as indicated by
the finding that β-catenin can inversely regulate the stability of VEGF-D mRNA [17].

The biosynthesis of VEGF-D can involve extracellular proteolytic processing [10]. VEGF-D
is initially secreted from the cell as a full-length form consisting of a central domain, containing
receptor-binding sites, flanked by N- and C-terminal propeptides [2,10]. The propeptides can be
cleaved by members of the proprotein convertase family of proteases [18], or plasmin [19,20],
to generate various forms of VEGF-D, including a mature form lacking both propeptides [10].
This proteolytic processing, which occurs in mouse [21] and man [10], regulates VEGF-D signaling
given that the differently processed forms have distinct receptor-binding and activation properties.
For example, the mature form of VEGF-D can bind and activate both VEGFR-2 and VEGFR-3 whereas
full-length unprocessed VEGF-D has very poor affinity for VEGFR-2 and binds VEGFR-3 but with less
favourable affinity than mature VEGF-D [18]. Thus, the proteolytic processing of VEGF-D regulates
its bioactivities.

3. Receptor Signaling and Biological Function

3.1. Receptor Signaling

The mature form of human VEGF-D can promote both angiogenesis (the sprouting and growth of
new blood vessels) and lymphangiogenesis (the growth of lymphatic vessels) via activation of VEGFR-2
and VEGFR-3 on endothelial cells (Figure 1) [2,22]. VEGFR-2 has been considered the key receptor for
signaling for angiogenesis whereas VEGFR-3 is critical for lymphangiogenesis (detailed reviews of
these receptors, associated co-receptors and mechanisms of activation are presented elsewhere [23,24]).
However, VEGFR-3 can contribute to angiogenic signaling by promoting conversion of endothelial
cells from a tip cell to a stalk cell phenotype at the fusion points of blood vessel sprouts [25]. Moreover,
blocking VEGFR-3 can suppress sprouting of blood vessels [26]. Importantly, it has been shown that
VEGFR-2 signaling can play a role in modulating lymphatics as it is able to induce lymphatic vessel
enlargement but not sprouting [27]. In addition to signaling via VEGFR-2 or VEGFR-3, VEGF-D can
also signal via VEGFR-2/VEGFR-3 heterodimers [28]. Signaling via these heterodimers is thought
to promote VEGF-D-driven dilation of collecting lymphatic vessels in cancer by down-regulating
expression of the enzyme 15-hydroxyprostaglandin dehydrogenase, which degrades prostaglandins,
in lymphatic endothelial cells [29,30]. In summary, signaling from either VEGFR-2 or VEGFR-3 can
influence remodeling of both blood vessels and lymphatics [23,24].

3.2. Biological Function

The role of VEGF-D in embryonic development has been explored in mouse, Xenopus laevis (frog)
and Danio rerio (zebrafish) using gene knockout and gene knockdown approaches. In the mouse,
inactivation of the gene encoding Vegfd revealed that this protein is dispensable for development
of the lymphatic system [31–33] but plays subtle roles in modulating lymphatics in skin [34] and
enhancing the density of lymphatics adjacent to bronchioles in the lung [31]. Further, VEGF-D could
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regulate blood vascular development by modulating the activity of the SOX18 transcription factor [35].
VEGF-D exhibited a subtle modifier role in embryonic lymphangiogenesis in Xenopus, contributing
to migration of lymphatic endothelial cells [36]. In zebrafish, VEGF-D modulates both angiogenesis
and lymphangiogenesis during embryonic development [37], and can compensate for the loss of
VEGF-C for the sprouting of facial lymphatics [38]. Overall, VEGF-D appears to play a subtler role in
regulating lymphatic vascular development than VEGF-C (which is absolutely required for lymphatic
development [39]), and can participate in regulating blood vascular development particularly in
association with SOX18. VEGF-D can also play important roles in the biology underlying a variety of
disease settings (Figure 2), which are described in the following sections.
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Figure 2. Schematic diagram illustrating areas of the human body that may have VEGF-D-dependent
biological and pathological processes. The diagram highlights those biological processes that have
been demonstrated to be involved in human pathology (see text for references), and indicates where
VEGF-D signaling has been demonstrated to be relevant based on animal models, or has been used as
a target for therapy or as a biomarker of a disease or the progression of a disease.
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4. Disease Involvement: Humans and Model Systems

