
Common and Cluster-Specific Simultaneous Component
Analysis
Kim De Roover1*, Marieke E. Timmerman2, Batja Mesquita3, Eva Ceulemans1

1 Methodology of Educational Sciences Research Unit, KU Leuven, Leuven, Belgium, 2 Heymans Institute of Psychology, University of Groningen, Groningen, The

Netherlands, 3 Social and Cultural Psychology Research Unit, KU Leuven, Leuven, Belgium

Abstract

In many fields of research, so-called ‘multiblock’ data are collected, i.e., data containing multivariate observations that are
nested within higher-level research units (e.g., inhabitants of different countries). Each higher-level unit (e.g., country) then
corresponds to a ‘data block’. For such data, it may be interesting to investigate the extent to which the correlation
structure of the variables differs between the data blocks. More specifically, when capturing the correlation structure by
means of component analysis, one may want to explore which components are common across all data blocks and which
components differ across the data blocks. This paper presents a common and cluster-specific simultaneous component
method which clusters the data blocks according to their correlation structure and allows for common and cluster-specific
components. Model estimation and model selection procedures are described and simulation results validate their
performance. Also, the method is applied to data from cross-cultural values research to illustrate its empirical value.
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Introduction

Researchers often gather data with a so-called ‘multiblock’

structure [1], i.e., multivariate observations nested within higher-

level research units. The data then contain separate blocks of data,

one for each higher-level research unit. These data blocks have the

variable mode in common. For example, when a personality trait

questionnaire is administered to inhabitants of different countries,

the countries constitute the data blocks and the questionnaire

items the variables. In case several emotions are measured multiple

times for a number of subjects, the data blocks pertain to the

different subjects and the variables to the emotions.

With such data at hand, it can be interesting to explore and

summarize the correlation structure of the variables and possible

between-block differences therein. For example, in the personality

data mentioned above, one could look for cultural differences in

the correlation structure of personality traits. Specifically, one

could examine to what extent the well-known Big Five structure

[2] is found within each country (e.g., [3]).

To capture such between-block differences in correlation

structure, clusterwise simultaneous component analysis was

recently proposed [4–5]. This method summarizes the most

important structural differences and similarities by assigning the

data blocks to a number of mutually exclusive clusters and, at the

same time, performing a separate simultaneous component

analysis (SCA) within each cluster. SCA generalizes standard

PCA to multiblock data and models the different blocks using the

same component loadings, whereas different restrictions can be

imposed on the component scores to express similarities across

blocks [6]. Hence, in Clusterwise SCA, data blocks with a similar

structure are collected into the same cluster and thus modeled with

the same loadings, while data blocks with different structures are

allocated to different clusters. Thus, the differences in structures

are expressed by differences in loadings across the clusters. For

instance, a Clusterwise SCA analysis of the cross-cultural

personality data would reveal which countries have a very similar

personality trait structure by assigning those countries to the same

cluster. Moreover, inspecting the loadings in the different clusters,

one may gain insight into which part of the correlation structure

differs across countries.

As clusters are modeled independently of one another,

Clusterwise SCA may keep structural similarities across clusters

hidden, however. Specifically, taking empirical results into

account, it can often be assumed that some of the components

are common across clusters, implying that the structural differ-

ences only pertain to a subset of the components. For instance,

cross-cultural research on the Big Five has shown that three or four

of the five components are found in all countries, whereas the

interpretation of the fourth and fifth component can differ across

countries [7–8].

Therefore, it may be useful to adopt a more flexible perspective

on structural differences and similarities between clusters, where

the differences can be situated somewhere along the length of a

bipolar commonness dimension, of which the two poles pertain to

commonness of all underlying components (implying that it is

sufficient to use only one cluster and thus a regular SCA) on the

one hand and no commonness on the other hand (implying that

one should apply Clusterwise SCA). Between these poles we find
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models in which the structural differences between clusters

concern only a subset of the underlying components, whereas

the other components are common across clusters. For instance, as

discussed above, for the cross-cultural personality data a model in

which the clusters differ with respect to only one or two out of the

five components and in which the other components are common,

seems indicated. Hence, in this paper, we propose a method on the

interface between regular SCA and Clusterwise SCA, to allow for

common and cluster-specific components. More specifically, we

propose to combine SCA-ECP and Clusterwise SCA-ECP (where

‘SCA-ECP’ refers to SCA with Equal Cross-Products constraints

on the component scores) for simultaneously inducing the

Common and Cluster-specific SCA-ECP components, respective-

ly. This new method is named CC-SCA-ECP.

The remainder of the paper is organized in five sections: In the

Method section, the CC-SCA-ECP model is introduced and

compared to related methods, after a short discussion of the data

structure and the recommended preprocessing. The Analysis

section describes the loss function and an algorithm for performing

a CC-SCA-ECP analysis, followed by a model selection heuristic.

In the Simulation Study section, the performance of this algorithm

and model selection heuristic is evaluated in a simulation study. In

the Application section, CC-SCA-ECP is applied to cross-cultural

data on values. Finally, we end with the Discussion section,

including directions for future research.

Methods

2.1. Data Structure and Preprocessing
CC-SCA-ECP is applicable to multiblock data, which are data

that consist of I data blocks Xi (Ni6J) that contain scores of Ni

observations on J variables (measured at least at interval level).

The number of observations Ni (i = 1, …, I) may differ between

data blocks, subject to the restriction that Ni is larger than the

number of components to be fitted (and, to enable stable model

estimates, preferably larger than J). The data blocks can be

concatenated into an N (observations)6J (variables) data matrix X,

where N~
PI
i~1

Ni.

With CC-SCA-ECP, we aim to model similarities and

differences in the correlational structure of the different blocks

(i.e., ‘within-block structure’). To achieve this, each variable is

centered and standardized per data block prior to the CC-SCA-

ECP analysis. This type of preprocessing is often referred to as

‘autoscaling’ [9] and is equivalent to calculating z-scores per

variable within each data block. The centering step assures that

one analyzes the within-block part of the data [10]. The

standardizing step assures that one analyzes correlations. In

multiblock analysis, next to autoscaling, other approaches are

standardizing the variables across all data blocks (rather than per

block) (e.g., [6]), or no scaling at all (e.g., [11]), with centering

applied per data block. This implies that one models the within-

block covariances rather than the correlations. A drawback of

clustering the data blocks on the basis of their covariances,

however, is that the obtained clustering may be based on variance

differences as well as correlation differences, which complicates the

cluster interpretation. Since we are exclusively interested in the

correlational structure per block, we assume each data block Xi to

be autoscaled in what follows.

2.2. CC-SCA-ECP Model
To allow for common as well as cluster-specific components,

CC-SCA-ECP combines an SCA-ECP model with a Clusterwise

SCA-ECP model. Formally, data block Xi is modeled as

Xi~Fi,commBcomm
’z
XK

k~1

pikF
(k)
i,specB(k)

spec’zEi, ð1Þ

with Equal Cross Product (ECP) constraints as Ni
{1 Fi,comm

’Fi,comm~WQcomm , Ni
{1 F

(k)
i,spec’F

(k)
i,spec~W(k)

Qspec
, and with Fi,comm

’F
(k)
i,spec~0 to ensure separation of common and specific compo-

nents, for i = 1, …, I. The first term of Equation 1 is the SCA-ECP

model formula with Fi,comm (Ni6Qcomm) containing the scores on

the common components and Bcomm (J6Qcomm) the loadings on the

common components (see e.g., [6]). When a subgroup of variables

has high loadings on a particular common component, this

indicates that these variables are highly correlated in all data

blocks and thus may reflect one underlying dimension (represented

by the component). The entries of Fi,comm indicate how high or low

the observations within the data blocks score on the common

components. The second term is the Clusterwise SCA-ECP model

formula where K denotes the number of clusters, with 1# K # I, pik

is an entry of the partition matrix P (I6K) which equals one when

data block i is assigned to cluster k and zero otherwise, and F
(k)
i,spec

(Ni6Qspec) and B(k)
spec (J6Qspec) contain the scores and loadings on

the cluster-specific components of cluster k (k = 1, …, K). Finally,

Ei (Ni6J) denotes the matrix of residuals. Note that we constrained

the number of cluster-specific components Qspec to be the same for

all clusters. The generalization toward a varying number of

cluster-specific components Q(k)
spec across clusters, which makes

sense for some data sets, will be discussed later on (in the

Discussion).

