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Groundwater level prediction 
based on a combined intelligence 
method for the Sifangbei landslide 
in the Three Gorges Reservoir Area
Taorui Zeng1, Kunlong Yin2*, Hongwei Jiang3, Xiepan Liu2, Zizheng Guo4 & Dario Peduto5

The monitoring and prediction of the groundwater level (GWL) significantly influence the landslide 
kinematics. Based on the long-term fluctuation characteristics of the GWL and the time lag of 
triggering factors, a dynamic prediction model of the GWL based on the Maximum information 
coefficient (MIC) algorithm and the long-term short-term memory (LSTM) model was proposed. 
The Sifangbei landslide in the Three Gorges Reservoir area (TGRA) in China, wherein eight GWL 
monitoring sensors were installed in different locations, was taken as a case study. The monitoring 
data represented that the fluctuation of the GWL has a specific time lag concerning the accumulated 
rainfall (AR) and the reservoir water level (RWL). In addition, there were spatial differences in the 
fluctuation of the GWL, which was controlled by the elevation and the micro landform. From January 
19, 2015, to March 6, 2017, the measured data were used to set up the predicted models. The MIC 
algorithm was adopted to calculate the lag time of the GWL, the RWL, and the AR. The LSTM model is 
a time series prediction algorithm that can transmit historical information. The Gray wolf optimization 
(GWO) algorithm was used to seek the most suitable hyperparameter of the LSTM model under the 
specific prediction conditions. The single-factor GWO-LSTM model without considering triggering 
factors and the support vector machine regression (SVR) model were considered to compare the 
prediction results. The results indicate that the MIC-GWO-LSTM model reached the highest accuracy 
and improved the prediction accuracy by considering the factor selection process with the learner 
training process. The proposed MIC-GWO-LSTM model combines the advantages of each algorithm 
and effectively constructs the response relationship between the GWL fluctuation and triggering 
factors; it also provides a new exploration for the GWL prediction, monitoring, and early warning 
system in the TGRA.

The change of hydraulic condition is one of the crucial factors of landslides. As the most critical hydropower 
facility of the Yangtze River in China, the Three Gorges reservoir has dramatically changed the geological envi-
ronment of this area1. The length of the TGRA is 637 km; therein more than 2500 landslides activated due to the 
fluctuation of the RWL2. This latter external factor, combined with the seasonal rainfall infiltration, significantly 
influences the seepage characteristics of landslides and the GWL3. The rise of the GWL increases the pore water 
pressure between the filled soil particles and the rock fissures and decreases the effective stress in the deformation 
area. The rapid decline of the GWL increases the dynamic water pressure, which accelerates the development of 
slope instability and deformation. The reduction in effective stresses due to the fluctuation of the GWL, affect-
ing the soil strength and consequently the stability of the slope, causes first-time failures or the reactivation of 
landside movements4. Therefore, the monitoring and prediction of the GWL is an essential part of the landslide 
hazard analysis5. There is a correlation between the landslide displacement velocity and the GWL6,7. Van Asch8 
considered that the increase of the GWL could accelerate the deformation of landslides more than the decrease 
effect. On the contrary, Zhang9 regarded the landslide deformation that occurs in the rapid GWL falling in the 
TGRA. The GWL changes the material strength at different locations of the landslide, which certainly accelerate 
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the reactivation or sliding of the slope body6,10,11. Therefore, the GWL fluctuation analysis is a key part of land-
slide stability assessment12.

The fluctuation of the GWL is complex and depends on external factors such as the surface runoff, the slope 
morphology13, the rainfall intensity14,15, the evapotranspiration16, the GWL depth17, the thickness of unsaturated 
zone18, the natural or anthropogenic drainage features19, and the RWL12. In this regard, data-driven models 
can describe the linear relationship between the GWL and triggering factors. Examples provided by Franke20 
established the regression model between the GWL, the rainfall, and the discharge through the multiple linear 
regression. Ahn21 proposed a second-order difference time series model to predict the groundwater heads. 
Sutanudjaja22 used the soil water index derived from European remote sensing scatter meters to predict the 
groundwater head in the Rhine–Meuse basin. Cai23 adopted the water-table fluctuation method to estimate 
the groundwater recharge from the water-level and rainfall data. However, the traditional linear model cannot 
describe the nonlinear hydrological time series. The machine learning time-series model has been widely used in 
the GWL prediction in recent years. Tsanis24 used the feed-forward neural network to predict the GWL. Yoon25 
adopted the artificial neural network and the SVR model to analyze the GWL in a coastal aquifer and selected 
the past GWL, precipitation, and tide level as the triggering factors. Krakac4,26 established a random forest model 
of multiple triggering factors with the GWL. Cao12 proposed a time-series prediction model for the RWL, the 
RA, and the GWL according to the peculiar hydrogeological conditions in the TGRA.