4.1. Lymphangioleiomyomatosis

Lymphangioleiomyomatosis is a rare pulmonary disease that typically arises in women
during their child-bearing years [40]. This potentially lethal condition is a low-grade metastasizing
neoplasm [41], which involves proliferation of abnormal muscle-like cells (LAM cells), harboring
inactivating mutations in the tumor suppressor genes encoding tuberous sclerosis proteins 1 or 2
(TSC1 or TSC2 genes) [42], along the axial lymphatics and in the lungs. This leads to extensive
pulmonary lymphangiogenesis, formation of diffuse cysts and destruction of lung tissue that can result
in leakage of chyle [40]. LAM cells produce and secrete VEGF-D [43], which may play a role in disease
progression by promoting association of LAM cells with lymphatic endothelial cells thus facilitating
spread of LAM cells to the lung [44–46]. The VEGF-D produced by LAM cells may also promote
pathological lymphangiogenesis associated with the condition. Importantly, serum levels of VEGF-D
can be a surrogate marker for LAM severity [43] as well as a measure of lymphatic involvement [47].
VEGF-D serum levels can also be used to distinguish LAM from other pulmonary conditions [3].
Hence, a serum test for VEGF-D is being used as a diagnostic for LAM and for monitoring the efficacy
of potential therapeutics for treating this condition [4,48,49]. The drug Sirolimus (also known as
rapamycin; trade name is Rapamune, Pfizer Inc., New York City, NY, USA), which is an inhibitor of the
kinase mTOR (mTOR is also known as a mammalian target of rapamycin and is a component of the
mTORC1 signaling complex that can be regulated by TSC1 and TSC2 [50]), is now used to treat LAM
and can stabilize lung function over many years of therapy while producing a sustained reduction of
VEGF-D levels [51,52]. In addition to diagnostics and disease monitoring, the potential role of VEGF-D
in LAM progression indicates that this protein, or other components of its signaling pathway, might be
a relevant therapeutic target in this disease.

4.2. Pulmonary Diseases

Recent findings have implicated VEGF-D in the pathogenesis of other pulmonary diseases.
For example, a form of pulmonary vasculopathy, involving dilated or distended pulmonary arteries and
veins, has been associated with a mutation of the gene encoding VEGF-D in humans [53]. The mutation
resulted in increased dimerization of VEGF-D (VEGF-D dimers are considered more bioactive than
VEGF-D monomers [10]), elevated VEGFR-2 signaling and aberrant angiogenesis. Moreover, VEGF-D
was shown to promote pulmonary edema in a mouse model of hyperoxic acute lung injury (HALI),
a form of injury that can occur when patients are ventilated with high concentrations of oxygen [54].
The detrimental effect of VEGF-D in the HALI model appeared to be due to enhanced fluid leakage
from blood vessels. The proposed roles of VEGF-D in LAM, pulmonary vasculopathy and pulmonary
edema demonstrate the capacity of this growth factor to influence disease processes by modulating
pulmonary blood vessels or lymphatics.

