Cell and Tissue Research (2019) 375:201-215
https://doi.org/10.1007/500441-018-2867-1

REVIEW

@ CrossMark

The role of vasopressin in olfactory and visual processing
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Abstract

Neural vasopressin is a potent modulator of behaviour in vertebrates. It acts at both sensory processing regions and within larger
regulatory networks to mediate changes in social recognition, affiliation, aggression, communication and other social behaviours.
There are multiple populations of vasopressin neurons within the brain, including groups in olfactory and visual processing
regions. Some of these vasopressin neurons, such as those in the main and accessory olfactory bulbs, anterior olfactory nucleus,
piriform cortex and retina, were recently identified using an enhanced green fluorescent protein-vasopressin (¢GFP-VP) trans-
genic rat. Based on the interconnectivity of vasopressin-producing and sensitive brain areas and in consideration of autocrine,
paracrine and neurohormone-like actions associated with somato-dendritic release, we discuss how these different neuronal

populations may interact to impact behaviour.
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In addition to its well characterized role as a neurohypophy-
seal hormone, vasopressin (or its non-mammalian homologue,
vasotocin) acts within the brain to modulate circadian rhyth-
micity, social recognition, aggression, affiliation and other so-
cial behaviours in vertebrates (Buijs and Swaab 1979; Kelly
and Goodson 2014; Terranova et al. 2017; Tsuji et al. 2017b;
Wacker and Ludwig 2012). Vasopressin can be released in
multiple ways: (1) peripherally from axon terminals of
magnocellular hypothalamic neurons into the systemic circu-
lation via the posterior pituitary; (2) into the hypophysial
blood portal system, bound for the anterior pituitary to poten-
tiate adrenocorticotropic hormone (ACTH) release; (3) within
the brain, from the axonal varicosities of centrally projecting
neurons and (4) from the soma and dendrites of vasopressin
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neurons to induce extrasynaptic autocrine/paracrine effects
and neurohormonal-like actions on more distant targets
(Ludwig and Leng 2006; Leng and Ludwig 2008). There is
no evidence that circulating vasopressin can pass the blood-
brain barrier in appreciable amounts, so any behavioural ef-
fects of neurohypophyseal vasopressin are likely the indirect
result of changes to peripheral physiology, like blood pressure
via action on blood vessels and the kidney (Mens et al. 1983;
Reppert et al. 1981). Axonal and dendritic vasopressin release
can be differentially modulated; the dendrites of vasopressin
neurons in the supraoptic nucleus (SON), paraventricular nu-
cleus (PVN) and suprachiasmatic nucleus (SCN) all contain
abundant vasopressin vesicles and are likely to be the main
source of intrahypothalamic vasopressin release (Leng and
Ludwig 2008; Ludwig and Leng 2006; Ludwig and Stern
2015). Vasopressin is always co-localised with a conventional
transmitter, so vasopressin neurons also have roles that do not
always involve vasopressin release. Vasopressin induces its
effects in mammals by binding to three vasopressin receptors,
the vasopressin 1a (V1aR), vasopressin 1b (V1bR) and vaso-
pressin 2 (V2R) receptors (Birnbaumer 2002). V1aR is found
in the brain and vascular smooth muscle, V1bR in the brain
and anterior pituitary and V2R in collecting duct cells of the
kidneys but not in the brain. Vasopressin can also signal by
activating oxytocin receptors (Song and Albers 2017).
Behavioural regulation by vasopressin begins with the
modulation of sensory processing and integration centres,
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which, in turn, wire into larger regulatory networks, such
as the social-decision-making network, to facilitate the
execution of context-appropriate behaviour (O'Connell
and Hofmann 2011; Wacker and Ludwig 2012). There
are multiple sources of vasopressin in the brain, including
some more recently described vasopressin cells in the ol-
factory bulb, anterior olfactory nucleus (AON), piriform
cortex (PIR) and retina of the rat (Tobin et al. 2010; Tsuji
et al. 2017a, b; Wacker et al. 2010). These newly de-
scribed cells were identified using an enhanced green
fluorescent protein-vasopressin (eGFP-VP) transgenic rat
in which the gene for GFP was spliced into exon 3 of the
vasopressin preprogene, which normally codes for
copeptin, which has no known biological function (Ueta
et al. 2005). Driven by the vasopressin promoter, eGFP
transgene expression results in the production of eGFP in
vasopressin cells. It is possible that some eGFP is
expressed in cells that do not normally synthesize vaso-
pressin in eGFP-VP rats. However, immunohistochemical
double-labelling has confirmed the co-localization of
eGFP and vasopressin in the olfactory bulbs and AON
and eGFP and vasopressin-associated neurophysin in the
PIR and retina, the latter of which was confirmed by PCR
showing vasopressin mRNA expression (Tobin et al.
2010; Tsuji et al. 2017a, b; Wacker et al. 2010). Also,
the SON and PVN show predicted increases in eGFP
mRNA expression with dehydration, while the SCN does
not, as would be predicted based on the physiological
responses of typical vasopressin neurons (Tsuji et al.
2016, 2017b; Ueta et al. 2005). Work examining how
different neural and peripheral vasopressin signalling
pools interact to modulate social behaviour will help
clarify potential mechanisms of action that may be
targeted in translational studies. Here, we review the ef-
fects of vasopressin on neural olfactory and visual pro-
cessing regions and give examples of how vasopressin
signalling across neural areas mediates changes in verte-
brate social behaviour. Many, but not all, neural vaso-
pressin signalling systems show some level of sexual
dimorphism, whether in the peptide itself or its receptors
(Dumais and Veenema 2016). Vasopressin studies
reviewed here were conducted using male animals, ex-
cept where noted otherwise.