The single machine learning model is widely used in time-series prediction with the advantages of simple 
implementation and fast operation speed27, such as the back-propagation neural network model (BPNN)28, ker-
nel extreme learning machine (KELM)29,30, least-squares SVR31, Volterra filter model32, Kalman filter method33, 
SVR34 and so on. However, the complex nonlinear time series will reduce the prediction accuracy of a single 
model. At present, the combined intelligence method of two (e.g., one for optimization and one for prediction) or 
more algorithms has become a vital point of the prediction model. The prediction performance of this combined 
model is always better than that of a single model35. The prediction models can improve prediction accuracy and 
operation efficiency by optimizing their hyperparameters. For example, the BPNN model usually needs to opti-
mize its initial weight and threshold36. The SVR and KELM models need to find the optimal penalty factor and 
kernel function parameter37,38. At present, the metaheuristic search algorithms were widely applied to optimize 
the hyperparameters, such as the particle swarm optimization (PSO)-SVR model39–42, the PSO-ELM model35, 
the GWO-ELM model38,43, the GWO-BP model36, the ant colony optimization (ACO)-SVR model37, the genetic 
algorithm (GA)-SVR model12, etc. However, there are still two limits to practical application: (1) Different trigger-
ing factors have different contributions to the prediction model. The redundant features can affect the prediction 
accuracy. (2) These models consider both the factors and output data at different time points as independent 
vectors. To overcome these two issues, the MIC algorithm was proposed to determine the crucial triggering 
factors in this paper. The MIC measured the linear and nonlinear relations between different data variables, 
and reflected their non-functional dependence44. The LSTM algorithm was applied to predict the monitoring 
data as it can reflect the long-term dependence between the time step and data series45–47. Therefore, this paper 
adopted the MIC algorithm to sort the redundant features and the GWO-LSTM model to predict the GWL of 
landslides. Specifically, the main objectives include: (i) using a MIC algorithm to calculate the lag time of the 
GWL, the RWL, and the AR of the landslide; (ii) applying a MIC-GWO-LSTM model to update and predict each 
sequence of monitoring data; and (iii) comparing the predicted and measured GWL for the model validation.

Materials
Geological and kinematic features.  The Sifangbei landslide is located in the Wanzhou District, Chong-
qing (108° 29′ 18.65″ E, 30° 51′ 45.69″ N), which is on the north bank of the Yangtze River (Fig. 1). The Wanzhou 
District has abundant rainfall with a typical subtropical humid monsoon climate. According to the monitoring 
data of the Geo-Environmental Monitoring Office, the annual average temperature in Wanzhou District is 18.1 
°C, the minimum temperature is − 3.7 °C, the maximum temperature is 42.1 °C, the relative humidity is 80%, the 
frost-free period is 334 days, and the annual sunshine hours are 1484.4 h. The average annual rainfall in Wan-
zhou is 1202.8 mm (1960–2015). The rainfall mainly concentrates from May to September every year, account-
ing for about 70% of the annual rainfall (Fig. 2). The maximum average monthly rainfall is 203.1 mm in July. The 
historical maximum annual rainfall was 1635.2 mm (1981), the maximum monthly rainfall was 711.8 mm (July 
1982), and the maximum daily rainfall was 243.31 mm (July 16, 1982).

The Sifangbei landslide has an armchair shape in plain view with an elevation between 110 and 325 m. It has 
an estimated volume of 9.03 × 106 m3 and covers an area of 3.612 × 105 m2, with a length of 840 m and a width of 
430 m. The sliding body depth (Fig. 2) varies from 10.3 to 28.9 m, and the average bedrock depth is 22 m. The 
surface water network of Sifangbei landslide is relatively developed, mainly including a water pond, farmland, and 
gully. The pond on the landslide has water all year round, with a total area of about 1.2 × 104m2. According to the 
occurrence characteristics, the groundwater of the Sifangbei landslide can be divided into bedrock fissure water 
and loose pore water. The pore water is mainly distributed in the Quaternary deposits and rubble soil layer, mainly 
supplied by atmospheric precipitation and surface water, and discharged into the river along the bedrock surface.

The engineering geological profile of the Sifangbei landslide is stepped form with a main sliding direction in 
160° (Fig. 3). There are two-level platforms developed in the landslide area, the central platform is 220 m long, 
450 m wide, and 200 m high. The sliding surface in correspondence of the landslide toe is below the water level 
of the Yangtze River. The surface layer of the landslide consists of thick quaternary silty clay mixed with broken 
rocks. The underlying layer is typical near-horizontal Jurassic strata in Wanzhou District. The occurrence of the 
strata is 160°∠5°.