4.3. Cardiovascular Diseases

The therapeutic benefits of various forms of human VEGF-D have been assessed in animal models
of prevalent cardiovascular diseases, via viral-based gene delivery approaches, which led to a range of
clinical trials in cardiovascular medicine (Figure 3). For example, an adenovirus expressing a mature
form of VEGF-D was injected into the myocardium of pig heart using the NOGA catheter system
(Biosense-Webster, Johnson & Johnson, Irvine, CA, USA) resulting in transmural angiogenesis that
was most pronounced in the epicardium [55]. This finding, suggesting that mature VEGF-D could be
used to drive therapeutic angiogenesis in the heart, led to phase I/IIa clinical trials of an adenovirus
producing mature VEGF-D for treating refractory angina. This study showed that intramyocardial
delivery of mature VEGF-D via adenoviral gene transfer in refractory angina patients was safe, feasible
and well tolerated [56]. Importantly, this therapeutic approach led to increased myocardial perfusion
after one year. The study also identified that plasma lipoprotein(a) may be a potential biomarker to
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identify patients who experience the greatest benefit with this therapy. These encouraging results may
justify phase IIb/III clinical trials to confirm the safety and efficacy of this gene therapy in refractory
angina patients.
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Viral gene transfer of human VEGF-D has been studied in animal models of a variety of other
cardiovascular indications including vascular restenosis [57], peripheral vascular disease, and reduced
uterine artery blood flow leading to fetal growth restriction [58], with promising results. This approach
has also been shown to promote angiogenesis in skeletal muscle in rabbits [59,60], which could be
relevant to clinical situations in which occluded arteries or ischemic tissues cannot be treated by
angioplasty, stenting or by-pass-surgery. Notably, intradermal injection of mature human VEGF-D
protein induced angiogenesis in the skin of sheep [61], indicating the potential of an alternative
VEGF-D delivery approach to viral gene transfer. A range of clinical trial programs have begun to
explore the benefit of VEGF-D in vascular restenosis, peripheral vascular disease and fetal growth
restriction (Figure 3) although outcomes from early-stage trials are yet to be reported as far as we
are aware.
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4.4. Ocular Indications

Wet age-related macular degeneration (wet AMD; also known as neovascular or exudative AMD)
is a common cause of vision impairment and blindness in the developed world, particularly in older
people. It involves the formation of abnormal, tortuous blood vessels under the macula, which can
bleed and leak fluid leading to macular damage that, if untreated, can cause severe loss of central
vision. Proliferation of blood vascular endothelial cells and vessel leakage leading to edema are key
features of this problematic condition [62]. Currently, the most effective treatments for wet AMD are
anti-angiogenic drugs that principally target VEGF-A, including Lucentis (also known as ranibizumab;
Genentech, Inc., South San Francisco, CA, USA), Avastin (bevacizumab; Genentech, Inc.) and Eylea
(aflibercept; Regeneron Pharmaceuticals, Inc., Tarrytown, NY, USA), that are delivered by injection
into the eye. These drugs likely restrict both the VEGF-A-driven proliferation of vascular endothelial
cells and the enhanced vascular permeability promoted by VEGF-A. However, not all patients respond
to these drugs, some patients exhibit responses that are considered sub-optimal and others initially
respond well but eventually experience acquired drug resistance. Hence there is considerable interest
in drugs that might be used in combination with Lucentis, Avastin or Eylea to improve clinical
outcomes [63]. Given that VEGF-C and VEGF-D can activate signaling for proliferation of vascular
endothelial cells and angiogenesis [2,64], and have been reported to promote edema in certain animal
models [54,65], there has been interest in targeting these growth factors in wet AMD as a strategy
to further enhance the restriction of pathological neovascularization and vascular leakage achieved
with currently used drugs. To this end, a soluble form of VEGFR-3 (designated OPT-302; Opthea Ltd.,
Melbourne, Australia), designed to block the biological effects of both VEGF-C and VEGF-D (Figure 1),
is being tested in phase I/IIa clinical trials of wet AMD in the USA. OPT-302 is being delivered by
intraocular injection and tested as a single agent or in combination with Lucentis (Figure 3). Thus far,
the trials have demonstrated the safety and tolerability of OPT-302 as monotherapy and in combination
with Lucentis, and suggested that combined administration of OPT-302 and Lucentis may lead to
improved clinical outcomes over Lucentis alone [66].