Vasopressin and odour processing

Vasopressin-producing neurons have been described in
multiple brain regions associated with the processing of
olfactory and pheromonal signals (Caffe and Van
Leeuwen 1983; Shepherd et al. 2003; Tobin et al. 2010;
Tsuji et al. 2017a; Wacker et al. 2010). Chemosensory
information is transmitted across two processing streams,
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the main and accessory olfactory systems. Although these
systems were once considered relatively segregated, it is
now clear that there are multiple locations where crosstalk
and integration can occur (Keshavarzi et al. 2015; Martinez-
Marcos 2009; Yamaguchi 2017). Olfactory sensory neu-
rons of the main olfactory epithelium (MOE) receive vol-
atile, non-social odours and in many mammals, including
mice and rats, non-volatile pheromones are received by
vomeronasal sensory neurons of the vomeronasal organ
(VNO), though these neurons can also transduce volatile
odorant information (Leinders-Zufall et al. 2000; Shepherd
et al. 2003; Trinh and Storm 2003). Recent work also sug-
gests that pheromonal signalling can occur through the
MOE with subsequent processing via the main olfactory
system (Wang et al. 2006; Xu et al. 2005).

Olfactory and vomeronasal sensory neurons terminate in
glomeruli of the main (MOB) and accessory olfactory bulbs
(AOBs) respectively, where olfactory information undergoes
complex processing and integration by multiple intrinsic and
extrinsic cell types (Shepherd et al. 2003). Odour information,
coded by the activation of particular glomeruli, is sent from
the mitral cells and a subset of tufted cells along the lateral
olfactory tract towards higher processing areas. Information
from the MOB is forwarded to a variety of structures, includ-
ing the AON, PIR, olfactory tubercle (OT) and anterior
(COAa) and posterior lateral subdivisions of the cortical
amygdala (COApl) (Scalia and Winans 1975; Scott et al.
1980). The MOB also projects to SON, home to
magnocellular vasopressin neurons, in male and female rats
(Meddle et al. 2000; Smithson et al. 1989) and recent work in
mice detected a connection from the MOB to vasopressin
neurons of both the SON and PVN (Bader et al. 2012b).
Information from the AOB is routed directly to the bed nucle-
us of the stria terminalis (BSt), medial amygdala (MeA) and
posterior medial subdivision of the cortical amygdala
(COApm). Work over the last decade has also demonstrated
direct projections from the MOB to the MeA, representing a
connection between the main and accessory olfactory systems
(Bader et al. 2012a; Kang et al. 2009, 2010). The MOB in the
rat receives input from multiple brain regions, including the
AON, PIR, OT, locus coeruleus (LC), nucleus of the lateral
olfactory tract (nLOT), COAa, COApl and multiple hypotha-
lamic areas (de Olmos et al. 1978; McLean et al. 1989). The
AOB receives information from neurons in the BSt, MeA,
COApm, LC and bed nucleus of the accessory olfactory tract
(BAOT). Vasopressin and its central receptors are
expressed at a surprisingly large number of locations
across both olfactory processing pathways, including the
MeA and BSt, which are known mediators of social behav-
iour. Many vasopressin-producing and vasopressin-
sensitive brain regions are interconnected, potentially
allowing for complex modulation of olfactory information,
including social signals, by this neuropeptide (Fig. 1).
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Fig. 1 Functional wiring diagram of vasopressin connections in olfactory
and visual processing regions in the rat. Brain regions are not arranged
topographically, rather by functional group. The upper left represents the
accessory olfactory system, the upper right represents the main olfactory
system and the lower region represents visual/light processing. Regions
containing vasopressin neurons have green lettering. Vasopressin-
sensitive regions (V1aR or VIbR expression and/or vasopressin
binding via autoradiography) have green outlines. Known vasopressin
connections appear as solid green lines (e.g., retina to LGN), potential