The initial monitoring network of the Sifangbei landslide was established in March 2007, which includes 3 
GPS stations (Fig. 1). The Sifangbei landslide began to deform in June 2001. In May 2007, the deformation of 
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the Sifangbei landslide was accelerated due to the first water storage of Three Gorges Reservoir to 156 m, which 
caused many through cracks and secondary collapses in the middle-front area of the landslide. Based on the sur-
face displacement data collected from March 2007 to April 2016 (Fig. 4), the cumulative displacement of GPS03 is 
the largest, followed by GPS02 and GPS01. The rapid increase of displacement mainly occurred during the rapid 

Figure 1.   (a) Location of the study area; (b) location of Sifangbei landslide; (c) topographical map of the 
Sifangbei landslide, with the location of the monitoring network.

Figure 2.   Average monthly rainfall in Wanzhou District (1960–2015).
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decline period of RWL and the month of heavy rainfall. Accordingly, it can be concluded that the deformation 
of the Sifangbei landslide is mainly affected by RWL and rainfall.

In‑situ monitoring and data acquisition.  Members of the research group started a field investigation in 
Sifangbei in July 2014 and established a hydrological monitoring system in 2015. Data for the present study are 
collected from the Sifangbei landslide hydrological monitoring system. The monitoring system (see Fig. 1) con-
sists of six Semi-automatic GWL holes (STK1–STK6) and two automatic GWL holes (STK7, STK8). The semi-
automatic GWL holes are measured by a MicroDiver probe, which can store up to 48,000 groups of data, with an 
accuracy of ± 0.05%, and a regular working temperature of 0–40 °C. The automatic GWL holes are a voltage-type 
water level gauge, with an accuracy of ± 0.25%. Both holes measure GWL once a day. After collecting and saving 
the device record data, the GWL can be obtained through the calculation formula:

where H is the groundwater level (m), h is the device record data (cm), hs is the height of the water column at 
standard atmospheric pressure (m) and it is equal to 10.336 m, Hs is the elevation of the monitoring holes (m), 
d is the distance between the MicroDiver probe and the monitoring hole.

(1)H =
h

100
− hs+Hs − d

Figure 3.   Engineering geological profile 1–1’ of the Sifangbei landslide.

Figure 4.   Monitoring data: rainfall, reservoir water level, and cumulative displacement of Sifangbei landslide.
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The GWL of the Sifangbei landslide has been monitored since 2015, including the STK1–STK6 from January 
19, 2015, and the STK7, and STK8 from October 30, 2018. Considering the missing data and maintenance of 
monitoring points, periods with more complete data were selected for analysis. The data of the semi-automatic 
GWL holes were selected from January 19, 2015, to March 6, 2017, and data of the automatic GWL holes were 
selected from October 30, 2018, to May 28, 2020 (Fig. 5).

The GWL monitoring holes can be divided into four groups (Table 1). The distance of each group from the 
Yangtze River is shown in Fig. 1. According to different groups, the GWL of Sifangbei can be analyzed:

(1)	 The STK7 and STK8 are located in the fluctuation range of RWL (175–145 m). The fluctuation of moni-
toring data of these two points is positively correlated with the RWL, and almost at the same value. The 
monitoring point is the underwater part of each year, so it is less affected by rainfall.

(2)	 The elevation of the STK1 and STK4 is 175 m and they are close to the Yangtze River. The fluctuation of the 
GWL is affected by the RWL. The GWL of STK1 ranges from 169.69 to 173.59 m as a gentle slope behind 
the monitoring hole (Fig. 6a) and also shows a short-term fluctuation during the rainy season. The GWL 
of STK4 ranges from 168.29 to 177.88 m, mainly due to the loose surface soil and high permeability coef-

Figure 5.   Monitoring plots of the groundwater level holes: (a) the semi-automatic groundwater level holes; (b) 
the automatic groundwater level holes.
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ficient caused by the planting of fruit trees (Fig. 6b). The increase of hydrodynamic pressure and seepage 
pressure accelerates the deformation of the landslide front area.

(3)	 The STK2 and STK5 are located on the first-level platform of the Sifangbei landslide. The STK2 is located 
near farmlands and ponds and is mainly affected by human agricultural activities. The GWL of STK2 is 
always maintained at about 180 m in the whole process of RWL regulation. The GWL of STK5, mainly 
affected by rainfall, is far away from the Yangtze River and mainly fluctuates in the rainy season.

(4)	 The STK3 and STK6 are the farthest monitoring points from the Yangtze River and are mainly controlled 
by rainfall. The platform on the slope collected water in the rainy season, resulting in the rapid rise of the 
GWL. After the rainy season, the groundwater was discharged along the slope. The primary performance 
of these two points represents a periodic fluctuation within the year, which is a rapid rise followed by a 
rapid fall.

The GPS03, STK5, and STK6 hydrological holes (relatively close) were selected to analyze the relationship 
between the horizontal surface displacement and the GWL. As shown in Fig. 7, there is a relatively good fitting 
between the surface displacement and the GWL. The fluctuation of the GWL causes the fluctuation of cumula-
tive displacements. The adjacent elevation hydrological hole (STK5) can better reflect the fluctuation in surface 
displacement (GPS03). The rapid fluctuation of the GWL causes an increase in displacement. Especially from 
February 2015 to September 2015, the cumulative displacement increased by 77.1 mm. Therefore, the monitoring 
and analysis of groundwater levels can reflect the characteristics of landslide deformation.

Table 1 represents the qualitative correlation of different monitoring points with rainfall and RWL. At the 
front edge of the landslide, the fluctuation of the GWL is mainly affected by RWL, and at a distance from the 
Yangtze River, it is mainly affected by rainfall. The STK1 monitoring hole, which the RWL and rainfall influence, 
was used to establish the prediction model for the present study.

Methodology
Time series analysis.  In the TGRA, the GWL in reservoir landslide is related to the RWL and the rainfall. 
According to the data of the RWL, the AR, and the GWL, the time-series relationship is established as follows:

(2)gt = f (x1, x2, . . . , xn, y1, y2, . . . , yi)

Table 1.   Grouping of groundwater level monitoring holes.

Group Monitoring holes

Correlation with triggering 
factors

Rainfall Reservoir water level

1
STK7 Low High

STK8 Low High

2
STK1 High High

STK4 Medium High

3
STK2 Low Low

STK5 High Low

4
STK3 Medium Low

STK6 Medium Low

Figure 6.   Hydrological monitoring hole of 175 m water level. (a) The STK1 monitoring hole; (b) the STK4 
monitoring hole.
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where gt is the GWL at time t, f is the prediction model, xn is RWL factors, yi is rainfall factors.

Long short‑term memory neural networks.  The input-implicit-output layer is fully connected to tra-
ditional neural networks. The points between the sequences are not connected. Therefore, the traditional neural 
network is not suitable for time series prediction48. The recurrent neural network (RNN) records the previous 
information and applies it to the current output calculation, which allows for feedback in the networks49. The 
LSTM neural networks are a special type of RNN, which can effectively solve the problem of "gradient disappear-
ance" or "gradient explosion"50. The LSTM ensures data discovery and long-term memory through the forgetting 
gate, input gate, and output gate. The three gate functions provide a good nonlinear control mechanism for the 
input and deletion of control information (Fig. 8). The hidden vector (h(t)) in the LSTM model can be obtained 
as follows:

where f(t), i(t), o(t)and c’(t)are the values of the forget gate, the input gate, forget gate, the output gate, and the 
memory cell in the memory block; W(f, i,c,o) is the weight of h(t-1); U(f, i,c,o) is the weight of input data x(t); bf, bc, bi 
and bo are their corresponding bias values; σ is the sigmoid function, tanh is the hyperbolic tangent function; 
C(t) is the updated value of the cell state; y(t) is the output value at time t. After forward propagation, BPTT 
(backpropagation through time) algorithm is used to transfer the accumulated error back from the last time, 
calculate the gradient of error corresponding parameters. Finally, the weights and thresholds are updated by the 
stochastic gradient descent algorithm.

(3)
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Figure 7.   Monitoring data comparison of GPS03, STK5, and STK6.

Figure 8.   The LSTM module contains four interacting layers.
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Grey wolf optimizer.  The GWO is a novel meta-heuristic algorithm with strong search ability that imitates 
the leadership and hunting mechanism of gray wolves in nature51. It uses three wolf heads (α wolf, β wolf, and 
δ Wolf) to determine the fitness value, while other wolves calculate the distance between them and their prey 
according to the location of their prey51 (Fig. 9).

(1) According to the level of the wolf group, the optimal solution is regarded as α wolf, the second and third 
optimal solutions are β wolf and δ wolf respectively, and the other candidate solutions are ω wolf.

(2) The distance �D between the prey and the grey wolves is determined before preying:

where �C is the swing factor, �C=2�r ; �r is the random vector,�r = random[0, 1][0, 1] ; �XP(t) is the position vector 
of the prey of the tth generation of grey wolves; �X(t) is the position vector of the tth generation of grey wolves.

(3) The distance between the gray wolf and its prey is shortened by iterative updating:

where �A is the convergence factor; �a is the weight factor, and the initial value is 2, which decreases to 0 as the 
number of iterations increases. A grey wolf in the position of (X, Y) can update its position according to the posi-
tion of the prey (X*, Y*). Different places around the best agent can be reached concerning the current position 
by adjusting the value of �A and �C vectors.

(4) In the abstract search space, the ω wolf moves closer to the prey according to the position of the three 
wolves (Fig. 10). The final position is determined by the random position in the circle defined by α, β, and δ in 
the search space. The distance between the other grey wolves and these three wolves in the t the generation can 
be obtained according to the following formula:

(4)�D =
∣

∣�C · �XP(t)− �X(t)
∣

∣

(5)�X(t + 1) = �XP(t)− �A · �D

(6)�A=2�a · �r − �a

(7)�Dα =
∣

∣�C1 · �Xα − �X
∣

∣, �Dβ =
∣

∣�C2 · �Xβ − �X
∣

∣, �Dδ =
∣

∣�C3 · �Xδ − �X
∣

∣

(8)�X1 = �Xα − �A1 · ( �Da), �X2 = �Xβ − �A2 · ( �Dβ), �X3 = �Xδ − �A3 · ( �Dδ)

Figure 9.   Hierarchy of grey wolf (dominance decreases from the top-down).

Figure 10.   Position updating in GWO.
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The number of hidden layer neurons, the number of iterations, and the learning rate have a significant impact 
on the fitting and prediction ability of the LSTM model. Therefore, the GWO algorithm was introduced to opti-
mize the hyperparameter of the LSTM model in landslide displacement prediction. The flowchart is depicted in 
Fig. 11. The optimal hyperparameters of the GWO-LSTM model were obtained by using the training set and the 
testing set. Considering the continuity and historical memory of time series, the training set and the testing set 
were combined as the new training set, and they get the prediction results compared with the verification set, 
which verifies the prediction accuracy and generalization ability of the model.

Maximal information coefficient.  The MIC is a new variable correlation analysis method proposed by D. 
n. Reshef et al.52 in 2011 based on mutual information (MI). This method can not only find the linear functional 
relationship between variables but also find the nonlinear functional relationship (exponential, periodic, etc.)44. 
The main steps of the algorithm are as follows:

(1)	 Supposed there is a connection between two variables V1 = {v1(i)}, i = 1,2,…,n and V2 =  = {v2(i)},i = 1,2,…,n. 
D is the set of ordered pairs {v1(i),v2(i)},i = 1,2,…,n. Using grid G1 (x1 × y1) to divide V1 sample points into 
x1 and V2 sample points into y1, some cells are allowed to be empty sets.

(2)	 The characteristic matrix M(D)x1,y1 can be obtained from the maximum mutual information value 
max I(D|G1

) as follows:

where D|G1
 is the probability mass distribution function of all cells in grid G1; nij is the sample point in column 

i of row j in grid G1, N is the total number of samples.
Because different grid G will lead to different D|G , the global optimal grid G0 (x0 × y0) is determined by an 

exhaustive search of the characteristic matrix. The maximum information coefficients of variables V1 and V2 
are as follows:

where B (N) is the maximum grid area for searching. In general, The MIC algorithm is essentially a normalized 
maximum mutual information, and its value range is [0, 1]. For two independent variables, the MIC tends to be 
0; for two variables with noise-free function relationships, the MIC tends to 1. To verify the accuracy of predic-
tion, the RMSE, and the R2 was used to evaluate the prediction accuracy53.

Results
Correlation analysis of triggering factors.  Since 2009, the main fluctuation range of water level in the 
TGRA has been 145–175 m. According to the data collected by Wanzhou hydrological station, the maximum 
Yangtze River annual runoff is 4518 × 108 m3, with a minimum annual runoff of 2573 × 108 m3 and an average 
annual runoff of 3705 × 108 m3. The annual water level variation has five stages54 (Fig. 12): (1) slow drawdown 
from 175 to 162 m (January–May); (2) rapid drawdown from 162 to 145 m (May- middle June); (3) around 
145 m (middle June–late August); (4) rise from 145 to 175 m (late August-October); (5) around 175 m (Novem-

(9)�X(t + 1) =
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3
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Figure 11.   Analysis flowchart of the GWO-LSTM prediction model.
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ber–December). Accordingly, the hydrogeological conditions of the TGRA present different characteristics over 
the year30.

The long-term fluctuation of the GWL is related to the RWL, while the short-term fluctuation is affected by 
AR. The GWL represents different degrees of time lag with the change of external conditions and soil perme-
ability. It can be concluded that the response time lag of the STK1 monitoring GWL to the RWL is short from 
the geographical location and monitoring data.

The most crucial step of the GWL prediction is determining the relevant triggering factors. The MIC algo-
rithm was adopted to determine the correlation between the GWL and triggering factors. Figure 13a shows that 
the correlation is the largest when the RWL leads GWL 28–35 days. The curve chart of the RWL and the GWL 
(Fig. 14) shows that the overall trend is consistent with the leading RWL; the peak value of the GWL is the same 
as that of the current RWL, the valley value periodic change is consistent with that of the leading RWL.

The short-term fluctuation of the GWL is affected by the AR. The AR and the GWL data from April 1, 2016, to 
September 1, 2016, were selected for correlation analysis (Fig. 13b). In particular, the most significant correlation 

Figure 12.   Annual variation of reservoir water level.

Figure 13.   The MIC of the GWL and triggering factors: (a) the reservoir water level; (b) the accumulated 
rainfall.
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was recorded for 9 and 13 AR days with values of 0.556 and 0.563, respectively. As shown in Fig. 15, the GWL 
raised with the increase of AR. There is a strong correlation between the GWL and the AR.

In summary, the RWL leading 28 days and 35 days, and the AR leading 9 days and 13 days were chosen as 
the optimal triggering factors of the GWO-LSTM model.

Prediction results and analysis.  Seven hundred and seventy-eight measured data from January 19, 2015, 
to March 6, 2017, were adopted to establish the predicted model. Six hundred and twenty-two data from Janu-
ary 19, 2015 to October 1, 2016 were selected as the training samples. The following 78 groups of data (October 
2, 2016–December 18, 2016) were used as the test samples to evaluate the model’s accuracy and determine the 
optimal prediction model. The data from December 19, 2016 to March 6, 2017 were used as a validation set to 
verify the generalization ability of the optimal prediction model. The optimal hyperparameters of the LSTM 
model were obtained by using the training set and the testing set. Then, the training set and the testing set were 
combined into the training set of the validation set. The maximum and minimum values of input and output for 
normalization and inverse normalization were obtained respectively from the training data set to prevent infor-
mation leakage. Each triggering factor was normalized to [− 1, 1] using linear normalization:

where x * is the normalized value, x is the original value, xmax is the maximum value of the samples, and xmin is 
the minimum value of the samples. Based on an original program written in Matlab R2020b for this specific 
analysis, the LSTM model and the SVR model were used to learn and train the data in the training samples. 
When the network error converged to the expected value, the network was used to predict the data in the test 
samples to test the generalization ability. The single-factor GWO-LSTM model, the MIC-GWO-LSTM model, 
and the MIC-GWO-SVR model were proposed in this paper to compare and analyze the prediction performance 
of different models.

As for the single-factor GWO-LSTM model parameter setting, an LSTM model with nh (number of hidden 
units) layer, nf (number of triggering factors) input nodes, and one output node was constructed. Triggering 
factors were not considered when applying the single-factor GWO-LSTM model. The LSTM model selected the 
sigmoid function as the activation function. The PredictAndUpdateState function trained the recurrent neural 
network and updated the network state. The number of triggering factors nf was set as 1. The hyperparameters 
of the LSTM model include the number of hidden units nh, the max epochs nE, and the initial learning rate lr. In 
the GWO algorithm parameter setting, the number of hidden units nh = [0, 200], the max epochs nE = [0, 200], 
the initial learning rate lr = [0.001, 0.5] were set. The GWO algorithm searched for the optimal hyperparameters 
through the test set; the number of grey wolf groups and generations was 30, 50 respectively. The RMSE between 
the measured and predicted values was set as the fitness function.

As for the MIC-GWO-LSTM model parameter setting, when the MIC-GWO-LSTM model was established, 
triggering factors that had greater influence on the GWL were selected as input variables. The GWL was selected 
as the output variable. The parameter nh was determined according to the number of triggering factors. In the 
GWO algorithm parameter setting, the number of hidden units nh = [0, 200], the max epochs nE = [0, 200], the 

(11)x∗ = 2×
x − xmin

xmax − xmin

− 1

Figure 14.   The curve chart of leading reservoir water level and groundwater level in STK1.
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initial learning rate lr = [0.001, 0.5] were fixed. The number of grey wolf groups and generations were set as 30, 
50 respectively.

As for the MIC-GWO-SVR model parameter setting, the MIC-GWO-SVR model was proposed to make a 
comparative analysis with the single-factor GWO-LSTM model and MIC-GWO-LSTM model. Triggering factors 
of the MIC-GWO-SVR model input were the same as the MIC-GWO-LSTM model. The hyperparameters of the 
SVR model include the penalty factor C and the radial basis kernel function γ36. In the GWO algorithm parameter 
setting, the penalty factor C = [0,100], the kernel function parameter is γ = [0, 100], the principal component is 
set to 95%, and the cross-validation value is v = 5. The number of grey wolf groups and generations were set as 
30, 50 respectively. The RMSE between the measured and predicted values was set as the fitness function.

Prediction results of the test set, using the GWO algorithm to search for optimal hyperparameters, are 
shown in Table 2. The three optimized models show good prediction ability on the test set (Fig. 16a). The RMSE 
and R2 of the single-factor GWO-LSTM model were 0.0624 and 0.9974. The RMSE and R2 of the multi-factor 
GWO-SVR model were 0.0615 and 0.9975, whereas the values of the MIC-GWO-LSTM model were 0.0544 and 
0.9977, respectively. The MIC-GWO-LSTM model has a better training ability than the MIC-GWO-SVR and the 
single-factor GWO-LSTM model. The most significant errors for the single-factor GWO-LSTM (Relative error 
0.125%), MIC-GWO-SVR (Relative error 0.187%), and MIC-GWO-LSTM (Relative error 0.096%) models for 
the direct prediction of the GWL occurred on November 8 (Fig. 16b,c). This time point is the inflection point 
when the RWL rose from 145 to 175 m. It shows that these prediction models have a certain prediction delay 
for the inflection point of data.

The optimized hyperparameters (Table 2) were used to predict the validation set. Figure 17a shows that the 
predicted results of the three models were all consistent with the trend of measured data. Due to the lack of trig-
gering factors, the single-factor GWO-LSTM model, which represents more fluctuation in the validation set, has 
poor prediction and generalization ability (RMSE = 0.0660, R2 = 0.9641). The RMSE and R2 of the MIC-GWO-
SVR model were 0.0532 and 0.9769, whereas the values of the MIC-GWO-LSTM model were 0.0457 and 0.9830, 
respectively. The single-factor GWO-LSTM model has higher fluctuations and errors in the whole prediction 
sequence (Fig. 17b), and has a lower generalization ability than the MIC-GWO-LSTM model. The MIC-GWO-
SVR model and the MIC-GWO-LSTM model have different prediction abilities and represent different prediction 
errors on the validation set (Fig. 17c). They represent the complicated nonlinear relationship between the GWL 
and its triggering factors and have good generalization ability on the validation set. In general, the MIC-GWO-
LSTM model represents a higher prediction accuracy than the MIC-GWO-SVR model.

Figure 15.   The curve chart of accumulated rainfall and groundwater level in STK1.

Table 2.   Prediction results of the different prediction model.

Model Hyperparameters

The test set
The validation 
set

RMSE R2 RMSE R2

Single-factor GWO-LSTM nh = 2, nE = 88, lr = 0.062 0.0624 0.9974 0.0660 0.9641

MIC-GWO-LSTM nh = 47, nE = 169, lr = 0.002 0.0544 0.9977 0.0457 0.9830

MIC-GWO-SVR C = 7.212, γ = 0.235 0.0615 0.9975 0.0532 0.9769



13

Vol.:(0123456789)

Scientific Reports |        (2022) 12:11108  | https://doi.org/10.1038/s41598-022-14037-9

www.nature.com/scientificreports/

Discussion
The accurate prediction of the GWL needs to find the main control factors55. The AR and the RWL are the two 
main factors that can change the hydrological conditions of the GWL in the TGRA. Four sets of prediction experi-
ments were proposed with different triggering factors to compare the MIC-based feature engineering’s prediction 
stability. As shown in Table 3, models of four different triggering factors were established and compared with 
the MIC-GWO-LSTM model. They all have good prediction ability in the training set, especially in the stage of 
groundwater level fluctuation from October 27 to November 14 (Fig. 18), mainly as the GWO algorithm searched 
the suitable hyperparameter of the LSTM model under specific prediction conditions. The prediction results 
of the four models are quite different in the validation set (Fig. 19). The prediction accuracy and generalization 
ability of the MIC-GWO-LSTM model decreased with input factors. These triggering factors contain a lot of 
duplicates and redundant information because they are mainly calculated by the measured data of the current 

Figure 16.   Prediction result of the test set. (a) Direct prediction of the GWL by the LSTM and SVR models, (b) 
the absolute error and relative error of the Single-factor GWO-LSTM model and the MIC-GWO-LSTM model, 
(c) the absolute error and relative error of the MIC-GWO-SVR model and the MIC-GWO-LSTM model.
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Figure 17.   Prediction result of the validation set. (a) Direct prediction of the GWL by the LSTM and SVR 
models, (b) the absolute error and relative error of the Single-factor GWO-LSTM model and the MIC-GWO-
LSTM model, (c) the absolute error and relative error of the MIC-GWO-SVR model and the MIC-GWO-LSTM 
model.
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day. Two factors (model-4) with high correlation were screened out by the Pearson correlation coefficient (PCC) 
algorithm. The model-4 also predict the GWL with high prediction and generalization ability. The redundant 
triggering factors will reduce the prediction accuracy. The length of input days is not the only criterion for input 
factors, and the interaction of different factors should also be considered. Krakac4,26 selected many triggering 
factors to predict groundwater depth, including 0–100-day antecedent precipitation and 0–100-day evapotran-
spiration. This method only focuses on the data itself and ignores the natural phenomena. More input data will 
increase the operation time and not guarantee prediction accuracy. Cao12 applied the grey correlation model 
to calculate the correlation degree between groundwater and triggering factors but ignored the collinearity of 
redundant features, which may reduce the generalization ability of the prediction model. In this paper, the time 
lag of the GWL relative to the RWL and the RA was determined by the MIC-based feature engineering, which 
integrated the factor selection process with the learner training process, and effectively improved the prediction 
accuracy and the generalization ability of the prediction model. One should consider developing accurate trig-
gering factors for reducing the model uncertainly in the future.

The LSTM model saves and uses the historical information and gives full play to extract correlation 
information45. It also represents a good prediction result in the situation of enough samples. The main control 
factor of the LSTM model is the hyperparameters. Compared with the grid search, the GA, and the PSO algo-
rithms, the GWO algorithm avoids falling into local optima in high-dimensional and has a lower convergence 

Table 3.   The prediction accuracy comparisons between different triggering factors of the GWO-LSTM model.

Model The triggering factors set

Hyperparameters The test set
The validation 
set

nh nE lr RMSE R2 RMSE R2

Model-1 RWL 1–7 days leading, AR 1–7 days 132 190 0.009 0.0668 0.9970 0.0703 0.9597

Model-2 RWL 1–14 days leading, AR 1–14 days 14 180 0.007 0.0675 0.9970 0.0706 0.9594

Model-3 RWL 1–28 days leading, AR 1–28 days 14 107 0.001 0.1289 0.9889 0.1370 0.8470

Model-4 RWL 28 days leading, AR 7 days (The PCC algorithm) 14 79 0.049 0.0586 0.9977 0.0575 0.9731

Figure 18.   Prediction results under different triggering factors of the test set.
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speed in the iterative process. In this paper, The GWO-LSTM model has better generalization performance and 
improves the prediction accuracy of the GWL by searching for the hyperparameters of the LSTM model.

The fluctuation of the GWL is a complex dynamic system, which is related to hydrological and geological 
conditions. In the long-term observation period, the effect of periodicity and randomness is reflected in the GWL 
measured data. The GWL is also closely related to the slope structure and macroscopic deformation character-
istics (earth cracks, etc.). Earth cracks increase the permeability of the soil and make groundwater flow more 
frequently12. How to predict the GWL by combining the characteristics of meteorology, hydrology, landslide 
mass, and landslide macro deformation needs further research.

Compared with the RA and the RWL, the GWL can directly reflect the hydrological characteristics of land-
slides. The landslide velocity changed with the fluctuation of the GWL because it causes the change of pore 
water pressure in the soil and directly affects the deformation characteristics10. Therefore, a more practical 
GWL prediction is helpful to predict landslide displacements, which could be valuably exploited to establish a 
landslide early warning system.

Conclusion
The monitoring and prediction of the GWL are essential for establishing a landslide early warning system. A 
MIC-GWO-LSTM model for predicting the GWL of the landslide was tested. The conclusions are summarized 
below:

1.	 There is a specific correlation in time series between the GWL with the RA and the RWL. The influence of 
RWL on the Sifangbei landslide is mainly concentrated on the front area. The GWL is mainly affected by 
rainfall as the distance from the Yangtze River increases. The farmland and pond also affect the change of 
the GWL.

2.	 The MIC algorithm effectively evaluates the relationship between factors and the GWL and analyses the main 
triggering factors of the RWL and the AR, which improved the generalization ability of prediction modeling.

3.	 The results show that the prediction accuracy of the GWL prediction model based on the MIC-GWO-LSTM 
model is better than that of other prediction models.

Figure 19.   Prediction results under different triggering factors of the validation set.
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In general, the MIC-GWO-LSTM model proposed in this paper can effectively construct the response rela-
tionship between the GWL and triggering factors. Meanwhile, many machine learning algorithms have been 
developed for landslide susceptibility mapping and risk analysis27,56. Thus, the novel method proposed in this 
paper is recommended for conducting landslide susceptibility mapping, landslide risk analysis, and other fields.

Data availability
Restrictions apply to the availability of these data. Data were obtained from the Geo-environmental monitoring 
office of Wanzhou District and are available from the authors with the permission of the Geo-environmental 
monitoring office of Wanzhou District.
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