To gain more insight into what Equation 1 means for the

decomposition of the total data matrix X (N6J), we rewrite it for

an example where six data blocks are assigned to two clusters, and

where the first four blocks belong the first cluster and the last two

to the second cluster:

X~

X21

X22

X23

X24

X25

X26

2
66666666664

3
77777777775

~

F21,�c�o�m�m F
(1)
1,�s�p�e�c 0½ �

F22,�c�o�m�m F
(21)
22,�s�p�e�c 0½ �

F23,�c�o�m�m F
(21)
23,�s�p�e�c 0½ �

F24,�c�o�m�m F
(21)
24,�s�p�e�c 0½ �

F25,�c�o�m�m 0½ � F
(22)
25,�s�p�e�c

F26,�c�o�m�m 0½ � F
(22)
26,�s�p�e�c

2
666666666666664

3
777777777777775

B�c�o�m�m
’

B(1)
�s�p�e�c’

B(2)
�s�p�e�c’

2
6664

3
7775z

E21

E22

E23

E24

E25

E26

2
666666666664

3
777777777775
:

ð2Þ

It can be seen that the data blocks have non-zero component

scores on the common components and on the cluster-specific

components of the cluster to which they are assigned, but zero

scores on the cluster-specific components of the other cluster. As

the clusters are mutually exclusive in terms of the data blocks they

Common and Cluster-Specific Components
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incorporate (i.e., each data block belongs to a single cluster only),

this implies that the non-zero parts of the different cluster-specific

columns cannot overlap.

The constraints imposed on the cross-products of common and

cluster-specific components in CC-SCA-ECP can be represented

as

Ni
{1 F

(k)
i ’F(k)

i ~Ni
{1 Fi,commDF(k)

i,spec

h i’
Fi,commDF(k)

i,spec

h i

~
Fi,comm

’Fi,comm Fi,comm
’F

(k)
i,spec

F
(k)
i,spec’Fi,comm F

(k)
i,spec’F

(k)
i,spec

2
4

3
5

~
W 0

0 W(k)

" #
:

ð3Þ

To identify the model, without loss of fit, we rescale the solution

such that the diagonal elements of W and W(k) equal one.

Furthermore, because the mean component scores for each data

block Xi equal zero (due to the centering of Xi and the

minimization function applied, see [6]), the matrices W and W(k)

are correlation matrices of the common components and the

cluster-specific components of cluster k, respectively. Note that we

prefer to impose the orthogonality restrictions on the component

scores rather than on the loadings, as this implies that (1) all

restrictions pertain to the same parameters and (2) the loadings can

be interpreted as correlations between the variables and the

components.

Note that the common and cluster-specific components of a

CC-SCA-ECP solution can be rotated without loss of fit, which

can make them easier to interpret. Thus, Bcomm can be multiplied

by any rotation matrix, provided that the corresponding compo-

nent score matrices Fi,comm are counterrotated. Similarly, each

B(k)
spec and the corresponding F

(k)
i,spec matrices (k = 1, …, K) can be

rotated.

In defining our model, we deliberately selected the most

constrained variant of the SCA family [6], to obtain components

that can unambiguously be interpreted as either common or

cluster-specific. The use of a less constrained SCA variant, like

SCA-IND, appears to be inappropriate for the following reasons.

First, in that case a common component may have a variance of

zero in a specific data block, which seriously undermines its

common nature. Second, the clustering may sometimes be

dominated by differences in component variances rather than by

differences in correlational structure of the variables (see Section

2.1).

2.3. Relations to Existing Methods
In the literature, a few other techniques have been proposed for

distinguishing between common components and components

that underlie only part of the data blocks (e.g., GSVD; [12–15]).

However, only two of them explicitly allow to extract a specified

number of common and non-common components from multi-

block data: DISCO-SCA [16–17] and OnPLS [18].
2.3.1 DISCO-SCA. DISCO-SCA disentangles distinctive

(‘DIS’) and common (‘CO’) components by rotating a regular

SCA-P solution, where ‘P’ refers to the equal Pattern restriction,

implying that no further restrictions are imposed on the

component scores and thus that the component variances and

component correlations may differ across blocks [6]. Specifically,

the DISCO-SCA rotation criterion minimizes the variance

explained in data block i by a component that is distinctive for

other data blocks but not for data block i. Thus, a distinctive

component is defined as a component that explains a negligible

amount of variance in some of the data blocks. Schouteden, Van

Deun and Van Mechelen [19] also proposed DISCO-GSCA,

which adapts DISCO-SCA in that it not only tries to maximize the

‘distinctiveness’ of distinctive components but also imposes it to a

certain degree (implying some loss of fit).

DISCO-SCA and CC-SCA-ECP differ essentially in their

definitions of common and non-common components: In DIS-

CO-SCA, non-common (i.e., distinctive) components are obtained

by explicitly looking for components that explain as little variance

as possible in the data blocks for which they are not distinctive,

without loss of fit. As the component scores of this distinctive

component are not explicitly restricted to zero in the other data

block(s), a common and a distinctive component can be correlated

within a certain data block, however. In our view, the

interpretation of such distinctive components is rather intricate,

because they may carry common information. In contrast, in CC-

SCA-ECP non-common (i.e., specific) components merely have a

different loading pattern in the different clusters. Specifically, CC-

SCA-ECP maximizes the variance explained by the common and

specific components under the restriction that the common and

specific components are orthogonal within each data block.

Note that the zero scores in Equation 2 might suggest that the

specific components of a particular cluster cannot explain any

variance in any other cluster. This is not generally true, however.

If we would start from a given CC-SCA-ECP solution, and would

extend the solution by freely estimating the component scores that

are associated with zeros in Equation 2, the fit of the extended

model would probably be larger than the CC-SCA-ECP model

itself, and thus the cluster-specific components can model some of

the variance in other clusters. This implies that those components

are not truly distinctive in DISCO-SCA terms.

Furthermore, DISCO-SCA is limited to finding common and

distinctive components within the SCA-P subspace (for DISCO-

GSCA this is only partly the case) and is therefore biased toward

finding common components as such components often will

explain the most variance in the data. CC-SCA-ECP is less

restrictive in this respect, because the cluster-specific components

are estimated separately for each cluster and thus only need to

explain enough variance within these clusters to be retrieved

(under the restriction that they are orthogonal to the common

components).

Finally, CC-SCA-ECP can easily handle a large number of data

blocks by means of the clustering, while DISCO-(G)SCA was

originally intended for the analysis of two data blocks. Although

the general idea behind DISCO-(G)SCA can be extended to more

than two data blocks [20], it will soon become complex since

components can be distinctive for all conceivable subsets of the

data blocks implying that many degrees of distinctiveness become

possible.

