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ABSTRACT The molecular architecture and function of the Gram-negative bacterial
cell envelope are dictated by protein composition and localization. Proteins that lo-
calize to the inner membranes (IM) and outer membranes (OM) of Gram-negative
bacteria play critical and distinct roles in cellular physiology; however, approaches to
systematically interrogate their distribution across both membranes and the soluble
cell fraction are lacking. Here, we employed multiplexed quantitative mass spec-
trometry using tandem mass tag (TMT) labeling to assess membrane protein local-
ization in a proteome-wide fashion by separating IM and OM vesicles from exponen-
tially growing Escherichia coli K-12 cells on a sucrose density gradient. The migration
patterns for �1,600 proteins were classified in an unbiased manner, accurately reca-
pitulating decades of knowledge in membrane protein localization in E. coli. For 559
proteins that are currently annotated as peripherally associated with the IM (G. Or-
fanoudaki and A. Economou, Mol Cell Proteomics 13:3674 –3687, 2014, https://doi.org/
10.1074/mcp.O114.041137) and that display potential for dual localization to either the
IM or cytoplasm, we could allocate 110 proteins to the IM and 206 proteins to the
soluble cell fraction based on their fractionation patterns. In addition, we uncovered 63
cases, in which our data disagreed with current localization annotation in protein
databases. For 42 of these cases, we were able to find supportive evidence for our
localization findings in the literature. We anticipate that our systems-level analysis of
the E. coli membrane proteome will serve as a useful reference data set to query
membrane protein localization, as well as to provide a novel methodology to rapidly
and systematically map membrane protein localization in more poorly characterized
Gram-negative species.

IMPORTANCE Current knowledge of protein localization, particularly outer mem-
brane proteins, is highly dependent on bioinformatic predictions. To date, no sys-
tematic experimental studies have directly compared protein localization spanning
the inner and outer membranes of E. coli. By combining sucrose density gradient
fractionation of inner membrane (IM) and outer membrane (OM) proteins with mul-
tiplex quantitative proteomics, we systematically quantified localization patterns for
�1,600 proteins, providing high-confidence localization annotations for 1,368 pro-
teins. Of these proteins, we resolve the predominant localization of 316 proteins that
currently have dual annotation (cytoplasmic and IM) in protein databases and identify
new annotations for 42 additional proteins. Overall, we present a novel quantitative
methodology to systematically map membrane proteins in Gram-negative bacteria and
use it to unravel the biological complexity of the membrane proteome architecture in E.
coli.

The inner membranes (IM) and outer membranes (OM) of Gram-negative bacteria
carry out fundamental cellular functions crucial for cell viability (1). The OM directly

interfaces with the extracellular environment and provides a formidable physical barrier
that excludes the passage of large and hydrophobic compounds (2–4). The IM plays a
vital role in ensuring selective transport of small compounds into and out of the cell,
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producing and conserving energy, as well as sensing external cues and transducing
information to adaptive transcriptional responses (5–7). Both membranes facilitate
protein translocation from the cytoplasm to the cell envelope and/or the extracellular
milieu by dedicated protein machines. Proteins targeted to the IM and OM possess
distinct biochemical properties and play fundamental roles in building and maintaining
cell envelope integrity. This includes correct assembly of the peptidoglycan layer, which
gives bacteria their cell shape and together with the OM defines their mechanical
strength (8, 9). Understanding to which membrane proteins are targeted provides
important insight on the physical location of their biological activity, which is partic-
ularly useful for interrogating proteins of unknown function and investigating modular
envelope protein complexes (10).

Proteins localizing to the IM or OM can be subcategorized on the basis of their
distinct biophysical properties. IM proteins typically contain �-helical transmembrane
domains that mediate their integration into the phospholipid bilayer. These proteins
include small-molecule transporters (e.g., ABC transporters for metal ions and sugars)
and large multiprotein complexes (e.g., SecYEG translocon and ATP synthase). IM
proteins are diverse in their structure, function, and domain localization; some contain
structural domains that extend into the cytoplasmic and/or periplasmic space. In the
OM, there are two distinct types of proteins: outer membrane proteins (OMPs), which
are mostly composed of amphipathic �-strands that form a closed �-barrel structure,
and lipoproteins, which are anchored to the OM via an N-terminal lipidated cysteine
and typically contain a soluble domain that extends into the periplasmic space. Note
that only a small fraction of lipoproteins is retained in the IM, and lipoproteins in both
the IM and OM carry out diverse functions in the cell envelope, yet they still remain a
largely poorly characterized group of proteins. Although lipoproteins have been tradi-
tionally considered to face the periplasmic space, some have been recently shown to
reach the cell surface (11–13), even by traversing through OMPs (14–16).