There is a range of other ocular indications for which drugs targeting VEGF-A have been approved
by regulatory authorities. For example, Lucentis has been approved for treating macular edema
following retinal vein occlusion, diabetic macular edema, diabetic retinopathy in patients with
diabetic macular edema and myopic choroidal neovascularization. The degree to which VEGF-D
is involved in resistance mechanisms to anti-VEGF-A drugs in these indications is unknown but
warrants investigation.

4.5. Cancer

In experimental settings, VEGF-D promoted angiogenesis and lymphangiogenesis within and at
the periphery of solid tumors, as well as enhancing solid tumor growth and metastatic spread to lymph
nodes and distant organs, in a range of mouse cancer models including transgenic, gene ablation and
xenograft models [1,32,67–71]. In addition to promoting the growth of small lymphatics adjacent to
primary tumors, thus facilitating entry of tumor cells into the lymphatic vasculature, VEGF-D also
promoted metastasis via dilation of collecting lymphatic vessels, which likely facilitates transport of
tumor cells through the lymphatic vasculature [29]. These findings indicate the multi-faceted effects
of VEGF-D on tumor biology. The capacity of VEGF-D to drive dilation of collecting lymphatics is
dependent on prostaglandins; this dilation, and the associated increase in metastatic spread, could be
blocked by Etodolac, a non-steroidal anti-inflammatory drug (NSAID) that ablates prostaglandin
production [29]. Hence, NSAIDs could exhibit an anti-cancer effect by restricting metastasis via
lymphatics, potentially explaining the anti-cancer effects of the NSAID aspirin observed in randomized
clinical trials and other studies [72–76]. VEGF-D, as well as VEGF-C, were recently shown to play
a potential role in lymphangiogenesis in ovarian cancer as the secreted protein acidic and rich in
cysteine (SPARC), a calcium-binding glycoprotein, appears to function as a tumor suppressor in this
disease by inhibiting angiogenesis and lymphangiogenesis by reducing expression of both VEGF-C
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and VEGF-D [77]. While the source of VEGF-D in the animal models referred to above has typically
been the tumor cell, VEGF-D has been associated with both tumor cells and infiltrating immune cells
in human tumors [78].

The relevance of VEGF-D to human cancer is supported by clinicopathological data indicating
that its expression can correlate with metastatic spread and poor patient outcomes [79,80]. For example,
VEGF-D was reported as an independent predictor of poor outcome in epithelial ovarian carcinoma [81]
and a prognostic marker for disease-free and overall survival in colorectal carcinoma [82]. Further,
VEGF-D and VEGFR-3 were reported to be independent prognostic markers aiding identification of
patients with poor prognosis after curative resection of gastric adenocarcinomas [83]. Interestingly,
a clinical study of Avastin (an anti-VEGF-A antibody) in metastatic colorectal cancer indicated that low
VEGF-D expression was associated with greater benefit from Avastin in terms of progression-free and
overall survival [84]. High expression of VEGF-D was predictive of resistance to Avastin, particularly
in terms of progression-free survival. The predictive value of VEGF-D appeared to depend on the
chemotherapy used in combination with Avastin. These findings provide further impetus for targeting
VEGF-D signaling in human cancer.

Recent studies have demonstrated that lymphatic vessels and lymphatic remodeling can influence
the immune response to cancer. For example, VEGF-C was shown to promote immune tolerance
in a melanoma model in mice and to enhance cross-presentation of tumor antigen by lymphatic
vessels in lymph nodes [85]. These findings indicate the possibility of targeting lymphangiogenic
signaling by growth factors such as VEGF-C or VEGF-D to counter immune tolerance to cancer. This is
currently an area of active fundamental research in cancer biology with potential consequences for
immunotherapeutic strategies [86–88].