2.3.2 OnPLS. OnPLS [18] is another method that aims to

distinguish between common and specific variance. This method

was developed for object-wise linked multiblock data, but it can be

applied to variable-wise linked multiblock data by simply

considering the transposed data matrices Xi
’ for all i. OnPLS

starts by computing an orthogonalized version of each data block

in which the shared or common variance with the other data

blocks is removed. Next, specific components are obtained for

each data block by finding those components that optimally

summarize the associated orthogonalized data block. Finally, the

common components are extracted from the residual matrices,

which are obtained by subtracting the specific parts (captured by

Common and Cluster-Specific Components
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the specific components) from the original data blocks, with all

common and specific components being orthogonal. An important

difference between the common components resulting from

OnPLS and the common components in DISCO-(G)SCA and

CC-SCA-ECP is that the OnPLS components model variance that

is common across data blocks, but that the scores or loadings are

not constrained to be the same across all data blocks. On top of

that, OnPLS differs from CC-SCA-ECP in three respects. First,

OnPLS uses a sequential approach in that it first extracts the

specific components from the data set and then models the

common variance, while CC-SCA-ECP uses a simultaneous

approach for finding the clustering and the common and

cluster-specific components. Second, unlike CC-SCA-ECP,

OnPLS imposes that the specific components of different data

blocks are orthogonal. Third, like DISCO-(G)SCA, OnPLS does

not include a clustering of the data blocks and will thus be less

insightful than CC-SCA-ECP in case of a large number of data

blocks.

Analysis

3.1. Aim
For a given number of clusters K, number of common

components Qcomm and number of cluster-specific components

Qspec, the aim of the analysis is to find the partition matrix P, the

component score matrices F
(k)
i = Fi,commDF(k)

i,spec

h i
and the loading

matrices B(k) = BcommDB(k)
spec

h i
, that minimize the loss function

L~
XK

k~1

XI

i~1

pikLik

~
XK

k~1

XI

i~1

pik DDXi{ Fi,commDF(k)
i,spec

h i
BcommDB(k)

spec

h i’
DD2,

ð4Þ

subject to the constraints formulated in Equation 3. Based on the

loss function value L, one can compute the percentage of variance

in the data that is accounted for by the CC-SCA-ECP solution:

VAF(%)~
Xk k2

{L

Xk k2
|100: ð5Þ

Note that this VAF(%) can be further decomposed into the

percentage of variance that is explained by the common part:

VAFcomm(%)~
FcommBcomm

’
�� ��2

Xk k2
|100 ð6Þ

and the percentage of variance that is explained by the cluster-

specific part:

VAFspec(%)~

PK
k~1

PI
i~1

pikDDF
(k)
i,specB(k)

spec’DD
2

Xk k2
|100: ð7Þ

3.2. Algorithm
In order to find the solution with the minimal L value (Equation

4), an alternating least squares (ALS) algorithm is used, in which

the partition, component scores and loading matrices are updated

cyclically until convergence is reached. As ALS algorithms may

converge to a local minimum, we recommend to use a multistart

procedure and retain the best solution. More specifically, we

advise to use a ‘rational’ start based on a Clusterwise SCA-ECP

analysis and several (e.g., 25) random starts. For each start, the

algorithm performs the following steps:

1. Initialize partition matrix P: For a rational start, take the best

partition resulting from a Clusterwise SCA-ECP analysis with

K clusters and Qcomm+Qspec components (performed with 25

random starts, as advised by De Roover et al. [4]). For a

random start, assign the I data blocks randomly to one of the K

clusters, where each cluster has an equal probability of being

assigned to and each cluster should contain at least one data

block.

2. Estimate common and cluster-specific components, given

partition matrix P: To this end, another ALS procedure is

used, consisting of the following steps:

a. Initialize loading matrices Bcomm and B(k)
spec: Bcomm and Fcomm are

initialized by performing a rationally started SCA-ECP

analysis with Qcomm components on the total data matrix X
(for more details, see [6]). Next, the cluster-specific loadings

B(k)
spec and component scores F

(k)
i,spec for cluster k are obtained

by performing a rationally started SCA-ECP with Qspec

components on ~XX(k), which is the vertical concatenation of

the data blocks in the k-th cluster after subtracting the part of

the data that is modeled by the common components (i.e.,

Fi,commBcomm
’) from each block in that cluster.

b. Update the component score matrices Fi,comm and F
(k)
i,spec: To

obtain orthogonality of F
(k)
i,spec toward Fi,comm for each data

block (see Section 2.2), the component scores of the i-th data

block (in cluster k) are updated as Fi,commDF(k)
i,spec

h i
~ffiffiffiffiffi

Ni

p
Ui(Q) Vi(Q)

’, where Ui, Vi and Si result from a singular

value decomposition Xi BcommDB(k)
spec

h i
~Ui Si Vi

’, and where

Ui(Q) and Vi(Q) are the first Q columns of Ui and Vi

respectively, and Si(Q) consists of the first Q rows and columns

of Si, with Q equal to Qcomm+Qspec. Note that, compared to

Equation 3, this updating step implies additional orthogonal-

ity constraints, i.e., all columns of the obtained F
(k)
i,spec and

Fi,comm are orthogonal, but this can be imposed without loss of

generality.

c. Update the loadings Bcomm and B(k)
spec: Bcomm is re-estimated by

Bcomm~((Fcomm
’ Fcomm){1Fcomm

’ X)’ and B(k)
spec is updated per

cluster by B(k)
spec~((F(k)

spec’ F(k)
spec){1F(k)

spec’ X(k))’, where X(k) and

F(k)
spec are the vertical concatenations of the data blocks that are

assigned to cluster k and of their component scores F
(k)
i,spec,

respectively.

d. Alternate steps b and c until convergence is reached, i.e., until

the decrease of the loss function value L (Equation 4) for the

current iteration is smaller than the convergence criterion,

which is 161026 by default.

3. Update the partition matrix P: Each data block Xi is tentatively

assigned to each of the K clusters. Based on the loading matrix

B(k), a component score matrix for block i in cluster k is

computed (as in step 2b) and the loss function value Lik (see

Equation 4) of data block i in cluster k is evaluated. The data

block is assigned to the cluster for which this loss is minimal. If

one of the clusters is empty after this step, the data block with

Common and Cluster-Specific Components
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the worst fit in its current cluster, is reassigned to the empty

cluster.

4. Repeat steps 2 and 3 until the partition P no longer changes. In

this procedure, the common loadings Bcomm and component

scores Fcomm of the previous iteration are used as a start for step

2, instead of the rational start described in step 2a, since a

change in the partition will primarily affect the cluster-specific

components.

Because the clustering of each block in step 3 is based on the

loadings resulting from step 2 (i.e., the loadings are not updated

after each reassignment; it is possible to update the common and

cluster-specific loadings for each reassignment, but we chose not to

because this would strongly inflate the computation time), it

cannot be guaranteed that this algorithm monotically non-

increases the loss function. However, we did not encounter

problems in this regard, neither for the simulated data sets

(Simulation Study section) nor for the empirical example

(Application section).

3.3. Model Selection
In empirical practice, theoretical knowledge can lead to an a

priori expectation about the number of clusters K, the total

number of components Q (i.e., Qcomm+Qspec) and/or the number of

cluster-specific components Qspec that is needed to adequately

describe a certain data set. For instance, when exploring the

underlying structure of cross-cultural personality trait data, one

probably expects five components based on the Big Five theory

[2], of which one or two may be cluster-specific. However, when

one has no expectations about K, Q and/or Qspec, a model selection

problem arises. To offer some assistance in dealing with this

problem, the following CC-SCA-ECP model selection procedure

is proposed, which is based on the well-known scree test [21]:

1. Estimate Clusterwise SCA-ECP models with one to Kmax

clusters and one to Qmax components within the clusters: Kmax

and Qmax are the maximum number of clusters and

components one wants to consider. Note that in this step, all

components are considered to be cluster-specific.

2. Obtain Kbest and Qbest: To select among the Kmax6Qmax models

from step 1, De Roover, Ceulemans and Timmerman [1]

proposed the following procedure: First, to determine the best

number of clusters Kbest, scree ratios sr(K|Q) are calculated for

each value of K, given different Q-values:

sr(K DQ)~
VAFK DQ{VAFK{1DQ

VAFKz1DQ{VAFK DQ
, ð8Þ

where VAFK|Q indicates the VAF(%) (Equation 5) of the

solution with K clusters and Q components. The scree ratios

indicate the extent to which the increase in fit with additional

clusters levels off; therefore, Kbest is chosen as the K-value with

the highest average scree ratio across the different Q-values.

Second, scree ratios are calculated for each value of Q, given

Kbest clusters:

sr
(QDKbest)

~
VAF

QDKbest{VAF
Q{1DKbest

VAF
Qz1DKbest{VAF

QDKbest
: ð9Þ

The best number of components Qbest is again indicated by the

maximal scree ratio.

1. Estimate all possible CC-SCA-ECP models with Kbest clusters

and Qbest components: Perform CC-SCA-ECP analyses with

Kbest clusters and with one to Qbest cluster-specific components

per cluster and the rest of the Qbest components considered

common.

2. Select Qbest
comm and Qbest

spec: Given Kbest clusters and Qbest

components, a CC-SCA-ECP model becomes more complex

as more of the Qbest components are considered cluster-specific.

Consequently, a scree test is performed with the number of

cluster-specific components Qspec as a complexity measure.

Specifically, the following scree ratio is computed for each Qspec-

value:

sr
(Qspec DKbest Qbest)

~
VAF

Qspec DKbest Qbest{VAF
Qspec{1DKbest Qbest

VAF
Qspecz1DKbest Qbest{VAF

Qspec DKbest Qbest

:
ð10Þ

The maximum scree ratio will indicate the best number of cluster-

specific components Qbest
spec and thus also the best number of

common components Qbest
comm (i.e., Qbest – Qbest

spec). When Qbest is

smaller than four, it makes no sense to perform a scree test; in

those cases, we recommend to compare the models estimated in

step 3 with respect to explained variance and interpretability.

When a priori knowledge is available about K or Q, this

knowledge can be applied within steps 1 and 2. If K and Q are both

known, steps 1 and 2 can be skipped. Note that, even though the

above-described procedure will retain only one model as ‘the best’

for a given data set, we advise to take the interpretability of the

other solutions with high scree ratios into account, especially when

the results of the model selection procedure are not very

convincing. For instance, when the maximum scree ratio for the

number of components (Equation 10) is only slightly higher than

the second highest scree ratio (thus corresponding to the second

best number of components Q2ndbest), one can also apply steps 3

and 4 for solutions with Q2ndbest components and consider both the

best solution with Qbest components and with Q2ndbest components

and eventually retain the one that gives the most interpretable

results.

Simulation Study

4.1. Problem
In this simulation study, we evaluate the performance of the

proposed algorithm with respect to finding the optimal solution

(i.e., avoiding local minima) and recovering the underlying model

(i.e., the correct clustering of the data blocks and the correct

common and cluster-specific loadings). Moreover, we examine

whether the presented model selection procedure succeeds in

retaining the correct model (i.e., the correct number of clusters,

common components, and cluster-specific components). Specifi-

cally, we assess the influence of six factors: (1) number of

underlying clusters, (2) number of common and cluster-specific

components, (3) cluster size, (4) amount of error on the data, (5)

amount of common (structural) variance, and (6) similarity or

congruence of the cluster-specific component loadings across

clusters. The first four factors are often varied in simulation studies

to evaluate clustering or component analysis algorithms (see e.g.,
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[22–28]), and were also examined in the original Clusterwise SCA-

ECP simulation study [4]. With respect to these factors, we expect

better model estimation and selection results when less clusters and

components are involved [4,23–25,27], when the clusters are of

equal size [22,24,26], and when the data contain less error

[4,23,28]. Regarding Factors 5 and 6, we conjecture that model

estimation and selection will deteriorate when the amount of

common variance increases and when the cluster-specific compo-

nent loadings are more similar across clusters.

Moreover, one might conjecture that CC-SCA-ECP does not

add much to Clusterwise SCA-ECP, because one could just apply

Clusterwise SCA-ECP and examine whether one or more of the

components are strongly congruent across clusters and are thus

essentially common. We see two possible pitfalls, however: (a)

estimating all components as cluster-specific can affect the

recovery of the clustering in case the data contain a lot of error

and the truly cluster-specific components explain little variance; (b)

strong congruence between components across clusters can be

hard to detect, even when the components of different clusters are

rotated toward maximal congruence [29], because Clusterwise

SCA-ECP will partly model the cluster-specific error and therefore

hide the commonness of some components. To gain insight into

the differences between Clusterwise SCA-ECP and CC-SCA-

ECP, we will compare the performance of both methods.

4.2. Design and Procedure
Fixing the number of variables J at 12 and the number of data

blocks I at 40 (note that lowering the number of data blocks to 20

yields very similar results), the six factors introduced above were

systematically varied in a complete factorial design:

1. the number of clusters K at 2 levels: 2, 4;

2. the number of common and cluster-specific components Qcomm and Qspec at

4 levels: [Qcomm, Qspec] equal to [2,2]; [2,3]; [3,2]; [3,3];

3. the cluster size, at 3 levels (see [24]): equal (equal number of data

blocks in each cluster); unequal with minority (10% of the data

blocks in one cluster and the remaining data blocks distributed

equally over the other clusters); unequal with majority (60% of

the data blocks in one cluster and the remaining data blocks

distributed equally over the other clusters);

4. the error level e, which is the expected proportion of error

variance in the data blocks Xi, at 2 levels:.20,.40;

5. the common variance c, which is the expected proportion of the

structural variance (i.e., 1– e) that is accounted for by the

common components, at 3 levels:.25,.50,.75;

6. the congruence between the cluster-specific component loadings at 2 levels:

low congruence, medium congruence.

For each cell of the factorial design, 20 data matrices X were

generated, consisting of 40 Xi data blocks. The number of

observations for each data block was sampled from a uniform

distribution between 30 and 70. The entries of the component

score and error matrices Fi and Ei were randomly sampled from a

standard normal distribution. The partition matrix P was

generated by computing the size of the different clusters and

randomly assigning a corresponding number of data blocks to the

clusters. The cluster loading matrices B(k)~ BcommDB(k)
spec

h i
were

created by sampling the common loadings Bcomm uniformly

between –1 and 1 and rescaling their rows to have a sum of

squares equal to the amount of common variance c. The cluster-

specific loading matrices B(k)
spec with low congruence were obtained

in the same way, but their rows were rescaled to have a sum of

squares equal to the amount of cluster-specific variance (1– c).

Cluster-specific loading matrices with medium congruence were

constructed as follows: (1) a common base matrix and K specific

matrices were uniformly sampled between –1 and 1, (2) the rows of

these matrices were rescaled to have a sum of squares equal

to.7*(1– c) and.3*(1– c), respectively, (3) the K specific matrices

were added to the base matrix. To evaluate how much the

resulting cluster-specific loading matrices differ between the

clusters, they were orthogonally procrustes rotated to each other

(i.e., for each pair of cluster-specific loading matrices, one was

chosen to be the target matrix and the other was rotated toward

the target matrix) and a congruence coefficient Q [30] was

computed – the congruence coefficient for a pair of column vectors

x and y is defined as their normalized inner product:

Qxy~
x’yffiffiffiffiffiffiffi

x’x
p ffiffiffiffiffiffi

y’y
p – for each pair of corresponding components in

all pairs of B(k)
spec matrices. Subsequently, a grand mean of the

obtained Q values was calculated, over the components and cluster

pairs. Since Haven and ten Berge [31] demonstrated that

congruence values from.70 to.85 correspond to an intermediate

similarity between components, only B(k)
spec matrices with a mean Q

below.70 were retained for the low congruence level and loading

matrices with a mean Q between.70 and.85 for the medium

congruence level. Eventually, averaging the mean Q values across

the simulated data sets led to an average Q of.39 (SD = 0.09) for

the low congruence level and an average Q of.78 (SD = 0.04) for

the medium congruence level. Next, the error matrices Ei and the

cluster loading matrices B(k) were rescaled to obtain the correct

amount of error variance e. Finally, the resulting Xi matrices were

standardized per variable and vertically concatenated into the

matrix X.