While most proteins localize to, and function at, either the IM or OM, several
transenvelope protein complexes span both membranes. Some of the larger complexes
like flagella (17) and secretion apparatuses (18) contain dedicated IM, OM, and periplas-
mic components, whereas smaller ones such as the Tol-Pal complex (19–21), the
PBP1a/b-LpoA/B peptidoglycan synthase complexes (22–24), the efflux pump AcrAB-
TolC (25), the translocation and assembly module (TAM) (26), and all TonB-dependent
transport complexes (27) possess IM or OM components that can span the envelope by
reaching their interaction partner in the other membrane. Moreover, in addition to
integral membrane proteins, soluble proteins can associate peripherally with mem-
branes via stable or transient protein-protein interactions with integral membrane
proteins and/or with the lipid bilayer. In the case of lipoproteins, the attachment to
phospholipids is covalent and part of their biosynthesis (28). As many membrane
proteins reside within protein complexes that play vital roles for cell envelope integrity,
it is important to obtain a blueprint of the bacterial membrane protein composition
that experimentally defines which proteins are membrane associated and the mem-
brane to which they are targeted. Furthermore, protein localization is closely linked to
protein function, and therefore a key step in ascertaining the mode of action of
membrane proteins.

Localization for most proteins in Escherichia coli and other Gram-negative bacteria
can be predicted quite accurately based on sequence information. Analysis of protein
N-terminal signal sequences is commonly used to predict protein localization. For
example, SignalP (29) detects signal sequences that target nascent proteins for trans-
port across the IM via the SecYEG/SecA translocon. Similarly, TATFIND identifies sub-
strates of the Tat translocase (30). Interestingly, periplasmic proteins bear sufficiently
distinguishable biophysical, biochemical, and structural characteristics compared to
their cytoplasmic counterparts, so that one can accurately discern them with signal-
sequencing agnostic machine-learning predictors (31). Moreover, several tools exist to
predict membrane protein localization and topology, including those that predict
transmembrane �-helices and topology of IM-transmembrane proteins such as the
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TMHMM server (32), as well as algorithms to predict �-barrel folding of OMPs such as
PRED-TMBB (33) and BOMP (34). E. coli genome databases, such as STEPdb (35), EcoCyc
(36), and UniProt (37), use information from such prediction tools, together with
experimental evidence, to assign protein localization. However, the difficulties of
assigning protein localization solely based on structure and signal sequence prediction
can lead to misannotations, as has been discussed previously (35, 38). Thus, as much of
the current knowledge is based on prediction tools, it is of key importance to experi-
mentally verify protein localization to clarify the predictive accuracy of the above-
mentioned in silico approaches.

Proteomic-based studies of bacterial cell membranes in the past have focused on
either the IM or OM proteomes separately (39–42), which precludes definitive state-
ments about the protein allocation across the two membranes and is prone to
contamination from abundant soluble proteins. To systematically examine membrane
protein localization in an unbiased and systematic manner, we combined sucrose
gradient membrane fractionation with quantitative proteomics (43). This allowed us to
validate most of the predicted protein localizations, while resolving the protein local-
ization of a large number of proteins with previously ambiguous localization, and
uncovering some proteins with unexpected membrane localization, which are currently
misannotated in databases.

RESULTS
IM and OM proteome separation and quantification. To systematically assess

protein localization within the bacterial cell envelope, we isolated bacterial membrane
proteins by harvesting E. coli K-12 MG1655 grown to mid-exponential phase (Fig. 1A).
Total membrane vesicles were purified, followed by IM and OM vesicle separation on
a sucrose density gradient as previously described (44). The sucrose gradient was then
separated into 11 fractions and analyzed by immunoblotting and sodium dodecyl
sulfate-polyacrylamide gel electrophoresis (SDS-PAGE). Effective IM and OM vesicle
separation was verified using SecG and BamA antiserum (Fig. 1B). Fractions 2 to 11 (f02
to f11) and the total membrane (input sample prior to fractionation) were labeled with
11-plex tandem mass tag (TMT) reagents (45) and analyzed and quantified using mass
spectrometry (MS) (Fig. 1A; see Fig. S1A in the supplemental material). Multiplexing of
all 11 fractions into a single MS run is what enables robust comparisons between
samples and increases the quantitative power of the fractionation patterns. In total, we
identified 1,605 common proteins across the two biological replicates and thus pro-
ceeded to data normalization and quantification as described in Materials and Methods
(see Fig. S1A and Table S1 in the supplemental material).