Main olfactory epithelium and vomeronasal organ

V1aR mRNA is expressed in rat globose basal cells, the pri-
mary neural stem cells of the MOE (Caggiano et al. 1994;
Levasseur et al. 2004). Cultured olfactory epithelium cells
show a dose-dependent increase in intracellular calcium re-
lease in response to vasopressin administration (Levasseur et
al. 2004). More work needs to be completed to determine the
functional relevance of this signalling, as well as the source,
potentially local, of vasopressin in this region. With the recent
description of steroid-binding globulins within the main olfac-
tory epithelium, it would be informative to examine co-
localization and steroid-sensitivity of V1aR in this area, con-
sidering the dependence of some other vasopressin-signalling
regions on gonadal steroids (Caldwell et al. 2017; Ploss et al.
2014). Unlike in the MOE, neither vasopressin nor its recep-
tors have been identified in the VNO. Bluthé and Dantzer
(1993) reported that ablation of the VNO eliminated the abil-
ity of a subcutaneously applied V1R antagonist to block short-
term social recognition in male rats. However, deficits in such
recognition induced by removal of the VNO were only tem-
porary and social recognition can be blocked by inhibition of
vasopressin signalling exclusively within the MOB,
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but unconfirmed vasopressin connections appear as dotted green lines
and non-vasopressin connections appear as solid black lines. For clarity,
not all non-vasopressin connections are displayed. Regions containing
vasopressin cell bodies, dendrites and axons may also exert local
paracrine and autocrine, as well as more distant neurohormone-like
effects and therefore represent an important signalling mechanism not
fully represented in axonal wiring diagrams. See text for pertinent
connectivity citations. See Table 1 for key to brain region abbreviations

suggesting that the VNO is not required (Bluthé and Dantzer
1993; Tobin et al. 2010).

Main and accessory olfactory bulbs

Vasopressin neurons are present in the main (MOB) and ac-
cessory olfactory bulbs (AOBs) of male and female rats and
V1aR and V1bR expression and/or binding has been de-
scribed in the olfactory bulbs of a variety of rodents (Beery
etal. 2008; Campbell et al. 2009; Corbani et al. 2017; Litvin et
al. 2011; Tobin et al. 2010). Recent work has also identified
vasotocin, the non-mammalian homologue of vasopressin, in
the olfactory bulbs of male Mozambique tilapia fish, V1aR-
immunoreactivity and mRNA (V1a2R) in the olfactory bulbs
of male and female rock hind and male Burton’s
mouthbrooder fish and vasotocin receptor 4 (VT4R, akin to
mammalian V1aR) in the olfactory bulbs of the chicken
(Almeida et al. 2012; Huffman et al. 2012; Kline et al. 2011;
Selvam et al. 2013). Bulbar vasopressin cells have been best
characterized in male and female rats, which based on their
neurochemical identity (glutamatergic but not GABAergic),
location in the external plexiform layer, electrophysiological
properties (bursting) and lack of extrabulbar projections have
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Table 1 Abbreviations of brain regions referenced in this review

Abbreviation Brain region

AOB Accessory olfactory bulb

AON Anterior olfactory nucleus

BAOT Bed nucleus of the accessory olfactory tract
BSt Bed nucleus of the stria terminalis

COA Cortical amygdala

COAa Cortical amygdala (anterior part)

COApl Cortical amygdala (posterior part, lateral zone)
COApm Cortical amygdala (posterior part, medial zone)
DMH Dorsomedial nucleus of the hypothalamus
En Endopiriform nucleus