In total, 2 (number of clusters)64 (number of common and

cluster-specific components)63 (cluster size)63 (common vari-

ance)62 (congruence of cluster-specific components)62 (error

level)620 (replicates) = 5,760 simulated data matrices were

generated. For the model estimation part of the simulation study,

each data matrix X was analyzed with the CC-SCA-ECP

algorithm, using the correct number of clusters K, and the correct

numbers of common and cluster-specific components Qcomm and

Qspec. The algorithm was run 26 times, using one rational start and

25 different random starts (see Section 3.2), and the best solution

was retained. These analyses took about 16 minutes per data set

on a supercomputer consisting of INTEL XEON L5420

processors with a clock frequency of 2.5 GHz and with 8 GB

RAM. Additionally, a Clusterwise SCA-ECP analysis with 25

random starts was performed for each data matrix.

The model selection part of the simulation study is confined to

the first five replications of each cell of the design to keep the

computational cost within reasonable limits. For each of these

1,440 data matrices, the stepwise model selection procedure (see

Section 3.3) was performed with Kmax equal to six and Qmax equal

to seven.

4.3. Results
4.3.1. Model estimation. We will first discuss the sensitivity

to local minima (given that K, Qcomm and Qspec are known), followed

by an evaluation of the goodness-of-recovery of the clustering of

the data blocks and the loadings of the common and cluster-

specific components. Finally, we will compare the performance of

Clusterwise SCA-ECP and CC-SCA-ECP.

To evaluate the sensitivity of the CC-SCA-ECP algorithm to

local minima, the loss function value of the retained solution

should be compared to that of the global minimum. This global
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minimum is unknown, however, because the simulated data are

perturbed with error and because, due to sampling fluctuations,

the data do not perfectly comply with the CC-SCA-ECP

assumptions (e.g., the orthogonality constraints on the common

and cluster-specific components). As a way out, we use the solution

that results from seeding the algorithm with the true Fi, B(k) and P
matrices as a proxy of the global minimum.

Specifically, we evaluated whether the best fitting solution out of

the 26 runs (i.e., one rational and 25 random starts) had a higher

loss function value than the proxy, which would imply that this

solution is a local minimum for sure. The latter is the case for 345

out of the 5,760 data sets (6%). Note that this number is a lower

bound of the true number of local minima (which cannot be

determined because the global minimum is unknown). The

majority of the established local minima (i.e., 326 out of the

345) occur in the conditions with unequal cluster sizes, with a

medium congruence between the cluster-specific components,

and/or with the cluster-specific components accounting for only

25% of the structural variance. Using only the rational start would

have resulted in 1,178 (20%) local minima and using only the 25

random starts in 576 (10%) local minima, thus combining rational

and random starts seems necessary to keep the sensitivity to local

minima sufficiently low.

To examine how well the cluster memberships of the data

blocks are recovered, the Adjusted Rand Index (ARI; [32]) is

computed between the true partition of the data blocks and the

estimated one. The ARI equals one if the two partitions are

identical, and equals zero when the agreement between the

partitions is at chance level. With an overall mean ARI of.98 (SD

= 0.11) the CC-SCA-ECP algorithm appears to recover the

clustering of the data blocks very well. More specifically, an

incorrect clustering (i.e., ARI ,1.00) occurred for only 415 out of

the 5,760 data sets. The majority of these clustering mistakes (i.e.,

414 out of the 415) occurred in the most difficult conditions, i.e.,

75% common structural variance combined with 40% error

variance.

Furthermore, to assess the extent to which the goodness-of-

recovery of the clustering deteriorates in case of local minima, we

took a closer look at the ARI values for the 345 data sets for which

we obtained a local minimum for sure. The mean ARI for these

345 data sets amounts to.81 (SD = 0.28), which is clearly lower

than the overall mean. Surprisingly, the clustering is still recovered

perfectly (i.e., ARI = 1.00) for 192 of these data sets. For the

remaining 153 data sets, according to the guidelines reported by

Steinley [33], the cluster recovery is excellent (ARI between.90 and

1.00) for 20, good (ARI between.80 and.90) for 27, moderate (ARI

between.65 and.80) for 18 and bad (i.e., ARI ,.65) for 88 of these

data sets. Thus, for the majority of the local minima, the clustering

is still good to excellent.

To evaluate the goodness-of-recovery of the loadings of the

common components, we calculated a goodness-of-common-

loading-recovery statistic (GOLRcomm) by computing congruence

coefficients Q [30] between the common components of the true

and estimated loading matrices and averaging these coefficients

across the Qcomm components:

GOLRcomm~

PQcomm

q~1

Q BT
comm,q,BM

comm,q

� �
Qcomm

, ð11Þ

with BT
comm,q and BM

comm,q indicating the q-th common component

of the true and estimated loading matrices, respectively. To deal

with the rotational freedom of the common components, the

estimated common components were orthogonally procrustes

rotated toward the true ones. The GOLRcomm statistic takes values

between zero (no recovery at all) and one (perfect recovery), and –

according to Lorenzo-Seva & ten Berge [34] – two components

can be considered identical when their congruence coefficient is

above.95. On average, the GOLRcomm has a value of.99 (SD

= 0.02), indicating an excellent recovery of the common loadings.

Moreover, the GOLRcomm is smaller than.95 for only 146 out of the

5,760 data sets, of which 137 belong to the conditions with 40%

error variance.

For the 345 data sets that are confirmed local minima, the mean

GOLRcomm is equal to.98 (SD = 0.04). Furthermore, the recovery of

the common loadings is excellent (GOLRcomm ..95) for 315 of these

data sets. Therefore, we can conclude that the common loadings

are still recovered very well for the majority of the local minima.

For quantifying the recovery of the cluster-specific component

loadings, we compute a statistic similar to the GOLRcomm, namely as

GOLRspec~

PK
k~1

PQspec

q~1

Q B(k)T
spec,q,B(k)M

spec,q

� �
KQspec

, ð12Þ

where B(k)T
spec,qand B(k)M

spec,q refer to the q-th component of the true

and estimated cluster-specific loading matrices, respectively, and

averaging across the Qspec components and the K clusters. The

rotational freedom of the components was again dealt with by

orthogonal procrustes rotations. Moreover, the true and estimated

clusters were matched such that the GOLRspec value is maximized.

The GOLRspec value amounts to.98 on average (SD = 0.04) and

is higher than.95 for 5,207 out of the 5,760 data sets, showing that

also the cluster-specific components are recovered very well. Out

of the 553 data sets for which GOLRspec is smaller than.95, 435 are

situated in the conditions with 75% common structural variance

and 40% error variance, which are conditions wherein the cluster-

specific variance (i.e., (1– c)6(1– e) = .15) is strongly masked by the

error variance (i.e., e = .40).

For the 345 confirmed local minima, the mean GOLRspec is equal

to.92 (SD = 0.10). The cluster-specific loadings are recovered

excellently (GOLRspec ..95) for 205 of these data sets, which is still

more than half of them. Thus, the recovery of the cluster-specific

loadings is affected by the fact that these solutions are local

minima, but even then they seem to be recovered quite well.

To compare the performance of CC-SCA-ECP and Clusterwise

SCA-ECP, we first evaluate whether the clustering obtained with

CC-SCA-ECP is closer to the true clustering (i.e., higher ARI) than

that resulting from a Clusterwise SCA-ECP analysis with

Qcomm+Qspec components. This is the case for 330 out of the

5,760 data sets (6%), with an average ARI improvement of.18 and

with perfect CC-SCA-ECP cluster recovery (i.e., ARI = 1.00) for

122 of these data sets. All of the 330 data sets are situated in the –

difficult – conditions with 75% common variance and/or 40%

error variance. Conversely, the Clusterwise SCA-ECP ARI was

better than the CC-SCA-ECP ARI for 94 data sets only (with an

average ARI gain of.11, but with the Clusterwise SCA-ECP ARI

remaining smaller than 1.00 for 77 out of these 94 data sets). Of

these data sets, 93 were situated in the conditions with 75%

common variance and/or 40% error variance, which are the

hardest clustering conditions. Second, we examine to what extent

the common components could be traced in the Clusterwise SCA

solution. To this end, for each data set, we computed the following

mean between-cluster congruence coefficient:
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mean QBC,comm~

PK
r~1

PK
s~rz1

PQcomm

q~1

Q B(r)M
q ,B(s)M

q

� �
Qcomm|K(K{1)=2

, ð13Þ

where the subset of Qcomm components is used that yields the

highest mean QBC,comm coefficient and where B(r)M
q and B(s)M

q are

the q-th components of clusters r and s. Of course, the

mean QBC,comm values could depend on how the rotational

freedom of the components is dealt with. Therefore, we calculated

the mean QBC,comm values for three different rotational approach-

es. First, we adopted the practice that was advocated in the

Clusterwise SCA papers [4,5], i.e., rotating each cluster loading

matrix toward simple structure, for which we make use of the

varimax criterion. We took the permutational freedom of the

components into account by retaining the permutation of the

components in cluster s that maximizes the mean congruence with

the components in cluster r. Second, we used procrustes rotation

which is available in some statistical software and thus is an

obvious candidate to explore the presence of common compo-

nents. Specifically, we orthogonally procrustes rotated the

components of the second up to the K-th cluster toward the

varimax rotated components of the first cluster. The first cluster

thus serves as the reference cluster and the loadings of this

reference cluster are rotated toward simple structure to obtain a

better interpretability. Which cluster is chosen as reference may

have some influence on the obtained mean QBC,comm value. Third,

we included the rotation procedure that is expected to give the best

results in revealing commonness of components, that is, rotating

the components of the K clusters toward maximal congruence by

means of the method presented by Brokken [35] and adapted by

Kiers and Groenen [29].

On average, the mean QBC,comm amounts to.81 (SD = 0.11),.88

(SD = 0.09) and.93 (SD = 0.05) for the varimax, procrustes and

maximal congruence rotation, respectively. To quantify how often

the most similar components across the clusters can actually be

interpreted as equal and therefore common components, we

employ the guidelines reported by Lorenzo-Seva and ten Berge

[34], who state that components can be considered equal in terms

of interpretation when their congruence is.95 or higher. For the

varimax rotation approach, the between-cluster congruence of the

common components is below.95 for no less than 5,512 (96%) out

of the 5,760 data sets, while for the procrustes rotation the

mean QBC,comm is below.95 for 4,439 (77%) of the simulated data

sets. Even for the rotation toward maximal congruence, the

mean QBC,comm is below.95 for 2,877 (50%) of the data sets. In

other words, for a large proportion of the simulated data sets,

applying Clusterwise SCA-ECP rather than CC-SCA-ECP would

be inappropriate, because it cannot be revealed that some of the

components are shared by all clusters.

4.3.2. Model selection. The model selection procedure

described in Section 3.3 selects the correct model – i.e., the

correct number of clusters, the correct number of common

components, and the correct number of cluster-specific compo-

nents – for 648 or about 45% of the 1,440 simulated data sets

included in the model selection study. If we investigate these results

into more detail, we see that the number of clusters is correctly

assessed for 1,223 or 85% of the data sets, which is reasonable

given the error levels of 20% and 40%. Out of the 217 mistakes,

213 are made when the cluster-specific variance amounts to only

25% of the structural variance and/or when the cluster-specific

components are moderately congruent, which makes sense as the

underlying clusters are harder to distinguish in these conditions.

The total number of components Q is correct for only 771 or

54% of the simulated cases, however. Out of the 669 mistakes, 645

are made in the conditions with 40% error variance and/or with a

low amount of common or cluster-specific variance. This result is

explained by the fact that (some of) the common components may

be considered minor in case of 25% common variance and (some

of) the cluster-specific components may turn out to be minor in

case of 75% common variance, especially when the data contain a

lot of error. Therefore, the total number of components is often

underestimated as the scree test is known to focus more on the

major components [36–37]. Also, minor components occur more

often when the number of components is relatively high, as is the

case in our study. Indeed, many model selection studies on

component analysis techniques have shown that the performance

decreases when more components are involved (e.g., [38–39]).

As the selection of the number of common components Qcomm

and the number of cluster-specific components Qspec strongly

depends on whether or not the correct total number of

components is retained, it is no surprise that Qcomm and Qspec are

selected correctly in only 52% and 63% of the cases, respectively.

Indeed, if we exclusively take the 771 data sets into account for

which the total number of components is correct, the correct Qspec,

and thus also the correct Qcomm, is selected in 93% of the cases,

which is excellent.

Finally, in the above paragraphs, we discussed the results

obtained when both the number of clusters and the number of

components have to be estimated. However, in practice, often

some a priori knowledge is available, considerably simplifying the

model selection problem. Therefore, we end this section by

investigating what happens if the total number of components is

known beforehand. In this case, the number of clusters is selected

correctly for 1,306 or 91% of the data sets, and the numbers of

common and cluster-specific components in 1,271 or 88% of the

data sets. Out of the 169 mistakes against Qspec, 159 are situated in

conditions with medium congruence among cluster-specific

component structures and/or with six components, implying

underestimation of the number of cluster-specific components.

Finally, if we look at the number of clusters as well as the numbers

of common and cluster-specific components, when the total

number of components is known, both are selected correctly for

82% of the data sets (i.e., for 1,183 out of the 1,440 data sets).

Based on these simulation results, we can formulate some

guidelines for CC-SCA-ECP model selection in empirical practice.

As stated before, using prior knowledge on the expected number of

clusters and/or components may be advantageous. When such

knowledge is not available, one can apply the model selection

procedure described in Section 3.3, but scrutinize the suggested

number of components Q. Indeed, as befits a scree test procedure,

Q is often underestimated when one or more of the common or

cluster-specific components is minor. Therefore, when in doubt on

how many components should be retained (e.g., the scree ratio for

the selected Q-value is only slightly higher than that for another Q-

value), one should also consider solutions with the Q-values

indicated by the second – the second best number of components

is the correct one for 20% of the data sets in the simulation study;

thus, in 74% of the simulated cases the correct number of

components is among the two best Q-values – and third highest

scree ratio [27] and perform steps 3 and 4 of the model selection

procedure for these Q-values as well. Consequently, one ends up

with two or three CC-SCA-ECP solutions from which the best one

can be chosen based on interpretability.
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Application

To illustrate the empirical value of CC-SCA-ECP, we will apply

it to cross-cultural data on values from the International College

Survey (ICS) 2001 [40–41]. Up to now, most research in this

domain (e.g., [42–43]) focuses on the mean score of inhabitants of

particular countries on broader value dimensions. We take a

different approach as we will examine the correlation structure of a

set of specific values within countries and model between-country

similarities and differences therein.

The ICS study included 10,018 participants out of 48 different

nations. Each of them rated, among other things, how much they

valued eleven aspects, which are listed in Table 1, using a 9-point

likert scale (1 = ‘‘do not value it at all’’, 9 = ‘‘value it extremely’’).

330 participants with missing data were excluded. Differences

between the countries in the means and the variances of the values

were removed by standardizing the values per country (see Section

2.1).

To find an optimal CC-SCA-ECP model for these data, we

used the model selection procedure described in Section 3.3. We

first performed Clusterwise SCA-ECP analyses with one to six

clusters and one to five components within each cluster. In Figure 1

the VAF(%) of the obtained Clusterwise SCA-ECP solutions is

plotted against the number of components for each number of

clusters. In step 2 of the model selection procedure the model with

two clusters and two components per cluster is retained as the best

Clusterwise SCA-ECP model, because the mean of the scree ratios

sr(K DQ) (Equation 8) is highest for two clusters and, given two

clusters, the scree ratio sr(QDKbest) (Equation 9) for the number of

components is maximal for two components (see Table 2). Indeed,

the data are fitted considerably better using two clusters rather

than one, while adding extra clusters hardly improves the fit, and,

regarding the number of components, the increase in fit with extra

components levels off after two components (see Figure 1).

We determine how many of these components can be taken as

common by performing CC-SCA-ECP with one common and one

cluster-specific component and comparing the VAF(%) of this

solution with that of the Clusterwise SCA-ECP solution with two

(cluster-specific) components and that of the SCA-ECP solution

with two (common) components. As Figure 2 shows, allowing one

of the components to be cluster-specific gives a considerable

increase in fit, while making the second component cluster-specific

adds very little. Because the model with one cluster-specific

component and one common component is more parsimonious

than the model with two cluster-specific components, while the fit

is about equal, we select the model with one common and one

cluster-specific component.

Upon inspecting the clustering given in Table 3, we can

conclude that cluster 1 contains the African, South, Southeast, and

West Asian countries (note that Cyprus and Georgia are often

classified as West Asian countries [44]), with the exception of

Nepal and Zimbabwe. Cluster 2 contains the other 33 countries.

The common and cluster-specific loadings are shown in Table 1.

Note that, since we have only one common and one cluster-

specific component, there is no rotational freedom. All values load

strongly on the common component, which accounts for 30% of

Table 1. Common and cluster-specific loadings of the CC-SCA-ECP model with two clusters, one common and one cluster-specific
component for the value data from the 2001 ICS study.

Common Cluster-specific

Cluster 1 Cluster 2

General value dimension Happiness & achievement Fun & intelligence vs. showing success

Happiness .52 .49 .22

Intelligence/knowledge .39 .58 .65

Material wealth .63 2.22 2.40

Physical attractiveness .68 2.25 2.43

Physical comforts .65 2.08 2.44

Excitement/arousal .61 2.24 2.35

Competition .61 2.15 2.40

Heaven/afterlife .44 .48 2.42

Self-sacrifice .47 .25 2.28

Success .61 .55 .33

Fun .35 .18 .70

Loadings greater than +/2. 35 are highlighted in boldface.
doi:10.1371/journal.pone.0062280.t001

Table 2. Scree ratios sr(K DQ) for the numbers of clusters K
given the numbers of components Q and averaged over the
numbers of components (above), and scree ratios sr(QDKbest) for

the numbers of components Q given two clusters (below), for
the value data of the 2001 ICS study.

1 comp 2 comp 3 comp 4 comp 5 comp average

2 clusters 4.12 2.22 2.53 3.16 2.66 2.94

3 clusters 1.78 1.60 1.30 1.48 1.30 1.49

4 clusters 1.17 2.12 1.66 1.35 1.46 1.55

5 clusters 1.27 0.95 1.16 0.94 1.20 1.10

2 clusters

2 components 1.58

3 components 1.24

4 components 1.21

The maximal scree ratio in each column is highlighted in boldface.
doi:10.1371/journal.pone.0062280.t002
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the variance in the data, implying that this component can be

interpreted as a general value dimension indicating that in each of

the 48 countries all values are positively correlated. The cluster-

specific component of cluster 1, which explains 13% of the

associated variance, is labeled ‘Happiness & achievement’ as it

displays high positive loadings of ‘Happiness’, ‘Intelligence and

knowledge’, ‘Getting to heaven, achieving a happy afterlife’ and

‘Success’. The cluster-specific component of cluster 2, which

Figure 1. Percentage of explained variance of the Clusterwise SCA-ECP solutions for the value data from the 2001 ICS study, with
the number of cluster varying from one to six, and the number of components varying from one to five.
doi:10.1371/journal.pone.0062280.g001

Figure 2. Percentage of explained variance plotted against the number of cluster-specific components for (from left to right) SCA-
ECP with two components (i.e., both components common), CC-SCA-ECP with one common and one cluster-specific component
and Clusterwise SCA-ECP with two clusters and two components (i.e., both components cluster-specific), for the value data from
the 2001 ICS study.
doi:10.1371/journal.pone.0062280.g002
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explains 20% of the corresponding variance, has a very different

loading pattern. Specifically, it has highly positive loadings of

‘Intelligence and knowledge’ and ‘Fun (personal enjoyment)’, and

highly negative loadings of ‘Material wealth’, ‘Physical attractive-

ness’, ‘Physical comforts’, ‘Excitement and arousal’, ‘Competition’

and ‘Getting to heaven, achieving a happy afterlife’. Therefore, we

named this component ‘Fun & intelligence versus showing

success’. In these countries some people mainly pursue intelligence

and fun in their lives (e.g., look for a job that offers many

opportunities to develop abilities and grants a lot of satisfaction),

while some of the others mainly value showing his or her success in

life (e.g., look for a job with a high salary or a high status).

To gain more insight into these between-country differences in

within-country correlation structure (modeled by the cluster-

specific component), we tried to map them onto two value

dimensions that distinguish between cultures with different levels

of modernization [43–44]. Firstly, we focused on the traditional

versus secular-rational dimension, that distinguishes values that are

dominant in pre-industrial societies from those of industrial ones:

In comparison to secular-rational countries, traditional countries

emphasize religion and respect for (parental) authority, male

dominance in economic and political life, and national pride.

Secondly, we used the survival versus self-expression dimension

that disentangles traditional/industrial societies (stronger focus on

economic and physical security) and post-industrial ones (stronger

focus on self-expression and quality of life).

To relate the cross-cultural differences with respect to these

dimensions to the differences found by CC-SCA-ECP, Figure 3

reproduces the cultural values map published by Inglehart and

Welzel [44], only retaining the countries included in the ICS

study. Note that Figure 3 contains only 40 out of the 48 countries

included in the ICS study, because Inglehart and Welzel [44] did

not report mean scores for the other eight countries. From this

figure, it is clear that cluster 1 contains pre-industrial countries

scoring low on both dimensions (with the exception of Zimbabwe),

while the other countries are gathered in cluster 2. This suggests

that participants from pre-industrial countries that are both more

traditional and more focused on the basic values necessary for

survival tend to (more or less) pursue both happiness and

achievement (i.e., intelligence and knowledge, getting to heaven,

success) together. Participants from countries which are more

secular-rational and/or more focused on self-expression either

Table 3. Clustering of the countries of the CC-SCA-ECP model for the value data from the 2001 ICS study, with two clusters, one
common and one cluster-specific component.

Cluster 1 Bangladesh, Cameroon, Cyprus, Egypt, Georgia, Ghana, Indonesia, Iran, Kuwait, Malaysia, Nigeria, Philippines, South Africa, Thailand, Uganda

Cluster 2 Australia, Austria, Belgium, Brazil, Bulgaria, Canada, Chile, China, Colombia, Croatia, Germany, Greece, Hong Kong, Hungary, India, Italy, Japan,
Mexico, Nepal, Netherlands, Poland, Portugal, Russia, Singapore, Slovakia, Slovenia, South Korea, Spain, Switzerland, Turkey, United States,
Venezuela, Zimbabwe

doi:10.1371/journal.pone.0062280.t003

Figure 3. Reproduction of the cultural values map published by Inglehart and Welzel [44], retaining only the countries that are
included in the ICS study and indicating to which cluster each country belongs in the CC-SCA-ECP model for the ICS values data.
doi:10.1371/journal.pone.0062280.g003
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pursue intelligence and fun (i.e, mental rewards) or strive to show

off their success (i.e., material or interpersonal rewards).

Finally, to illustrate the added value of CC-SCA-ECP over

Clusterwise SCA-ECP, we will comment on the Clusterwise SCA-

ECP solution with two components in each cluster. The clustering

of this solution is nearly identical to the clustering of the CC-SCA-

ECP solution, with the difference that Egypt is assigned to cluster 2

instead of to cluster 1. This is inconsistent with our finding that the

countries scoring low on both dimensions in Figure 3 are gathered

in cluster 1. Furthermore, even when the components of the

clusters are rotated toward maximal congruence [29], the Tucker

phi coefficients of the most similar components amount to.82

and.93, implying that none of them can be considered identical.

This conclusion is further supported by the considerable differ-

ences between the maximal congruence loadings of both clusters

(e.g., the loadings of fun on the first component differ in sign), that

are shown in Table 4. Thus, this rotation strategy does not

disentangle the common from the cluster-specific component.

Discussion

This paper introduced the CC-SCA-ECP method for multi-

block data, which can be used to study between-block similarities

and differences in correlation structure. Specifically, CC-SCA-

ECP combines the key features of SCA-ECP and Clusterwise

SCA-ECP by clustering the data blocks under study and by

distinguishing common components that underlie all data blocks

and cluster-specific components that reveal between-block differ-

ences. Because of the implied clustering, CC-SCA-ECP is

especially useful when the number of data blocks becomes

somewhat larger (say, larger than five) as the other available

methods for multiblock data, DISCO-SCA and OnPLS, cannot

easily handle such a larger number.

In the presence of common components, CC-SCA-ECP was

shown to outperform Clusterwise SCA-ECP in two important

respects: First, in the more difficult simulation conditions, CC-

SCA-ECP often yielded a better clustering than Clusterwise SCA-

ECP. Similarly, the obtained CC-SCA-ECP clustering in our

empirical example was more consistent with known differences

between countries than the Clusterwise SCA-ECP clustering.

Second, for more than half of the simulated data sets as well as the

empirical example, it proved impossible to rotate the obtained

Clusterwise SCA-ECP components in such a way that common-

ness of some of the components could be detected.

At this point, we want to emphasize the added value of CC-

SCA-ECP in comparison to multigroup factor analysis methods

[45–47], which are commonly used to test different levels of

measurement invariance among the data blocks (see [48] for more

details). Where measurement invariance tests merely indicate

whether the factor structures (and, in case of strict invariance, also

the intercepts and unique variances) are the same across all data

blocks or not, CC-SCA-ECP actually explores what the structural

differences are. Specifically, on the one hand, it looks for

subgroups of data blocks with an identical structure and, on the

other hand, it captures which subset of the components is different

between these subgroups (i.e., clusters).

The differences between CC-SCA-ECP on the one hand and

DISCO-SCA and OnPLS on the other hand imply some points of

discussion and possible directions for future research. First, in

Section 2.3, we argued that the CC-SCA-ECP cluster-specific

components are not necessarily distinctive between clusters in the

sense that they may explain some variance in the other clusters if

the zero restrictions in Equation 2 would be removed. Although

this may seem a disadvantage at first sight, the mere ‘specificity’ of

the cluster-specific components actually makes the method more

versatile. Indeed, CC-SCA-ECP may reveal subtle differences in

the functioning of a few variables. This can, for instance, be very

interesting when assessing the measurement invariance of a

particular questionnaire in different groups. Moreover, if the data

contain truly distinctive components, these will easily be picked up

by CC-SCA-ECP. Nonetheless, it may be interesting to develop a

CC-SCA-ECP variant that, to some extent, imposes distinctiveness

on the cluster-specific components (i.e., they should not explain a

lot of variance in the other clusters). The latter might, for instance,

be achieved by adding a penalty term to the loss function that

takes into account how well data blocks in one cluster can be

reconstructed by cluster-specific components of other clusters.

Table 4. Maximal congruence rotated loadings of the Clusterwise SCA-ECP model with two clusters and two components per
cluster for the value data from the 2001 ICS study.

Cluster 1 Cluster 2

Fun & showing
success

Fun, happiness,
achievement &
benevolence

Fun vs. showing
success & benevolence

Fun, happiness &
achievement

Happiness .06 .73 .12 .56

Intelligence/knowledge 2.05 .73 2.32 .69

Material wealth .65 .30 .67 .26

Physical attractiveness .71 .31 .73 .28

Physical comforts .58 .43 .72 .25

Excitement/arousal .67 .29 .63 .26

Competition .64 .27 .67 .27

Heaven/afterlife .02 .66 .59 .12

Self-sacrifice .23 .53 .49 .20

Success .07 .78 .09 .71

Fun .36 .51 2.41 .61

Loadings greater than +/2. 35 are highlighted in boldface.
doi:10.1371/journal.pone.0062280.t004
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Second, taking the different degrees of distinctiveness (e.g., one

component can be distinctive for data block 1 and 2, another for

data blocks 3 to 5, and so on) that are possible in DISCO-SCA

into account, it may be useful to extend CC-SCA-ECP to

incorporate different degrees of cluster-specificity (i.e., components

can be specific for more than one cluster, implying that they are

shared or common for these clusters, but not for others).

Third, one might consider it too strict to require the common

and cluster-specific components to be orthogonal in each data

block. Indeed, it might occur for some data sets that one of the

cluster-specific components is correlated with a common compo-

nent in one or more of the data blocks, which is an important

structural aspect that cannot be captured by CC-SCA-ECP. We

want to emphasize, however, that, next to the obvious technical

advantages, the orthogonality restriction has an important

substantive advantage in that it prevents the method from finding

cluster-specific components that are nearly a copy of the common

components.

Fourth, we restricted the number of cluster-specific components

Qspec to be the same for each cluster, which might be unrealistic

for some data sets. Indeed, Clusterwise SCA-ECP has been

generalized to allow the number of components to vary over

clusters [49], so extending this approach toward CC-SCA-ECP

seems straightforward. While this generalization is feasible with

respect to model estimation (the algorithm has been developed and

can be obtained from the first author), it would make model

selection, which already proved to be very challenging in the

current paper, even more intricate. Therefore, we propose to use a

post-hoc strategy. Specifically, one may consider to let the number

of CC-SCA-ECP cluster-specific components differ across clusters

when a Clusterwise SCA-ECP solution with a varying number of

components contains components that are very similar among

clusters and can therefore be conceived as common, or when some

of the CC-SCA-ECP cluster-specific components indicate overex-

traction (e.g., a component with only one high loading, a

meaningful subgroup of variables seems to be arbitrarily divided

over two components, etc.).

Finally, we have never tested the applicability of the CC-SCA-

ECP method to high-dimensional data, so it is not that easy to

predict how the method will behave in those cases. Therefore, it

would be useful for future research to test the performance of CC-

SCA-ECP for simulated high-dimensional data. We suspect that

the method will fail when these data contain a lot of noise and the

cluster-specific components are moderately or strongly congruent

across clusters.
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