To assess protein abundance in each fraction, we calculated the logarithmic fold
change (log2 FC) of each sucrose gradient fraction relative to the total membrane
fraction for each protein. The fractionation pattern across the 10 quantified fractions
(fractions 2 to 11) was examined for each protein for each replicate (Table S1). The
quantitative MS-based fractionation pattern matched immunoblot data for the control
proteins, SecG for the IM and BamA for the OM (Fig. 1B, bottom). Replicate correlation
between the two independent experiments for all log2 FC values was high (R � 0.77;
Pearson correlation, P � 0.001; Fig. S1B). Proteome coverage was analyzed by com-
paring to protein localization annotations found in the curated STEPdb database (35)
using UniProt identifiers (IDs) (summarized and modified as in Table S2). For membrane
protein annotation categories, we had an overall 56% coverage (973 out of the total
1,741 membrane proteins annotated in the STEPdb database for E. coli) with several
categories reaching 70% coverage, whereas nonmembrane protein categories did not
exceed 25% coverage (Fig. 1C). Undetected membrane proteins may be due to lack of
expression in our conditions (mid-log, LB, 37°C), generally low protein abundance, small
protein size, or MS detection limitations (e.g., due to the peptide ionization properties
or size after tryptic digestion). Altogether we could quantitatively assess the sucrose
gradient fractionation of 1,605 proteins (Table S3), covering most membrane-annotated
proteins in STEPdb.
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FIG 1 Gram-negative bacterial inner and outer membrane fractionation quality control and membrane proteome coverage.
(A) Schematic illustration of the method. E. coli cells were harvested in exponential phase (OD578 of �0.7), lysed, and
ultracentrifuged to collect the membrane fraction containing both outer membrane (OM) (red) and inner membrane (IM)
(blue) vesicles. Total membrane vesicles were separated on a sucrose density gradient, which separates IM from OM vesicles
based on their distinct buoyant densities. Samples were collected into 11 fractions (f01 to f11) where f02 to f11 and total
membrane sample prior to fractionation were TMT labeled and analyzed by LC-MS/MS. After data normalization (see Fig. S1
in the supplemental material), membrane localization of proteins was defined. (B) SDS-PAGE analysis of sucrose gradient
fractionation. T, total cell lysate; S, soluble fraction upon ultracentrifugation; M, total membrane fraction prior to sucrose
gradient fractionation. (Top) Coomassie blue-stained gel. (Middle) Immunoblot analysis for control proteins: BamA for OM,
SecG for IM. (Bottom) TMT-labeling MS quantification result of the two control proteins (BamA and SecG). The graph shows
the log2 fold change of each fraction/total membrane fraction for fractions (f02 to f11) for BamA and SecG. Mean with standard
deviation (error bars) values are plotted from the two biological replicates. (C) Fraction of proteins identified for each STEPdb
localization category. Localization annotation is summarized in Table S2.
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Systematic assignment of membrane protein localization. Sucrose density gra-
dients are conventionally analyzed by immunoblotting to compare the abundance of
a given protein within a high- or low-sucrose-density fraction (Fig. 1A and B). To
systematically analyze protein localization, we used the combined averages of the high-
and low-sucrose fractions (log2 of f08, f09, and f10 for the high-sucrose fraction and
log2 of f02, f03, and f04 for the low-sucrose fraction) and calculated the difference
between the two log2 averages, which we referred to as the “sucrose gradient ratio”
(Table S3). High values indicate a greater abundance within higher-sucrose-density
fractions, as expected for OM proteins. The reverse is true for IM proteins, which exhibit
low values due to their enrichment within the low-sucrose-density fractions.

To assess whether our calculated sucrose gradient ratio reflected known protein
localization, we grouped these values based on localization annotation (modified from
those in the STEPdb database [Table S2]). As anticipated, most IM protein categories
(i.e., integral IM proteins [IM-integral], periplasmic proteins peripherally associated with
IM [IM-peri], and IM lipoprotein [IMLP]) displayed a low sucrose gradient ratio, whereas
the two OM protein categories, OMPs and OM lipoproteins (OMLPs), showed high
sucrose gradient ratios (Fig. 2A). This striking concordance with curated annotations
and our calculated localization confirms the accuracy of our methodology. We chose
the 90th percentile of IM protein distribution (solid blue line) and the 10th percentile
of OM protein distribution (solid red line) as cutoffs to define IM and OM protein
localization using the sucrose gradient ratio (Fig. 2B), respectively. All proteins that fell
between these two cutoffs were classified as soluble proteins.