IC Islands of Calleja

IGL Intergeniculate leaflet

LC Locus coeruleus

LGN Lateral geniculate nucleus

LS Lateral septum

MeA Medial amygdala

MOB Main olfactory bulb

MOE Main olfactory epithelium

nLOT Nucleus of the lateral olfactory tract

OPN Olivary pretectal nucleus

oT Olfactory tubercle

OVLT Organum vasculosum laminae terminalis
PIR Piriform cortex

PVN Paraventricular nucleus

SC Superior colliculus

SCN Suprachiasmatic nucleus

SON Supraoptic nucleus

VNO Vomeronasal organ

been identified as a subset of external tufted cells that lie
entirely within the olfactory bulb (Leng et al. 2014; Tobin et
al. 2010). Axons of intrinsic external tufted cells terminate in
the internal plexiform layer (immediately adjacent to the mi-
tral cell layer) and granule cell layer (Shepherd et al. 2003;
Tobin et al. 2010). Vasopressin-producing external tufted cells
extend their primary dendrites into neighbouring glomeruli,
which receive olfactory information from olfactory sensory
neurons (Tobin et al. 2010).

Some bulbar vasopressin neurons co-express VIbR (but
not V1aR), suggesting potential para/autoregulation (Tobin
et al. 2010; Wacker et al. 2011). Vaccari et al. (1998) showed
that VIbR mRNA is robustly expressed in the mitral cell layer
and to a lesser extent in the external plexiform layer of the
MOB of male rats and immunohistochemical studies have
revealed V1aR- and V1bR-ir in the glomerular and mitral cells
layers of both males and females (Tobin et al. 2010). It is
therefore possible that both axonal (to mitral cell bodies) and
dendritic (to mitral cell dendrites) release of vasopressin plays
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arole in the processing of olfactory information (Wacker et al.
2011; Wacker and Ludwig 2012). In fish, V1aR are expressed
primarily in the granule cell layer (Huffman et al. 2012; Kline
et al. 2011), while in the chicken, V1aR-like receptors are
found on glial cells, likely tanycytes, lining the olfactory ven-
tricle (Selvam et al. 2013).

In rats, vasopressin application reduces mitral cell firing in
the MOB (Tobin et al. 2010). Blocking this inhibition, wheth-
er via induced vasopressin cell death, V1aR antagonism or
Vl1aR gene silencing, abolishes short-term social recognition
in male rats. We hypothesize that upon first exposure to and
olfactory investigation of a conspecific, large dense core ves-
icles are mobilized in vasopressin dendrites in the
periglomerular region of the olfactory bulb (Wacker and
Ludwig 2012). If re-exposure to the now familiar conspecific
occurs within ~45 min, activation of now primed neurons
elicits somato-dendritic vasopressin release into glomeruli that
represent the odour profile of the sensed animal. This vaso-
pressin binds V1aR and/or VIbR on mitral cell dendrites,
thereby inhibiting an output signal to higher processing areas.
Whereas initial exposure to the conspecific induces height-
ened olfactory investigation, such behaviour is blocked upon
re-exposure by vasopressin and the focal male does not waste
valuable energy reinvestigating a familiar social stimulus.
This is all done without longer-term memory storage required
for true individual recognition. Recent in vitro work in the
mouse suggests a different and possibly complimentary mech-
anism for modulation by vasopressin in the AOB (Namba et
al. 2016). Activated mitral cell dendrites release glutamate that
activates granule cell dendrites, which then feedback on those
mitral cells with GABA and inhibit their output. In a slice
preparation, V1aR activation induces a dose-dependent
long-term potentiation in granule cell dendrites and reduces
IPSCs in mitral cells. This suggests that vasopressin may fa-
cilitate mitral cell signalling at the level of the AOB. The AOB
also sends and receives projections to/from kisspeptin-
immunoreactive (—ir) neurons of the posterior dorsal MeA,
of which around 10% receive amygdalar vasopressin input,
suggesting that vasopressin may exert indirect effects on AOB
function (Pineda et al. 2017). Vasopressin produced in the
olfactory bulbs alters odour processing and thereby short-
term social recognition in rodents and vasopressin released
from other regions, such as the AON, PIR and LC may also
contribute to this processing both within and outside the ol-
factory bulbs.

Anterior olfactory nucleus

The anterior olfactory nucleus (AON) is a cortical region that
integrates olfactory information sent from the MOB with input
from the PIR, multiple regions of the amygdala and other
brain regions (Brunjes et al. 2005; