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Abstract

Blood flow and mechanical forces in the ventricle are implicated in cardiac development and

trabeculation. However, the mechanisms of mechanotransduction remain elusive. This is

due in part to the challenges associated with accurately quantifying mechanical forces in the

developing heart. We present a novel computational framework to simulate cardiac hemo-

dynamics in developing zebrafish embryos by coupling 4-D light sheet imaging with a stabi-

lized finite element flow solver, and extract time-dependent mechanical stimuli data. We

employ deformable image registration methods to segment the motion of the ventricle from

high resolution 4-D light sheet image data. This results in a robust and efficient workflow, as

segmentation need only be performed at one cardiac phase, while wall position in the other

cardiac phases is found by image registration. Ventricular hemodynamics are then quanti-

fied by numerically solving the Navier-Stokes equations in the moving wall domain with our

validated flow solver. We demonstrate the applicability of the workflow in wild type zebrafish

and three treated fish types that disrupt trabeculation: (a) chemical treatment using

AG1478, an ErbB2 signaling inhibitor that inhibits proliferation and differentiation of cardiac

trabeculation; (b) injection of gata1a morpholino oligomer (gata1aMO) suppressing hemato-

poiesis and resulting in attenuated trabeculation; (c) weak-atriumm58 mutant (wea) with

inhibited atrial contraction leading to a highly undeveloped ventricle and poor cardiac func-

tion. Our simulations reveal elevated wall shear stress (WSS) in wild type and AG1478 com-

pared to gata1aMO and wea. High oscillatory shear index (OSI) in the grooves between

trabeculae, compared to lower values on the ridges, in the wild type suggest oscillatory

forces as a possible regulatory mechanism of cardiac trabeculation development. The

framework has broad applicability for future cardiac developmental studies focused on
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quantitatively investigating the role of hemodynamic forces and mechanotransduction dur-

ing morphogenesis.

Author summary

We present a novel computational workflow for quantifying hemodynamic forces in

developing zebrafish embryos by coupling high resolution 4-D light sheet imaging with a

moving domain blood flow solver. Our framework employs deformable image registra-

tion to extract the motion of the ventricle from high resolution image data. This produces

a robust and efficient workflow, as segmentation is performed at only one cardiac phase,

while the wall position in other cardiac phases is found from the displacement field

obtained during image registration. This approach avoids a laborious process of manual

segmentation in all cardiac phases, and minimizes spurious errors arising from manual

processing. Our validated flow solver is optimized for cardiac hemodynamics with back-

flow stabilization, efficient data management and dynamic remeshing algorithms for

moving domains. We demonstrate the utility of the framework in wild type zebrafish and

three treated variants in which the formation of cardiac trabeculations is disrupted. In this

study, we then quantify the relationship between oscillatory shear forces and the presence

or absence of ventricular trabeculation during cardiac development. Our framework has

broad applicability in cardiac developmental studies focused on quantitatively investigat-

ing the mechanobiology during morphogenesis.

Introduction

Ventricular trabeculation is tightly regulated by both genetic programming and biomechanical

forces such as hemodynamic pressure and shear stress. [1–8] Trabeculae formation leads to a

complex network of endocardial protrusions (trabeculae) into the ventricle that form ridges

and grooves. [9] During cardiac morphogenesis, the ventricular myocardium (heart tissue) dif-

ferentiates into two layers, an outer compact zone and an inner trabeculated zone. Disruptions

in any of the normal developmental processes can lead to either excess trabeculation, a con-

genital condition known as non-compaction cardiomyopathy, [7, 10–13] or a significant

reduction in trabeculation that is usually associated with ventricular compact zone deficiencies

such as hypoplastic left heart syndrome (HLHS). [1, 14] Both these conditions can lead to

heart failure and high mortality during embryonic development. While the genetic mecha-

nisms underlying cardiac morphogenesis have been extensively studied, the impact of bio-

mechanical forces such as hemodynamic shear remains elusive, due in part to the significant

challenges associated with quantifying hemodynamic forces in developing hearts. [3, 4, 7, 15]

Several studies have examined mechanotransduction during ventricular trabeculation

using in vitro techniques such as particle image velocimetry (PIV). [4, 16, 17] Although non-

invasive, these 2-D image-based techniques are limited by interpolation errors that arise when

extracting the three-component (3C) velocity vector field as well as the lack of resolution of the

near-wall velocity profile. [4, 17] These challenges compromise the accuracy of endocardial

wall shear stress (WSS) measurements, which are of central importance to understanding

shear-regulated mechanotransduction. Moreover, extracting hemodynamic pressure data,

which is linked to cardiac valvulogenesis, [5, 18] from PIV measurements is non-trivial.

Computational fluid dynamics (CFD) provides an attractive alternative for quantifying space-
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time resolved velocity and pressure fields in subject-specific geometries. CFD has been widely

applied to simulate blood flow, to facilitate clinical decision-making, and to study the progres-

sion of cardiovascular disease. [19–26] CFD has also been applied to study developmental

dynamics in chick embryos such as aortic arch morphogenesis, [27, 28] aortic valve and out-

flow tract morphogenesis, [29–31] and the onset of congenital heart disease such as HLHS.

[14]

We have previously demonstrated, using moving domain CFD coupled with in vivo imag-

ing of zebrafish embryos, a method to computationally quantify the spatio-temporal variation

of endocardial WSS and pressure gradients across the atrio-ventricular canal in two dimen-

sions. [32] We subsequently developed 4-D imaging (3-D in space + time) using light sheets

with selective plane illumination microscopy (SPIM) coupled with a non-gated synchroniza-

tion algorithm to elucidate hemodynamic regulation mechanisms of Notch signaling pathways

during cardiac trabeculation in genetically manipulated zebrafish embryos. [33] While numer-

ous image-based CFD modeling techniques have been developed for human hearts based on

magnetic resonance imaging (MRI) or computed tomographic (CT) data, [34–36] there

remains a need for efficient frameworks applicable to cardiac developmental studies using

high resolution embryonic heart images.

We present a computational framework to quantify biomechanical forces, including endo-

cardial WSS and oscillatory shear index (OSI) in zebrafish embryos with and without cardiac

trabeculation. We also compare kinetic energy density and rate of viscous energy dissipation

due to changes in ventricular trabeculation. Our framework employs robust and efficient

image processing techniques based on the open-source SimVascular [37] software framework

to build the anatomic model, and employs validated stabilized finite element methods for

blood flow simulation in moving domains. [37–41] We apply this computational framework

to quantify in detail the shear regulation of cardiac trabeculation during morphogenesis in

zebrafish embryos in response to genetic and chemical treatments. In the following sections,

we present the computational pipeline which proceeds from 4-D image data to computing

ventricular hemodynamics in zebrafish embryos. We provide details on the genetic and chemi-

cal treatments of the wild type zebrafish to investigate the role of shear on cardiac trabecula-

tion. Finally, we quantify differences in hemodynamic conditions between the wild type and

treated variants over the course of cardiac development. In the present study, we limit our

attention to velocity-derived quantities such as WSS, OSI, kinetic energy and dissipation

although other mechanobiology regulators such as pressure gradients and wall strains are also

likely factors affecting cardiac morphogenesis.

Methods

Computational workflow

We first present the computational workflow, which proceeds from 4-D light sheet images of

zebrafish embryos to ventricular blood flow modeling using moving domain CFD (Fig 1).

4-D light sheet SPIM imaging. The workflow begins with 4-D light sheet image acquisi-

tion using our in-house SPIM technique followed by a postprocessing synchronization step to

visualize the dynamic cardiac structure at high spatial and temporal resolution. Details of the

imaging system and synchronization algorithm are furnished in the Supplementary Material

of Lee et al. [33]. Briefly, we scan approximately 70 sections from the anterior to the posterior

ends of the zebrafish heart, where each section is captured with 500 snapshots (frames) at

10ms exposure time per frame via a sCMOS camera (Hamamatsu Photonics). The total acqui-

sition duration is about 350s for each sample. The in-plane resolution of each frame is about

0.65μm × 0.65μm and the axial displacement along the z-direction is set to 2μm. [42] To
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synchronize with the cardiac cycle, we determined the cardiac periodicity on a frame-to-frame

basis by comparing the pixel intensity from the smallest volume at end-systole to the largest

volume at end-diastole. [33] Each reconstructed volumetric image post synchronization com-

prises 512 × 512 × 70 voxels and we acquire *100 volume images per cardiac cycle. The recon-

structed 4-D image data sets were then processed in the Amira software (FEI, Inc.) for

visualization. [33]

Computational model. The reconstructed 4-D zebrafish images are processed through a

series of steps to extract the computational model of a beating ventricle for blood flow

simulation.

Segmentation: A template image is chosen as a starting point from the M frames of the 4-D

zebrafish cardiac images (Fig 2a). Typically, the template is chosen during mid-diastole so as

to be evenly positioned between minimum volume at end-systole and maximum volume at

end-diastole. This template image is then segmented by thresholding based on the histogram

of image intensities to create an isosurface of the ventricular myocardium. Since the choice of

threshold value is user-dependent, we deform the initial threshold-based segmentation using

level-set advection techniques to conform to the true edges of the image. We perform the 3-D

level-set segmentation in the SimVascular open source image-based cardiovascular flow

modeling software (Fig 2b). [37] For the final clean-up and to ensure a fluid-tight volume for

Fig 1. A schematic of the workflow for computing ventricular hemodynamics from 4-D image data in

developing zebrafish embryos, proceeding from image acquisition to anatomic model generation and

blood flow simulation and analysis.

https://doi.org/10.1371/journal.pcbi.1005828.g001

Fig 2. 3-D image segmentation techniques in SimVascular [37] and surface tuning tools in Meshmixer

(Autodesk Inc.) are leveraged to create anatomic models of the developing zebrafish endocardium for

use in CFD simulations.

https://doi.org/10.1371/journal.pcbi.1005828.g002
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blood flow simulations, we then import the level-set based segmentation from SimVascular as

a triangulated surface into MeshMixer (Autodesk, Inc.). (Fig 2c) We extract the ventricular

endocardium, filling any holes created during segmentation, and perform local smoothing and

remeshing to eliminate sharp corners or intersecting surface triangles. Further, we slightly

extrude the inlet and outlet orifices and cap them to prescribe inflow and outflow boundary

conditions (Fig 2c).

Registration, Motion Extraction: Zebrafish embryos typically beat at high heart rates (*120-

150 beats per min) and undergo complex, large deformation endocardial motion, posing a sig-

nificant challenge for motion extraction. One feasible approach is to repeat the segmentation

for each image frame throughout the cardiac cycle. However, the triangulated surface mesh

topology, including surface nodes and element connectivity, are not guaranteed to correlate

from one frame to the next. Others have addressed this issue by performing a template-based

mapping, either using a point-set registration technique or by applying large deformation

mapping algorithms to extract the endocardial motion. [34, 43] Although these techniques

have been successfully applied in human heart models based on MRI or CT data sets with rela-

tively low temporal resolution (*20 frames per cycle), they are inefficient for developmental

studies with higher frame rates (*100 frames per cycle). Moreover, manually segmenting all

cardiac frames is a laborious process that substantially increases the workload, leading to seg-

mentation errors and variability.

We circumvent this problem by leveraging image registration techniques hailing from the

medical imaging and computer vision communities. We employ an intensity-based non-rigid

deformable image registration method for extracting the motion of the ventricular endocar-

dium from 4-D light sheet images by adapting the MATLAB-based open-source Medical

Image Registration Toolbox (MIRT). [38] The toolkit has been validated for cardiac ultra-

sound images using sonomicrometry-based measurements of ventricular strains. [44] With

this approach, we segment the endocardium at only one cardiac phase, and then morph the

segmented surface using displacements computed from image registration. In this way, we not

only reduce user effort by avoiding the need to segment all time frames, but also minimize seg-

mentation errors and streamline the workflow.

We present a brief overview of the registration procedure here and guide the reader to [45]

for a more detailed discussion of the algorithms and point-set mapping techniques. Given a

source image I(x, y, z) and a target (or reference) image J(x0, y0, z0), our goal is to find an opti-

mal transformation T : ðx; y; zÞ7!ðx0; y0; z0Þ that maps a given anatomical point from the

source image to the target image. We note that image registration represents a geometric trans-

formation of the image and not an intensity transformation. There are three essential compo-

nents required for performing image registration: (a) a similarity function Esim, (b) a

transformation model T , and (c) a regularization function Ereg. The similarity function Esim

defines the objective function to be minimized which aligns the two images, and the transfor-

mation model T defines the mapping of each individual point between the two sets of image

coordinates. Regularization Ereg is essential to make the problem well-posed and provide con-

trol on the degree of deformation. Therefore, the objective function to be minimized is given

by

Eobj ¼ EsimðIðxÞ; JðT ðxÞÞÞ þ lEregðT ðxÞÞ; ð1Þ

where λ is a regularization parameter that determines the trade-off between the accuracy of

image alignment and the smoothness of the deformation field.

We use the sum of squared differences (SSD) similarity function,

ESSD

sim
¼ 1

N

XN

n¼0
½IðxnÞ � JðT ðxnÞÞ�

2
, which is widely used in serial MR imaging, with the
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assumption that the images differ only by Gaussian noise. Although there are other complex

similarity functions that take into account the imaging modality and precise noise representa-

tion, [44] our experience has shown that the SSD similarity measure produces reasonable

results when applied to 4-D light sheet images. We use a free-form deformation (FFD) trans-

formation model based on cubic B-splines, [46, 47] which deforms an object by manipulating

a mesh of control points, interpolated using B-spline basis functions. These basis functions

provide local support with low computational cost while producing a smooth and C2
continu-

ous transformation. The regularization employed in the current study is based on the squared

norm of the gradient of the transformation, Ereg ¼
1

2
krT ðxÞk2

, which is associated with the

elastic bending energy of the deformation. Finally, we use a gradient-descent method to mini-

mize the cost function Eobj (Eq 1), implemented using a hierarchical multiresolution approach

in which the resolution of the B-spline control point mesh is increased, along with the image

resolution, from coarse to fine. [48] These multilevel or multigrid methods are widely used in

image processing and fluid mechanics applications, and not only converge quickly to the opti-

mal solution, but also capture local non-rigid deformations at a relatively low computational

cost.

The registration process for the light sheet zebrafish images demonstrates good adherence

to the image data (Fig 3, see S1 Movie in the Supplementary Material). We chose 4 sublevels to

perform the B-spline based registration with a control point or knot spacing of 5 pixels and the

regularization parameter (Eq 1), λ = 0.1. The tolerance for convergence during optimization

was set to 10−8. Although the images were scanned at 512 × 512 pixels along each section, we

cropped the image to the region of interest around the ventricle to reduce computational cost.

Fig 3. Intensity-based non-rigid deformable image registration methods are used to extract

ventricular endocardial motion from 4-D light sheet image data. (a) We have chosen a source image with

segmented endocardium at mid-diastole (left) and a target image at end-systole (right). (b) We perform

registration using the MIRT framework to obtain the registered image (left), and compute the deformation field

(middle) that is then used to morph the segmented endocardium. We note a reasonable agreement between

the morphed endocardium boundary and the target image (right). (c) The registered 3D endocardial surfaces

superposed on the corresponding background image are shown at end-diastolic (EDV, left) and end-systolic

(ESV, right) phases of the cardiac cycle.

https://doi.org/10.1371/journal.pcbi.1005828.g003
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Fig 3 shows source and target images which are far apart in the cardiac cycle, though in prac-

tice, we perform sequential registration on the 4-D light sheet images starting from mid-dias-

tole and registering with each successive cardiac frame. We visually confirm reasonable

agreement between the registered endocardium surface and the endocardial edges in the back-

ground image at end-diastolic (maximum ventricular volume, EDV) and end-systolic (mini-

mum ventricular volume, ESV) phases of the cardiac cycle (Fig 3c).

To provide quantitative validation of the anatomic segmentation, we have manually seg-

mented the ventricular wall boundary at 10 equidistant phases in the cardiac cycle and com-

pared with the output of registration. While obtaining a local point-to-point agreement

between these two surfaces is not practical, since the registration is based on a global minimi-

zation algorithm, we note a maximum of 10.9% (mean *8%) deviation in ventricular volume

between the manually segmented and image registration-based ventricular surfaces. We

believe that this difference is acceptable, in light of the other potential uncertainties in the sim-

ulation. Additionally, the method provides the benefit of substantially reducing the cost of

model creation. For example, while it takes *2 hours to manually segmenting each endocar-

dial surface, registering a pair of high resolution images takes only *2 minutes. Moreover, a

point-set matching has to be performed on the manually segmented surfaces to apply Dirichlet

boundary conditions, which can be very expensive. [34] We repeated the above process with

the same registration parameters and tolerances for both wild type and treated zebrafish and

obtained comparable results.

Blood flow modeling on moving domains. Blood flow in moving domains can be mod-

eled using either interface-capturing immersed boundary (IB) methods [49–51], or interface-

tracking arbitrary Lagrangian-Eulerian (ALE) methods. [40, 52] We simulate blood flow using

the ALE approach, in which the interface is tracked along with a domain-conformal fluid

mesh, represented by the moving endocardial wall and the discretized blood domain in the

ventricular cavity, respectively. Here we present a brief account of the ALE methodology and

refer the interested reader to [40, 41, 53] and the references contained therein for further

details.

For an incompressible and Newtonian fluid, the weak formulation of the Navier-Stokes

equations in ALE coordinates for moving domains is given as follows:

Find �v 2 S�v and p 2 Sp, such that for all test functions �w 2 V�v and q 2 Vp,

BGðf�w; qg; f�v; pg; v̂Þ ¼ FGð�wÞ where; ð2aÞ

BGðf�w; qg; f�v; pg; v̂Þ ¼ �w; r
@�v
@t
þ ð�v � v̂Þ:r�v

� �� �

Ot

� ðr:�w; pÞ
Ot
þ ðrs �w; 2mrs�vÞ

Ot
þ ðq;r:�vÞ

Ot
; and

ð2bÞ

FGð�wÞ ¼ ð�w; r�f bÞOt
þ ð�w; �hÞ

GN
t

ð2cÞ

In Eq 2, quantities in the parentheses represent the inner product over the domain Ot; ρ and μ
are the fluid density and viscosity, respectively; �v and p are the fluid velocity and pressure,

respectively; v̂ is velocity of the domain boundary or the endocardial wall obtained from image

data; �f b is body force per unit volume;rs is the symmetrization of the gradient operatorr;

ðS�v ;SpÞ and ðV�v ;VpÞ are the standard finite element solution and weighting function spaces

defined on the computational domain, Ot, respectively; GD
t and GN

t are the Dirichlet and the

Neumann parts of the boundary, respectively, and �gð�x; tÞ and �hð�x; tÞ are the prescribed solu-

tion function on GD
t and the boundary traction vector on GN

t , respectively.
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As it is convenient to generate tetrahedral meshes for the complex ventricular cavities

formed by the zebrafish endocardium, we desire to employ P1-P1 type (i.e., linear and contin-

uous) spatial approximation of the fluid velocity and pressure solution variables. However, it is

well known that the above Galerkin form of the Navier-Stokes equations (Eq 2) does not meet

the Ladyzhenskaya-Babus̆ka-Brezzi (LBB) conditions (also known as inf-sup conditions) when

discretized in space with equal-order interpolation functions, leading to an unstable scheme.

[54, 55] Therefore, we use the variational multiscale (VMS) method which shares aspects of

the pressure stabilizing/Petrov-Galerkin (PSPG) stabilization that circumvent LBB conditions,

[53] and also shares aspects from the streamline upwind/Petrov-Galerkin (SUPG) stabilization

to address the convective instability associated with the traditional Galerkin method. [40, 56]

Thus, the system of equations in the VMS formulation may be obtained as,

BMSðf�wh; qhg; f�vh; phg; v̂hÞ� FMSð�whÞ ¼ 0 ; where; ð3aÞ

BMSðf�wh; qhg; f�vh; phg; v̂hÞ ¼ BGðf�wh; qhg; f�vh; phg; v̂hÞ

þðð�vh � v̂hÞ:r�wh; tM�rMÞOt
� ð�wh; tM�rM:r�vhÞ

Ot

� r�wh;
1

r
tM�rM 
 tM�rM

� �

Ot

þ rqh;
1

r
tM�rM

� �

Ot

þ ðr:�wh; rtCrCÞOt

þðtM�rM:r�wh tB; tM�rM:r�vhÞ
Ot
; and

ð3bÞ

FMSð�w
hÞ ¼ FGð�w

hÞ; ð3cÞ

where BG and FG are defined in Eq (2), and the following definitions are used in Eq (3) where

nsd is the number of spatial dimensions

�rM ¼ r
@�vh

@t
þ �vh � v̂h
� �

:r�vh

� �

þrph � mr2�vh � r�f h
b ð4aÞ

rC ¼ r:�v
h ð4bÞ

tM ¼
Ct

Dt2
þ ð�v � v̂Þ:��Gð�v � v̂Þ þ CI

m

r

� �2

��G : ��G

 !� 1=2

ð4cÞ

tC ¼ ðtM�g :�gÞ� 1
ð4dÞ

tB ¼ ðtM�rM:
��GtM�rMÞ

� 1=2
ð4eÞ

Gij ¼
Xnsd

k¼1

@xk

@xi

@xk

@xj
ð4fÞ

gi ¼
Xnsd

j¼1

@xj

@xi
: ð4gÞ
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We employ the second-order generalized-αmethod for time integration, [57] linear finite

elements (P1-P1) for spatial discretization, and a modified Newton-Raphson method for the

linearization of the nonlinear terms in Eq 3. [39, 40] Additionally, we also solve for the mesh

motion using linear elastostatics augmented by Jacobian-based stiffening. [58] We use a block

iterative approach (called quasi-direct coupling) to solve the fluid-mesh system (Eq 3) in which

the mesh motion lags behind the fluid system by one iteration. We employ the generalized

minimal residual (GMRES) method with Jacobi preconditioning for solving the sparse system

of linear equations. [40, 59] The solver is parallelized using the message passing interface

(MPI) and has been optimized for performance on large scale computing clusters with efficient

data management, cardiovascular blood flow modeling, and fluid-structure interaction (FSI).

[19, 39, 60–63] We also employ a backflow stabilization method that is stable, yet minimally

intrusive to avoid unphysiological flow reversal at the boundaries with Neumann boundary

conditions. [19]

A common issue with simulating fluid dynamics in large deformation moving domains

with conforming meshes is that the initial mesh quality deteriorates with large deformations

and can create self-intersecting elements. As a result, one has to perform remeshing followed

by data interpolation of the solution variables from the old mesh to the new mesh to advance

the flow simulation. In the present study, we couple our flow solver with the TetGen open-

source meshing library [64] to perform dynamic remeshing ‘on the fly’ to maintain the mesh

quality. The element Jacobian (Je) is used as the metric to determine the mesh quality and

remeshing is triggered when Je� 0. After remeshing, we perform data interpolation using an

octree-based grid-to-grid advancing front vicinity search algorithm, [65] implemented in an

MPI-based parallel environment. To simulate ventricular blood flow in zebrafish embryos, we

begin with a volumetric tetrahedral mesh of *3 million elements at the end-systolic phase

with edge size Δx = 1.2μm. Due to dynamic remeshing, we create about 7-10 million elements

in the ventricle by end-diastole, the absolute number varying slightly with the cardiac anatomy

and function.

We previously performed validation of our flow solver to compare the simulated velocity

field against 2-D PIV data in zebrafish embryos. In Lee et al., [32] we obtained reasonable

agreement between PIV-based velocity acquisition and simulation predictions at the atrio-

ventricular canal of the zebrafish embryos. Additionally, using the same solver, we also per-

formed benchmark fluid dynamics and FSI tests for code verification in Esmaily-Moghadam

et al. [39] and against experimental data for cardiovascular applications. [66, 67] We also vali-

dated our solver with dynamic remeshing against PIV-based three-dimensional three-

component (3D-3C) velocity measurements of ventricular hemodynamics and demonstrated

a reasonable agreement with measured data. [68, 69]

For boundary conditions we assume that the valves are fully developed at 4dpf, which

agrees with observation from the image data (see S2 Movie in the Supplementary Material)

and with previous studies. [18, 70, 71] During diastole, we apply a traction-free (Neumann)

condition on the inflow boundary that mimics a fully-opened valve with a backflow stabilizing

coefficient β = 0.3, and a homogeneous Dirichlet boundary condition on the outflow boundary

to simulate total valve closure. Likewise, during systole we apply a traction-free condition on

the outflow boundary and a homogeneous Dirichlet boundary condition on the inflow bound-

ary. Assuming that the valves are fully formed, a positive value of the rate of change of volume

of the ventricle indicates filling phase or diastole, and a negative value of the rate of change of

ventricular volume implies ejection phase or systole, and the transition between these two

phases occurs when the rate of change of ventricular volume is zero.

The endocardial wall velocity is computed from the motion detected during registration

and is prescribed on the moving wall as a Dirichlet boundary condition. A linear interpolation
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of the velocity is performed at the intermediate flow time steps where the image data and the

corresponding endocardial velocity is not available. Simulations are run with a time step of

Δt = 0.2ms on XSEDE resources (Comet supercomputing cluster, [72]) utilizing about 240

computing cores. The Courant–Friedrichs–Lewy number CFL � UpDt
Dx , associated with numeri-

cal stability is about 2, and the flow Reynolds number Re � rUpDi
m

is about 20 for wild type fish,

based on peak average flow velocity (Up) and the diameter of the inflow annulus (Di). Each

flow simulation requires about 1.5 days per cardiac cycle and the cost of remeshing and inter-

polation is *2% of the total simulation time. We simulate 4 cardiac cycles for each fish and

compute the phase average of the last 3 cardiac cycles ignoring the initial transient effects for

subsequent hemodynamic analysis.

Cardiac contractility indices. We define two measures of cardiac contractile function,

stroke volume (SV) and ejection fraction (EF). The maximum volume of the ventricular endo-

cardium during the cardiac cycle is the end-diastolic volume (EDV) and its minimum volume

during the cardiac cycle is the end-systolic volume (ESV). Cardiac stroke volume (SV) is

defined as the net volume of blood pumped by the ventricle in a single beat, quantified by the

difference between EDV and ESV. The ratio of SV to EDV expressed as a percentage is known

as the ejection fraction (EF). For adult healthy human hearts, left ventricular EF is typically

55 − 60%.

Shear stress and viscous dissipation. Wall shear stress (WSS) is thought to be intimately

linked with cardiac trabeculation and morphogenesis. [4, 33] WSS has also been shown to influ-

ence endothelial cell alignment and direction, as well as the vascular growth and remodeling

and aneurysm formation in prior studies. [73, 74] WSS (τw) can be computed from the velocity

field provided by the CFD simulation by taking the tangential component of the stress vector as,

�tn ¼ 2mðrs�vÞ�n

WSS � �twð�x; tÞ ¼ �tn � ð�tn:�nÞ�n;
ð5Þ

where �n is the endocardial surface normal vector. For a quantitative comparison of the shear

profiles between the zebrafish variants, we compute area-averaged WSS (AAWSS) and space-

time averaged WSS (AWSS) which is averaged in both space and time during the cardiac cycle,

defined as,

AAWSSðtÞ ¼
1

Ae

Z

Gt

j�twð�x; tÞj dGt ð6aÞ

AWSS ¼
1

TcAe

Z tþTc

t

Z

Gt

j�twð�x; tÞj dGt dt; ð6bÞ

where Γt is the endocardium surface with area Ae, Tc is the cardiac cycle duration, and |(.)| rep-

resents the magnitude of the shear stress vector (�tw). To avoid high shear regions caused by

entrance effects, we neglect the regions that were artificially extruded at the inlet and outlet

annuli when computing the above integrals.

Like WSS, the oscillatory shear stress has been experimentally shown to influence the devel-

opment of cardiac trabeculation. [75, 76] We compute non-dimensionalized oscillatory shear
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index (OSI) as,

OSI ¼
1

2
1 �

1

Tc

Z tþTc

t
�tw dt

�
�
�
�

�
�
�
�

1
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j�twjdt
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B
B
B
@

1

C
C
C
A
; ð7Þ

where the range of OSI varies between 0 and 0.5. An OSI value of 0 indicates that the shear

stress vector is aligned along the same direction throughout the cardiac cycle, whereas an OSI

of 0.5 indicates that the shear vector undergoes a 180˚ change in direction on a time-averaged

basis and that the endothelial wall is subjected to highly oscillatory shear force.

Another fluid dynamical quantity of particular relevance to ventricular trabeculations is the

viscous dissipation. [77] The presence of trabeculations can lead to enhanced energy dissipa-

tion that converts kinetic energy of the fluid into heat. Volume averaged kinetic energy density

(KE) and the rate of viscous dissipation (F) are mathematically expressed as,

KE ¼
1

Vd

Z

Ot

1

2
rj�vj2 dOt ð8Þ

F ¼
1

Vd

Z

Ot

m rs�v : rs�vð Þ dOt; ð9Þ

where Vd is the ventricular domain volume, ρ and μ are the density and viscosity of the fluid,

respectively.

Zebrafish embryo treatments. Zebrafish embryos (danio rerio) are commonly used for

cardiac developmental studies. Major factors attributed to this widespread usage are their

small size, optical clarity, amenability to genetic manipulations and chemical treatment, rapid

developmental period, and their ability to survive for several days without blood circulation

but with sustained nutrition supply through passive diffusion. [78]

We use zebrafish embryos to develop insights into the mechanisms underlying the forma-

tion of cardiac trabeculation. We purchased transgenic (Tg(cmlc:gfp)) wild type zebrafish

from UCLA zebrafish core lab facility and since the cardiac myosin light chain (cmlc) contains

green fluorescent protein (gfp), we were able to image the zebrafish heart motion with 473nm
wavelength laser without any additional preparation or treatment. We then performed genetic

manipulation and chemical treatment on the wild type disrupting the normal cardiac

trabeculation.

In particular, an ErbB2 signaling inhibitor, AG1478, was used to inhibit differentiation and

proliferation of trabecular myocytes during cardiac morphogenesis. The injection of gata1a
morpholino oligomer (gata1aMO) at 1-4 cell stages of developing embryo inhibited red blood

cell production (hematopoiesis), thereby reducing blood viscosity and endocardial WSS,

resulting in attenuated trabeculation. Also, a weak atriumm58 (wea) mutant was used to inhibit

atrial contraction, leading to reduced blood flow through ventricles during peristaltic contrac-

tions, resulting in a highly under-developed ventricle with poor cardiac function. We assume

that the normal valvulogenesis is not affected due to chemical and genetic manipulations, justi-

fied by our observations of normal valve function in the image data at the time point we are

simulating. [18, 70, 71] Therefore, our treatment of boundary conditions for wild type fish can

be applied to the treated fish types as well.

Next, we performed 4-D light-sheet SPIM imaging [33] to capture the contracting hearts at

4 days post fertilization (dpf) for all the fish types. While the wild type fish developed cardiac

trabeculation in the form of ridges and grooves, (Fig 4) the trabeculation was attenuated in the
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treated zebrafish ventricles. We demonstrated a nearly 42% reduction in the volume of the tra-

beculations in fish treated with gata1aMO compared to the wild type by calculating the myo-

cardium volume in the trabeculation grooves based on the SPIM images. [33] However, we do

not find any visible trabeculations in the images of AG1478 and wea-mutant. For the wild type

zebrafish and each treated variant described, we performed image registration to extract wall

motion data, performed moving-domain blood flow simulations followed by post-processing

to compute the above described hemodynamic quantities. We have used the same values of

blood density (ρ = 1.06g/cm3) and viscosity (μ = 4cP) for all fish types to perform blood flow

simulations. We also consider an additional case for gata1aMO where the viscosity is reduced

as a result of inhibiting hematopoiesis. In Vermot et al. [18], it was demonstrated that intro-

ducing gata1MO reduces viscosity by 90% and treating with gata2MO reduces viscosity by

70%. Therefore, we chose an intermediate value of 75% as the viscosity reduction factor due to

gata1aMO injection. We note that the baseline viscosity value employed in the present study is

for an adult zebrafish (μ = 4cP, hematocrit (Ht) = 35%). [79]

Results

Cardiac function and contractility

We observe a substantial change in cardiac contractility due to chemical treatment with

AG1478 compared with the gata1aMO injected fish and the wea mutant (Fig 5). In response to

chemical treatment AG1478, SV increases by 48% whereas EF marginally increases by *7%

compared to the wild type (Fig 5a). Genetically treated gata1aMO and wea have reduced car-

diac contractility with respect to the wild type. For gata1aMO, SV is smaller by 45% and EF is

smaller by 23% compared to the wild type (Fig 5a). On the other hand, wea mutant has a sig-

nificantly smaller SV and EF (Fig 5a).

We note similar trends in the ventricular volume variation during the cardiac cycle for all

the fish types (Fig 5b). Additionally, we note a prolonged diastole (ventricular filling) in

Fig 4. A schematic of the development of trabeculations in the wild type zebrafish. At 2dpf, we do not

see any noticeable trabeculations in the ventricular myocardium. At 3dpf and 4dpf, the trabeculations are

developed in the form of ridges and grooves. At 5dpf the trabeculations further developed into sponge-like

network. [9] Colored arrows indicate direction of the blood flow whereas block arrows indicate progress of the

developmental stages.

https://doi.org/10.1371/journal.pcbi.1005828.g004
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response to AG1478 treatment, such that the ventricle reaches a maximum volume much later

in the cardiac cycle (Fig 5b). On the other hand, the ventricular volume variation for

gata1aMO and wea remains nearly in phase with the wild type (Fig 5b).

Hemodynamic shear

Localized zones of high and low WSS occur in the wild type zebrafish at early diastole (top

frame of Fig 6a), which correspond to the sites of the trabecular ridges and grooves,

Fig 5. Comparison of (a) contractility indices, and (b) ventricular volume as a function of the non-

dimensionalized cardiac cycle duration, between wild type zebrafish and in response to chemical

(AG1478) and genetic (gata1aMO, wea) manipulations. SV: stroke volume, EF: ejection fraction, Vd:

ventricular cavity volume, Tc: cardiac cycle duration.

https://doi.org/10.1371/journal.pcbi.1005828.g005

Fig 6. Endocardial wall shear stress (WSS) profiles are compared at different cardiac phases (rows)

corresponding to early diastole, mid-diastole and mid-systole, between the wild type zebrafish

embryos and in response to chemical and genetic treatments (a) wild type, (b) AG1478, (c) gata1aMO,

(d) wea. The red line in each figure represents ventricular volume variation and the black dot identifies the

corresponding instant during the cardiac cycle. All the phases are chosen to be at the same non-

dimensionalized time with respect to the cardiac cycle duration (Tc) of each fish. This figure also illustrates the

differences in ventricular morphology (volume and deformation) during the cardiac cycle for the chemically

and genetically altered fish.

https://doi.org/10.1371/journal.pcbi.1005828.g006
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respectively. On the other hand, AG1478 and gata1aMO have more uniformly low WSS on the

ventricular surface, except for the sites of inflow jet impingement. The regions of higher WSS

occurring in the artificial inflow and outflow annuli extensions are not included in our analy-

sis. Further into the cardiac cycle (middle row, Fig 6), WSS is higher over most of the ventricu-

lar endocardium for the wild type zebrafish, whereas the WSS is lower for both AG1478 and

gata1aMO. During systole (bottom row, Fig 6), mild variation in WSS is noted around the

sites of trabeculations in the wild type model, which are not present in AG1478 and gata1aMO
treated fish. In the case of wea mutant (Fig 6d), WSS is uniformly low throughout the cardiac

cycle, which is attributed to its poor cardiac contractility and function (Fig 5).

In Fig 7a, we note that the diastolic and systolic behavior of AAWSS appear to be reversed

between the wild type and genetically manipulated fish types (gata1aMO, wea), and the chemi-

cally treated AG1478. First, we observe a diastolic peak of AAWSS for the former group,

whereas the latter has a systolic peak. Second, during diastole, AAWSS rises and falls more

sharply for the wild type and the genetic variants (gata1aMO, wea), whereas it plateaus for the

chemically treated AG1478. However, during systole the trend is reversed between the two

groups.

The time-averaged shear stress (AWSS) differs slightly between the wild type and AG1478

(Fig 7b). On the other hand, gata1aMO exhibits a higher time-averaged value compared to the

wild type. This is due to a higher systolic shear that is spread over a wider range of the cardiac

cycle for gata1aMO compared to the wild type (Fig 7a). Nevertheless, with a reduced viscosity

(gata1aMOμ1/4), the AWSS of gata1aMO is significantly lower compared to both the wild type

and AG1478 (Fig 7b). The shear profile for wea mutant is consistently low over the cardiac

cycle (Fig 7a), as is the time average (Fig 7b).

In Fig 8a for the wild type, OSI is higher in the trabecular grooves, but lower in the trabecu-

lar ridges and on the rest of the smooth endocardium. On the other hand, we observe fewer

sites with high OSI for the treated fish types (AG1478, gata1aMO and wea).

Energy dissipation

Both KE and F exhibit a two-peak profile during the cardiac cycle (Fig 9). While the first peak

occurs during early diastole and varies sharply with a narrow spread, the second peak occurs

between mid-diastole and mid-systole with a wider spread and a lower peak value. We also

Fig 7. Comparison of (a) area-averaged WSS (AAWSS) as a function of non-dimensional time, (b)

time-averaged wall shear stress (AWSS), between the wild type zebrafish and in response to chemical

(AG1478) and genetic (gata1aMO, wea) treatments. We also include an additional case for genetically

treated gata1aMO with blood viscosity reduced by a factor of 4 (gata1aMOμ1/4) to account for inhibited

hematopoiesis.

https://doi.org/10.1371/journal.pcbi.1005828.g007
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note that the shapes of the time variation of the kinetic energy density KE and the rate of vis-

cous dissipation F curves are similar for all fish types but only differ in magnitude (Fig 9).