Interestingly, although soluble proteins were expected contaminants in our exper-
iments, they did not always behave as expected upon sucrose density gradient
fractionation. In general, soluble proteins localized in the cytoplasm and periplasm
displayed midrange sucrose gradient ratios, which is in agreement with the majority of
them being contaminants and nonspecifically associated with either IM or OM vesicles.
We noted that the IM-cyto category displayed bimodal characteristics with one peak
being consistent with IM localization and another peak that aligned with soluble
proteins (Fig. 2A and Table S3). This suggests that the IM-cyto category of proteins
referred to as “peripheral IM proteins” in the STEPdb database and originally described
in another study (41) consists of a mixture of proteins that have clear preferential
localizations either to the cytoplasm or to the IM. We therefore did not use this category
for benchmarking our data but rather kept it to later definitively allocate the primary
localization of this large group of proteins. Taken together, these data show that
quantitative proteomic-based analysis of sucrose gradient-fractionated membrane ves-
icles can rapidly and systematically localize proteins to the IM or OM.

Unbiased clustering of sucrose gradient fractionation patterns can robustly
identify protein membrane localization. As the sucrose density-based fractionation
patterns of IM and OM proteins were distinct (Fig. 1B, graph after normalization), we
asked whether unbiased clustering of the fractionation patterns could be used to
distinguish proteins according to their annotated membrane localization. On the basis
of the results of principal-component analysis (PCA) of all identified proteins, we set the
number of clusters to 4 for k-means clustering analysis (Fig. S2). This resulted in four
groups containing the following number of proteins: cluster 1 with 111 proteins, cluster
2 with 650 proteins, cluster 3 with 680 proteins, and cluster 4 with 164 proteins (Fig. 3A
and Table S3), where each cluster exhibited distinctive fractionation patterns (Fig. 3B).
We then asked what STEPdb localization annotations are associated with proteins in the
four different clusters. Proteins in cluster 1 were strongly enriched for OM proteins,
cluster 2 with IM proteins, and cluster 3 and 4 with soluble proteins (Fig. 3C). Thus,
k-means clustering successfully grouped proteins based on their membrane localiza-
tion as a function of their sucrose gradient fractionation pattern. While each cluster was
dominated by a single membrane localization annotation (OM for cluster 1, IM for
cluster 2, or soluble for clusters 3 and 4), some proteins were grouped into clusters that
conflicted with their STEPdb annotated localization, with the IM-cyto group featuring
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prominently in various clusters (Fig. 3C). Nevertheless, these results show that system-
atic and unbiased clustering of sucrose gradient fractionation patterns of the mem-
brane proteome can be used to assign membrane localization.

Filtering and comparison of sucrose gradient ratio and clustering. In order to
increase the confidence of our calls for protein localization, we performed two further
steps. First, we ran k-means clustering for the data set where the two biological
replicates were treated separately. By doing this, we identified 140 (out of 1,605)
proteins whose fractionation patterns between biological replicates resulted in clus-
tering to different localization clusters (OM for cluster 1, IM for cluster 2, or soluble for
clusters 3 and 4) for the two replicates (Table S3). We reasoned that this is due to
irreproducibility between the two biological replicates and removed these proteins
from further analysis. Second, we assessed the similarity of our two methods (k-means
versus sucrose gradient ratio) in assessing protein localization. To do this, we used the
thresholds of sucrose gradient ratio for IM and OM defined in Fig. 2B. We found a large
overlap between the two methods for all three localization categories: IM, OM, and
soluble (Fig. 4A). In total, we identified 1,368 proteins (out of 1,465 possible) with
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localization results that agreed between the two methods, which we further used as
our high-confidence protein localization data set. When considering all 1,605 proteins,
the two methods agreed for 1,456 proteins (Fig. S4A). In general, both quantification
methods for protein localization worked well, and in combination provided more
confident identification calls (true positive rates are 95% and 48% for overlap and
nonoverlap sets, respectively; using STEPdb annotations as true positive). The clustering
method worked better than the ratio cutoffs for OM proteins, but on the other hand,
cluster 4 seemed to have the most inconsistent calls for protein localization (Fig. S3).

As mentioned before, IM-cyto proteins showed a bimodal sucrose gradient ratio
distribution (Fig. 2A) and could be found in multiple clusters (clusters 2, 3, and 4
[Fig. 3C]). Now that we have high-confidence protein localization allocations, we could
define 110 proteins as IM and 206 as soluble (Fig. 4B; see also Fig. S4B for all proteins,
including lower-confidence ones). This separation is corroborated by the melting
temperatures of these two group of proteins. We have previously reported that IM
proteins are more thermostable than their cytoplasmic counterparts (46). In agreement
with this, IM-cyto proteins categorized here to be soluble had low melting tempera-
tures similar to those of cytoplasmic proteins (Fig. S5). In contrast, IM-cyto proteins
categorized as IM proteins had higher melting temperatures, albeit not as high as
integral IM proteins, presumably due to their peripheral interaction rather than integral
association with the IM (Fig. S5). Thus, with the experimental conditions we tested,
IM-cyto annotated proteins resulted in a mixture of soluble and IM proteins, and by
using their fractionation patterns, we could allocate their predominant protein local-
ization.

Identification of potentially misannotated proteins. The STEPdb database com-
bines robust computational predictions with a wealth of experimental information to
allocate protein localization in E. coli, and hence, we used it here as a gold standard
data set to benchmark our data and decide on thresholds for making localization calls.
In doing so, we noted that a small fraction of our allocations of IM, soluble, and OM
proteins conflicted with their STEPdb annotations. Namely, 63 (out of 1,368) high-
confidence proteins, including both membrane and soluble proteins, were found in
clusters that at least partially conflicted with their corresponding STEPdb localization
annotation (Table S4). We manually curated these proteins based on published litera-
ture. First, we checked the localization annotation in another recent study (38). Babu et
al. (38) summarized different localization annotation databases and primary literature,
including STEPdb, generated a score for protein localization, and then annotated
protein localization accordingly in their study. Eleven proteins out of the 63 proteins we
identified as mismatches agreed with the curated list of Babu et al. (38). Therefore, we
conclude that the STEPdb localization for these 11 proteins was likely inaccurate
(Table S4). We found corroborating evidence for 12 more such cases in the literature or
in other prediction databases. Importantly, in these cases, rather than relying on the
combined result from multiple in silico prediction algorithms, our data are able to
provide the high-confidence experimental evidence needed to verify the localization
for these proteins.

We also noted unexpected fractionation patterns for certain proteins upon sucrose
density fractionation. First, we detected several proteins annotated as solely periplas-
mic in the STEPdb database fractionated as membrane proteins in our experiments.
Many of these proteins have known interacting membrane partners, which is presum-
ably the reason they cofractionate with either the IM (EnvC, FdoG, NapG, and RseB) or

FIG 4 Legend (Continued)
FhuBC upon substrate (ferrichrome [orange]) binding. (Scenario 3) Transenvelope protein interaction is known. TamB
spans the envelope and interacts with OM-located TamA (26) and TonB interacts with OM-located TonB-dependent
transporters, resulting in a misleading sucrose gradient fractionation (distributed equally in all fractions, thus appearing as
a soluble protein), which in the case of TonB has been previously shown (48, 49). (Scenario 4) Previously shown dual
localization of cytoplasmic protein in OM for Dps and SeqA (65–67). A complete list of 63 proteins not matching with the
STEPdb annotation, with 51 proteins explained can be found in Table S4.
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the OM (LptA) (Fig. 4C and Table S4). The situation was similar for periplasmic
components of IM ABC transporter complexes (FhuD, PstS, and SapA) which cofrac-
tionated with IM proteins, possibly as a consequence of a direct conditional association
with IM proteins upon active transport (47), but were only annotated as periplasmic in
STEPdb (Table S4). In total, there were 19 cases for which STEPdb had incomplete
annotations.

Conversely, FecB, a known periplasmic component of an ABC transporter complex,
is annotated both as IM-peri (peripherally associated with IM) and periplasmic in the
STEPdb database but was identified only as soluble under our experimental conditions.
In this case, we are failing to detect the IM association because the transporter is likely
inactive under the conditions we used and the STEPdb annotation is more accurate
(Table S4). Moreover, IM proteins known to form transenvelope complexes (e.g., TamB
and TonB) failed to cluster as either IM or OM proteins in the fractionation experiments.
Overall, we could reasonably explain 51 out of the 63 cases where STEPdb and our
results disagreed, out of which we could find additional information that supports our
localization call (42 proteins) or the original STEPdb annotation (9 proteins) (summa-
rized in Table S4). Overall, these findings demonstrate that our quantitative assessment
of protein localization captures accurately the in vivo biological state.