A range of reagents to target VEGF-D or components of its signaling pathways has been developed,
including neutralizing monoclonal antibodies (Mabs) to VEGF-D [8,89,90] or to VEGFR-3 [91–93],
and soluble forms of VEGFR-3 [94–98] (Figure 1), that restricted solid tumor growth and/or metastatic
spread in animal models of cancer. It should be noted that antibodies to VEGFR-3 can restrict activation
of this receptor by either VEGF-C or VEGF-D, and that soluble forms of VEGFR-3 can sequester both
of these growth factors. A phase I clinical trial of a VEGFR-3 Mab, designated LY3022856/IMC-3C5,
in patients with advanced and refractory solid tumors and advanced colorectal cancer recently
demonstrated that this agent was well tolerated but with minimal anti-tumor activity in colorectal
cancer [99]. This lack of efficacy highlights the importance of developing biomarker-based strategies to
identify patients who would be more likely to respond to clinical agents targeting VEGF-C or VEGF-D
signaling pathways. Given the importance of the proteolytic processing of VEGF-D for its capacity to
promote the growth and spread of tumors [100,101], the enzymes that process VEGF-D [19] such as
proprotein convertases [18] are potential targets for anti-cancer therapeutics designed to restrict tumor
angiogenesis and lymphangiogenesis. However, targeting theses enzymes may have a multiplicity of
effects in cancer, and a difficult-to-predict range of side-effects, because they can influence a range of
signaling pathways, i.e., their action is not restricted to modulating only VEGF-D signaling.

4.6. Inflammation and Obesity

The effects of VEGF-D have been explored in various animal models of inflammation. For example,
delivery of VEGF-D via transgenesis reduced acute skin inflammation in a mouse model that was
associated with a significant reduction of edema in the dermis [102]. Findings such as these have
suggested that stimulating lymphangiogenesis, using VEGF-C or VEGF-D, might be a new approach
to combat chronic inflammatory diseases of the skin and other organs [103]. A study of chronic
airway inflammation in mice, involving lymphatic vessel hyperplasia, showed that impairment
of lymphangiogenesis could lead to bronchial lymphedema and exaggerated obstruction of the
airways [104]. Perhaps correction of defective lymphangiogenesis may be beneficial in asthma and
other inflammatory conditions.
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Studies in a diabetic mouse model showed that blockade of VEGF-C and VEGF-D with
a soluble form of VEGFR-3 can modulate adipose tissue inflammation, which was associated with
reduced hepatic lipid accumulation and improved insulin sensitivity indicating an unanticipated
function of lymphangiogenic factors in mediating metabolic syndrome-associated adipose tissue
inflammation [105]. Targeting this signaling pathway may therefore be a therapeutic approach for
preventing obesity-associated insulin resistance.

4.7. Lymphedema

Lymphedema is an edema usually caused by lymphatic abnormalities that compromise uptake of
fluid from the interstitium of tissues. Primary lymphedema includes conditions with a genetic origin
(often involving abnormal development of the lymphatic vasculature) whereas secondary lymphedema,
which is more common, can arise from damage to lymphatic vessels caused by surgery (e.g., removal
of lymph nodes), infection, trauma or radiation therapy [106]. The condition is characterized by
debilitating swelling of tissue, typically in the limbs, which can be highly problematic for patients
both physically and psychologically. There are no effective treatments for this condition so a variety of
molecular-based strategies to enhance lymphatic drainage in this disease setting are being explored.
The potential relevance of VEGF-C or VEGF-D signaling to lymphedema is illustrated by the recent
finding of a single nucleotide polymorphism in the gene encoding VEGFR-3 that is associated with the
clinical development of lymphedema caused by lymphatic filariasis [107].

A promising approach being tested in secondary lymphedema is the combination of autologous
lymph node transfer with viral-driven growth factor expression to promote lymphatic regeneration or
repair and thereby facilitate survival of the transplanted lymph node. In a mouse model, treatment
of lymph node-excised animals with VEGF-D, delivered by adenovirus, promoted the growth
of small lymphatics, which differentiated into functional collecting lymphatics, or remodeling of
pre-existing collecting lymphatics, that were associated with an improved outcome of lymph node
transplantation [108]. Since then, this approach has been assessed in a porcine model of secondary
lymphedema, demonstrating that lymphatic drainage was significantly improved in animals treated
with VEGF-C or VEGF-D. These findings indicate that this approach should be tested in clinical trials
for treatment of secondary lymphedema [109].

4.8. Other Clinical Settings

4.8.1. Wound Healing

Genetically modified mice deficient for Vegf-d have been reported to exhibit abnormalities in
cutaneous wound healing compared to wild-type controls. In particular, the wound epithelium
of Vegf-d-deficient mice was more edematous and thicker, likely reflecting inadequate lymphatic
drainage [110]. Further, myofibroblasts were more abundant in Vegf-d-deficient wounds leading to
faster wound closure, but resorption of granulation tissue was compromised, which is consistent with
a poorer-quality of healing. These findings raise the possibility that VEGF-D could therapeutically
enhance the quality of healing of difficult-to-treat cutaneous wounds, but this needs to be tested in
more clinically relevant animal models.

4.8.2. Transplantation

It has been proposed that lymphangiogenesis facilitates rejection of transplanted tissue in
various clinical settings. For example, it was shown that a soluble form of VEGFR-3, capable
of sequestering VEGF-C and VEGF-D, suppressed both lymphangiogenesis in the cornea and
allograft rejection suggesting this may be a viable therapeutic approach to enhance corneal allograft
survival [111]. In human kidney transplants, lymphangiogenesis was observed to be associated with
immunologically active lymphocytic infiltrates, leading to speculation that lymphangiogenesis is
involved in maintenance of a detrimental alloreactive immune response [112]. These, and similar
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findings, have led to the proposal that lymphatic neoangiogenesis may be a driving force of chronic
rejection of renal transplants [113]. It is also possible that VEGF-C and VEGF-D may act directly on
immune cells to modulate their action in transplantation but further research is required to explore
this possibility.

4.8.3. Neurological Disorders

In addition to acting on the endothelium, VEGF-D has been shown to play a role in the biology of
neurons. More specifically, VEGF-D can control the length and complexity of dendrites in cultured
hippocampal neurons and in adult mouse hippocampus, and, importantly, nuclear calcium-VEGF-D
signaling was required for the effect of neuronal activity on maintaining dendritic arbors in adult
hippocampus and for cognitive functioning [114,115]. More recently it was demonstrated that nuclear
calcium, acting via the gene encoding VEGF-D, is required for hippocampus-dependent fear memory
consolidation and extinction [116]. These findings suggest that VEGF-D could be used therapeutically
to stabilize dendritic structures and network connectivity, thereby preventing cognitive decline,
and could be beneficial in psychiatric disorders, neurodegenerative and aging-related conditions
involving loss of neuronal structures [116].

5. Concluding Comments

Fundamental research into the biochemistry, molecular signaling and biological functions of
VEGF-D has been central to identifying the potential roles of this angiogenic and lymphangiogenic
growth factor in a range of clinical settings. The production of agents for targeting or delivering this
protein, such as monoclonal antibodies and recombinant adenoviruses, has led to translational research
and ongoing clinical trial programs assessing the benefits of targeting VEGF-D signaling pathways,
or delivering VEGF-D, in cancer, cardiovascular medicine and ocular indications. Importantly,
the recognition that monitoring serum levels of VEGF-D can be useful for diagnosing LAM has
led to a new diagnostic approach for this disease that is proving useful in combination with other
strategies. Hence, research into the biochemistry and biology of VEGF-D has already changed clinical
practice and, with multiple clinical trial programs underway, it is reasonable to propose there may be
more clinical impact to come.
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