We note that AG1478 has higher peak value of kinetic energy KE (Fig 9a) but substantially

reduced dissipation F (Fig 9b) compared to the wild type. The genetically treated gata1aMO
has a lower peak KE and F compared to the wild type. However, this difference in energy

budget between gata1aMO and the wild type is reduced during late diastole to early systole,

and by late systole, the gata1aMO has marginally higher kinetic energy and dissipation com-

pared to the wild type (Fig 9). Lowering the blood viscosity by 4 (gata1aMO1/4) results in

Fig 8. Oscillatory shear index (OSI) comparison of OSI profiles on the ventricular surface between

wild type and the chemically and genetically treated zebrafish. OSI is higher in the trabecular grooves but

lower in the trabecular ridges and on the rest of the smooth endocardium for the wild type. On the other hand,

we observe fewer sites with high OSI for the treated fish types (AG1478, gata1aMO and wea).

https://doi.org/10.1371/journal.pcbi.1005828.g008

Fig 9. Comparison of (a) kinetic energy density (KE), and (b) the rate of viscous dissipation per unit

volume (F) during the cardiac cycle, between the wild type zebrafish and in response to chemical

(AG1478) and genetic (gata1aMO, wea) treatments.

https://doi.org/10.1371/journal.pcbi.1005828.g009
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reduced energy dissipation compared to either wild type or AG1478 (Fig 9b). Both KE and F

are an order of magnitude lower for wea mutant fish and are therefore negligible (Fig 9).

Discussion

It is well known that fluid forces such as hemodynamic shear and pressure gradients orches-

trate biological responses that affect downstream embryonic heart development. [1, 4] How-

ever, quantifying these forces in developing embryos in vivo or in vitro is a significant

challenge. [3, 4] Computational modeling offers a promising methodology to quantify these

biomechanical forces, providing space-time resolved blood flow data in developing hearts.

However, simulating hemodynamics in moving heart chambers requires specialized numerics

to account for the moving wall. Acquiring high-resolution images of beating hearts in develop-

ing embryos and extracting the deforming ventricular geometry from these images for flow

simulations, presents further challenges which had not been adequately addressed in prior

studies.

We address these challenges in the present study with a novel computational framework

combining 4D-light sheet imaging and a validated moving-domain blood flow solver for mea-

suring ventricular hemodynamic forces in developing zebrafish hearts. While we have demon-

strated the utility of the framework for zebrafish embryos, the framework could be generalized

to other developmental studies in chicks and mice with appropriate time-resolved imaging

modalities. We have previously demonstrated the 4-D imaging methodology using light sheet

microscopy coupled with a non-gated synchronization algorithm, and applied it to investigate

Notch signaling mechanisms during cardiac morphogenesis. [33] In the current study, we cou-

ple the 4-D light sheet imaging with the blood flow solver to quantify the biomechanical forces,

which can then be used to elucidate hemodynamic regulatory mechanisms during cardiac

development.

4-D light sheet microscopy provides high spatio-temporal resolution images of beating

hearts of developing embryos with high heart rates and large endocardial deformations. In the

case of zebrafish, the technique offers the added advantage that the transparent embryos do

not have to be sacrificed at the end of the experiment, and this allows one to track temporal

changes during development. However, the high spatio-temporal resolution of these images

poses a challenge in extracting the motion of the beating heart because segmenting the endo-

cardium at each time frame is a labor-intensive and error-prone process. In the present frame-

work, we employ robust and efficient deformable image registration methods allowing the

user to segment only one cardiac phase and extract the motion of the ventricle from the dis-

placement field computed during registration. Hence, the 4-D motion of the deforming ventri-

cle can be extracted in a small fraction of the time required for blood flow simulations. Our

framework employs stabilized multiscale finite element methods based on the ALE formula-

tion to solve blood flow in moving domains, which has been well-established and validated

application in cardiovascular disease and developmental cardiology. [21, 32]

We have applied the framework in wild type and three treated variants of zebrafish embryos

to examine the mechanobiology during cardiac trabeculation. We categorize these treatments

under direct and indirect approaches to attenuating cardiac trabeculation in developing zebra-

fish embryos. Chemical treatment with AG1478 directly knocks out a key component of endo-

cardial Notch signaling pathway responsible for differentiation and proliferation of trabecular

myocytes. However, gata1aMO injection is an indirect method of attenuating trabeculation by

passively reducing hemodynamic shear on the ventricular endocardium. This reduction in

shear is a consequence of inhibiting red blood cell production (hematopoiesis) leading to low

blood viscosity. The wea mutant also indirectly knocks out trabeculation due to inhibited
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peristaltic contractions of atrium resulting in an underdeveloped ventricle. We have compared

multiple quantities among these fish variants, including the cardiac contractile function,

hemodynamic shear related metrics, kinetic energy and viscous dissipation, and related these

dynamic quantities with the development of ventricular trabeculations.

We showed that chemically treating the zebrafish embryo with AG1478 leads to an untrabe-

culated ventricle with a significant increase in stroke volume ("48%) but a marginal 7%

increase in ejection fraction. We also showed that AG1478 treatment leads to prolonged dias-

tole compared to other fish variants. However, we note that zebrafish are known to have signif-

icant variability across the species, and it is not immediately clear how much of this

prolongation is attributed to AG1478 treatment alone. Therefore, we can postulate that

AG1478 treatment leads to an untrabeculated dilated ventricle but nearly preserves the cardiac

contractile function. However, the genetically manipulated varieties gata1aMO and wea, not

only attenuated cardiac trabeculation but also led to reduced cardiac function and contractil-

ity. In particular, the case of wea mutant exhibits an order of magnitude reduction in ventricu-

lar size and SV, and significantly reduced EF. These observations are consistent with our

experience with multiple fish subjected to genetic and chemical alterations.

We have demonstrated high and low oscillatory shear juxtaposed in the trabecular grooves

and ridges, respectively for the wild type zebrafish. We have also demonstrated spatial inho-

mogeneity of WSS for the wild type fish. However, none of the treated variants exhibit the

same spatial variations in endocardial WSS, and all have lower OSI uniformly distributed on

the endocardium. On the other hand, chemical treatment in AG1478 and gata1aMO injection

resulted in similar averaged shear compared to the wild type. Altering the viscosity of the

blood due to gata1aMO injection, however, resulted in lowering the average shear. This sug-

gests that average shear may not be a strong factor responsible for regulating cardiac trabecula-

tion; but spatial inhomogeneity of endocardial WSS and oscillatory shear forces are implicated

in the development of cardiac trabeculation.

Comparison of the energy budget between the fish variants shows that kinetic energy den-

sity correlates with cardiac function. Compared to the wild type zebrafish, AG1478 has mar-

ginally higher KE while gata1aMO and wea mutant fish have substantially reduced KE. On the

other hand, viscous dissipation (F) is enhanced by the presence of trabeculations, which act as

surface roughness on the endocardial wall, leading to increased viscous losses. This phenome-

non is evident in Fig 9b where dissipation is reduced for all the treated fish types compared to

the wild type. With pronounced trabeculations in gata1aMO compared to AG1478, dissipation

is marginally higher, despite having lower contractility and KE. However, this marginally

increased dissipation is only reflective of increased strain rates in the presence of trabecula-

tions for gata1aMO and does not take into account the changes in viscosity from reduced

hematopoiesis. Nevertheless, the changes in KE and F amount to a negligible fraction of the

total cardiac work, calculated from the area under the ventricular pressure-volume loop, cor-

roborating similar recent claims for human cardiac physiology. [77] Typically, peak systolic

and end-diastolic pressures in zebrafish embryos are 0.47 ± 0.09mmHg and 0.08 ± 0.07mmHg,

respectively at 5dpf. [80] Thus, the cardiac work per unit volume of the zebrafish embryo at

5dpf is approximately 520g/cm/s2, and is therefore orders of magnitude higher than the maxi-

mum KE for wild type fish.

Our novel computational modeling framework can provide spatio-temporally resolved

blood flow information, from which we extract biomechanical forces acting on the ventricular

endocardium in the developing heart; these data are not yet possible to obtain by direct experi-

mental measurements. The availability of such a framework fosters future opportunities to per-

form quantitative assessment of mechanobiological processes (for transduction and gene
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expression) in both health and disease. Spatio-temporal correlations of hemodynamic forces

with gene expression and cellular signaling are enabled by this platform, which is currently not

possible in vivo or with other limited experimental techniques such as PIV. Insights developed

in these fundamental studies will pave the way for improved understanding of the role of

embryonic hemodynamics on the onset of congenital heart disease.

We acknowledge several limitations in our study which could be addressed in future

investigations.

First, we made a Newtonian flow assumption for modeling blood dynamics in the zebrafish

embryo, although it is known that blood may exhibit non-Newtonian behavior at embryonic

microscales. While many prior developmental studies have also modeled blood flow as Newto-

nian, [14, 30, 31] there is insufficient data on the non-Newtonian effects of blood in developing

ventricles. Previous studies on the non-Newtonian dynamics of blood in human models of

arteries demonstrated a nearly two-fold increase in WSS compared to the baseline Newtonian

flow. [81] However, comparable shear profiles could also be obtained by rescaling the value of

the viscosity used in the Newtonian flow model. [81] Conversely, Boyd et al. [82] demonstrated

very small differences in both velocity profiles and shear rates assuming blood to be non-New-

tonian, especially near the vessel wall, using a model of an ideal artery.

Our own recent capillary-pressure driven microchannel experiments indicated that the vis-

cosity of blood is nearly independent of shear rates (Newtonian flow) when the shear rate is

>500s−1, but that viscosity increases at lower shear rates (<500s−1) where non-Newtonian

dynamics may become important. [79] By this metric, about 70% of the cardiac cycle is pre-

dominantly Newtonian with high shear rates (O(1000s−1)) in fish types with high ventricular

contractility (wild type, AG1478 and gata1aMO). The shear rates are so low in the rest of the

cardiac cycle that changes in viscosity due to non-Newtonian effects may be too small to sub-

stantially influence the WSS magnitude. In the case of wea-mutant with poor contractility, we

do find very low shear rates with values of WSS orders of magnitude lower compared to other

fish types. However, we postulate that modeling the non-Newtonian blood dynamics in the

present study would not affect the relative WSS distributions and our major conclusions. Nev-

ertheless, we also note that non-Newtonian phenomena could be implemented in our compu-

tational framework without disrupting the underlying workflow and should be a subject of

future study.

Second, although we demonstrated the applicability of our framework in only one fish of

each type, this is intended as a stepping stone to future investigations which statistically corre-

late gene expression data with hemodynamic forces.

Third, while we quantified differences in shear characteristics in response to chemical and

genetic treatments compared to the wild type fish, these were demonstrated for the fish imaged

at 4dpf. To understand how hemodynamic shear regulates the onset of cardiac trabeculations,

future studies should examine the changes in endocardial shear characteristics at different

stages post fertilization and correlate them with the ventricular morphology during the course

of embryonic heart development. Additionally, other biomechanical forces such as pressure

and its gradients, wall strains, etc. could also affect the mechanobiology during cardiac mor-

phogenesis and should be examined in future investigations. [30, 32] Further, as our frame-

work relies on imposed wall motion from 4D light sheet SPIM images and models blood flow

as incompressible, we cannot determine wall strains and absolute blood pressure but only their

gradients.

Fourth, although we have validated our flow solver against 2-D PIV measurements in devel-

oping zebrafish embryos, [32] and in other benchmark fluid dynamics tests, [21, 39] and also

verified the image registration methodology by comparing the ventricular cavity volumes

between manual segmentations and the ones obtained from image-based registration

Mechanobiologic forces in zebrafish hearts with computational modeling

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1005828 October 30, 2017 18 / 24

https://doi.org/10.1371/journal.pcbi.1005828


techniques, a more concrete validation study with 4-D in vivo measurements in developing

embryos is warranted contingent upon the future availability of such data.

Lastly, the zebrafish treatments considered here were focused on inhibiting cardiac trabecu-

lation; however, a possible future direction could be to examine the role of endocardial Notch

signaling and shear forces on hypertrabeculation. Recent reports suggest that late DAPT treat-

ment of embryonic zebrafish can lead to increased trabeculation, and we plan to pursue this

direction in future work. [83]

Conclusion

We have developed a novel computational framework to quantify time-dependent hemody-

namic forces in developing embryos based on 4-D light sheet imaging data. Our efficient and

streamlined workflow employs deformable image registration methods for extracting the

endocardial motion, and is coupled with a stabilized variational multiscale finite element flow

solver that is validated and optimized for modeling cardiac hemodynamics. We have demon-

strated the workflow in wild type zebrafish and in three treated fish types disrupting normal

cardiac trabeculation. These variants include: (a) chemical treatment using AG1478 that inhib-

its ErbB2 signaling; (b) injection of gata1a morpholino oligomer (gata1aMO) suppressing

hematopoiesis and thereby, reducing blood viscosity and shear; and (c) weak-atriumm58

mutant (wea) with attenuated atrial contraction. Our simulations revealed high oscillatory

shear index (OSI) in the grooves between trabeculae compared to the ridges in wild type zebra-

fish, suggesting oscillatory forces to be implicated in cardiac trabeculation. Our analysis also

indicates that the presence of endocardial trabeculations significantly enhances viscous losses

in the wild type zebrafish compared to the treated variants, although, the magnitude of this

increase is small compared to the total cardiac work. This framework is broadly applicable in

other cardiac developmental studies focused on quantifying mechanobiologically relevant

forces during morphogenesis.
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