DISCUSSION

We quantified the membrane proteome using TMT-labeling MS, which allowed us to
experimentally identify localization in a systematic and unbiased manner for the
majority of membrane proteins in E. coli. We verified current knowledge of membrane
protein localization for proteins that was determined experimentally and/or predicted
bioinformatically. The advantage of this method is that instead of assessing membrane
protein localization via conventional immunoblotting of sucrose density gradient frac-
tions, quantitative proteomic approaches can be used to rapidly and quantitatively
assess protein localization in an antibody-independent manner.

Comparison of our data with the curated STEPdb annotation revealed high concor-
dance. In addition, our data provided a predominant location for a large part of the E.
coli membrane proteome referred to as peripherally associated membrane proteins
(41). The STEPdb database categorizes proteins that peripherally interact with the
cytoplasmic face of the IM as “peripheral IM proteins,” which we referred to here for
simplicity as IM-cyto (see Table S2 in the supplemental material). Although we detect
the majority of IM-cyto proteins (68% of 559 proteins) in the membrane fraction (which
is depleted of soluble proteins), most of them are reproducibly assigned as soluble
proteins according to their sucrose fractionation pattern (206 out of 316 high-
confidence calls). This absence of cofractionation with the IM proteome suggests that
many of these proteins are mainly cytoplasmic in exponentially growing cells in LB, and
their previous identification in membrane protein fractions in this study and others is
likely because they are recurrent contaminants. We cannot exclude the possibility that
some of these proteins have a conditional, low-affinity, or transient association with the
IM and proteins therein or that a small fraction of the total protein amount may, at any
given point, be associated with the IM. In contrast, about one third of the IM-cyto
proteins exhibited clear IM fractionation patterns and thus can be confidently assigned
as IM-associated proteins.

We found 63 proteins out of 1,368 which were inconsistent with the reported
localization annotation in the STEPdb database. We were able to explain 51 by
additional literature data. Those proteins have a wrong or missing annotation in
STEPdb (42) or their function/activity makes their sucrose gradient fractionation pat-
terns misleading (8). In most cases, sucrose gradient fractionation failed to make the
right call when the protein was spanning the envelope or presumably had dual
membrane localization. It is likely that the new localization is also correct for most of 12
remaining proteins (Table S4). Thus, our data are helpful for improving protein local-
ization, even for an organism as intensively studied as E. coli, which has been subjected
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to a plethora of targeted and systematic studies, and researchers can benefit from
carefully curated databases, such as STEPdb.

In some cases, sucrose gradient fractionation patterns were indicative of protein
activity. For example, periplasmic partners of IM ABC transporters often showed sucrose
gradient fractionation patterns similar to those of IM proteins (Fig. 4C), which we
postulate were due to their strong interaction with the cognate IM ABC transporters in
their substrate-bound state (47). In other cases, they behaved as soluble proteins, which
likely reflects the inactive state of the ABC transporter. Interestingly, transenvelope
spanning IM proteins, such as TamB and TonB, displayed fractionation patterns similar
to those of soluble proteins. This is presumably due to strong interactions with their OM
counterparts, which pull a subpopulation of the protein together with OM vesicles
during ultracentrifugation. Consistent with our observations, TonB was previously
found in the OM fraction upon sucrose gradient fractionation (48, 49). This suggests
that transenvelope IM proteins can present distinctive properties upon sucrose gradi-
ent fractionation. More broadly, it implies that sucrose gradient fractionation can
provide insights into the activity and mechanical strength of specific envelope com-
plexes during different growth stages and conditions.

Not only does this work provide a resource of sucrose gradient fractionation for
1,605 proteins, with 1,368 proteins having their cellular localization confidently as-
signed, the method we present can be used for rapid and systematic characterization
of membrane proteomes in different contexts— growth conditions and stages, and
under different cellular perturbations. Many membrane proteins are only conditionally
expressed (46), whereas other proteins conditionally relocate in and out of membranes
(50–52). Importantly, our method allows for the systematic mapping of membrane
proteomes from other Gram-negative species for which protein localization annotation
and transport mechanisms are less (if at all) studied.

MATERIALS AND METHODS
Bacterial culturing. The wild-type strain used in this study is Escherichia coli K-12 MG1655 Δ(argF-

lac)U169 rprA::lacZ (53). Bacterial cells were grown for 4 generations in LB-Lennox (referred as LB herein)
medium at 37°C with vigorous shaking at 200 rpm and collected for fractionation while still in the
exponential growth phase at an optical density at 578 nm (OD578) of 0.6 to 0.8.

Membrane vesicle isolation and sucrose density fractionation. Membrane vesicles were isolated
and fractionated essentially as previously described (44) with the following deviations. Phosphate-
buffered saline (PBS) was used as the base buffer instead of Tris. After sucrose gradient separation, 1-ml
fractions were collected stepwise from the top of the gradient, yielding 11 fractionated samples that
were analyzed by Coomassie blue staining and Western blotting using sodium dodecyl sulfate (SDS)-
polyacrylamide gels as described below. Fractions 2 to 11 (f02 to f11), as well as an aliquot of the total
input membrane sample (diluted 10 times in H2O), were labeled with 11-plex tandem mass tag (TMT) and
subjected to liquid chromatography coupled to tandem mass spectrometry (LC-MS/MS).

Sample preparation and TMT labeling. Before sample preparation for MS, proteins were solubilized
by adding SDS to the samples (final concentration of 1% SDS). Samples were then sonicated for 5 min
in an ultrasonic bath, heated for 10 min to 80°C, and sonicated again for another 5 min. Disulfide bonds
were reduced by incubating at 56°C for 30 min in 10 mM dithiothreitol (DTT) buffered with 50 mM HEPES
(pH 8.5). Reduced cysteines were alkylated by incubating for 30 min at room temperature in the dark with
20 mM 2-chloroacetamide in 50 mM HEPES buffer (pH 8.5). Samples were prepared for MS using the SP3
protocol (54, 55). On bead trypsin (sequencing grade, Promega, V5111) digestion was performed to an
enzyme/protein ratio of 1:50 and incubated overnight at 37°C. Digested peptides were then recovered
in HEPES buffer by collecting the supernatant after magnet-based separation from the SP3 bead, and
combining the second elution wash of beads with HEPES buffer. Collected peptides were labeled with
TMT10plex isobaric label reagent (ThermoFisher) (45) and with 131C label (ThermoFisher) according to
the manufacturer’s instructions as described below. In brief, 0.8 mg of the TMT reagents was dissolved
in 42 �l of 100% acetonitrile, and 4 �l of this stock was added to the peptide sample and incubated for
1 h at room temperature. The reaction was quenched with 5% hydroxylamine for 15 min at room
temperature. Then the 10 samples labeled with unique TMT10plex labels were combined into one
sample. The combined sample was then cleaned up using OASIS HLB �Elution plater (Waters). The
samples were separated through an offline high-pH reverse-phase fractionation on an Agilent 1200
Infinity high-performance liquid chromatography system which was equipped with a Gemini C18 column
(3 �m; 110 Å; 100 by 1.0 mm; Phenomenex). The fractionation was performed as previously described
(56). Samples were pooled into a total of 12 fractions.

Mass spectrometry data acquisition. Chromatography was performed using an UltiMate 3000 RSLC
nano LC system (Dionex) fitted with a trapping cartridge (�-Precolumn C18 PepMap 100; 5 �m; 300-�m
inner diameter [i.d.] by 5 mm; 100 Å) and an analytical column (nanoEase M/Z HSS T3 column 75 �m by
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250 mm C18; 1.8 �m; 100 Å; Waters). Trapping was carried out with a constant flow of solvent A (0.1%
formic acid in water) at 30 �l/min onto the trapping column for 6 min. Subsequently, peptides were
eluted via the analytical column with a constant flow of 0.3 �l/min with an increasing percentage of
solvent B (0.1% formic acid in acetonitrile) from 2% to 4% in 6 min, from 4% to 8% in 1 min, then 8% to
25% for a further 71 min, and finally from 25% to 40% in another 5 min. The outlet of the analytical
column was coupled directly to a Fusion Lumos (Thermo) mass spectrometer using the proxeon
nanoflow source in positive ion mode.

Peptides were introduced into the Fusion Lumos via a Pico-Tip Emitter (360-�m outer diameter [o.d.]
and 20-�m i.d.; 10 �m tip [New Objective]) and an applied spray voltage of 2.4 kV. The capillary
temperature was set at 275°C. A full mass scan was acquired with a mass range of 375 to 1,500 m/z in
profile mode in the Orbitrap with resolution of 120,000. The filling time was set at maximum of 50 ms
with a limitation of 4 � 105 ions. Data-dependent acquisition (DDA) was performed with the resolution
of the Orbitrap set at 30,000, with a fill time of 94 ms and a limitation of 1 � 105 ions. A normalized
collision energy of 38 was applied. MS2 data were acquired in profile mode.

MS data analysis. IsobarQuant (57) and Mascot (v2.2.07) (58) were used to process the acquired
data, which was then searched against a UniProt Escherichia coli proteome database (UniProt accession
no. UP000000625; downloaded on 14 May 2016) containing common contaminants and reversed
sequences (37). The following modifications were included into the search parameters: Carbamidomethyl
(C) and TMT10 (K) (fixed modification), Acetyl (Protein N-term), Oxidation (M) and TMT10 (N-term)
(variable modifications).

For the full scan (MS1), a mass error tolerance of 10 ppm, and for MS/MS (MS2) spectra of 0.02 Da was
set. Further parameters were set: trypsin as protease with an allowance of maximum two missed
cleavages; a minimum peptide length of seven amino acids; at least two unique peptides were required
for a protein identification. The false-discovery rate on the peptide and protein levels was set at 0.01.

Statistical analysis of MS data. The protein.txt output files of IsobarQuant (57) were processed
using the R programming language (59). As a quality criterion, only proteins that were quantified with
at least two unique peptides were used. Raw tmt reporter ion signals (signal_sum columns) were first
batch cleaned using the removeBatchEffect function from limma (60) and then normalized using the vsn
package (61). Normalized data were clustered in four clusters using the kmeans function of the stat
package in R.

SDS-PAGE and Coomassie blue staining. Protein samples were solubilized and reduced by boiling
at 95°C for 5 min in Laemmli loading buffer (200 mM Tris-HCl [pH 6.8], 8% SDS, 40% glycerol, 400 mM
DTT, 0.02% bromophenol blue). Solubilized samples were loaded and separated in gradient gels of 4 to
20% acrylamide (Teo-Tricine gels from Expedeon, NXG42012) using the running buffer (Run-Blue running
buffer consisted of 0.8 M Tricine, 1.2 M triethanolamine, and 2% SDS). Bio-Rad systems were used,
applying 100 V per chamber. For Coomassie blue staining, gels were incubated in staining solution (50%
methanol, 40% H2O, 10% acetic acid, 1 g Brilliant Blue R250 per 1 liter) for 1 h, and destained with
destaining solution (40% ethanol, 10% acetic acid, 50% H2O) until the desirable signal was achieved.
Incubations were performed at room temperature with constant moderate mixing by rocking.

Immunoblot analysis. Proteins were separated on acrylamide gels as described above and trans-
ferred to methanol-activated polyvinylidene difluoride (PVDF) membranes (Merck, IPVH00010), using
Western blot transfer buffer (3.03 g Tris, 14.4 g glycine, 200 ml methanol [all per 1 liter]) for 1.5 h at 100
V. All the incubation steps from here on were performed with constant moderate agitation by using
rocking platforms. Membranes were blocked for 1 h with 5% skim milk in Tris-buffered saline with Tween
20 (TBST) (20 mM Tris, 10 mM NaCl, 0.1% Tween 20) and then incubated with appropriately diluted
primary antibodies (anti-BamA diluted 1:10,000 and anti-SecG diluted 1:6,000) in 5% skim milk in TBST
overnight at 4°C. After three 5-min washes with TBST, membranes were incubated for 1 h with secondary
anti-rabbit antibodies conjugated with horseradish peroxidase (HRP) (catalog no. NA934; GE Health Care)
diluted 1:10,000 in 5% skim milk in TBST. After these antibody incubations, membranes were washed
again three times for 5 min with TBST. Proteins were detected by adding ECL substrate (catalog no.
RPN2106; GE Healthcare), then exposing and visualizing using a digital developing machine (ChemiDoc
touch imaging system).

Databases. UniProt (37) was used as the source for protein ID and sequences. Protein localization
information on the STEPdb database (35) was summarized and modified as in Table S2 in the supple-
mental material. Modification includes assignment of single localization for proteins with two or more
localization annotations.

Data availability. The mass spectrometry proteomic data have been deposited to the Proteome-
Xchange Consortium via the PRIDE (62) partner repository with the data set identifier PXD016403. The
code and pipelines used for data analysis are available upon request.

SUPPLEMENTAL MATERIAL
Supplemental material is available online only.
FIG S1, PDF file, 0.6 MB.
FIG S2, PDF file, 1.1 MB.
FIG S3, EPS file, 1.6 MB.
FIG S4, EPS file, 1.7 MB.
FIG S5, EPS file, 1.8 MB.
TABLE S1, XLSX file, 1.4 MB.
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TABLE S2, XLSX file, 0.1 MB.
TABLE S3, XLSX file, 0.4 MB.
TABLE S4, XLSX file, 0.02 MB.
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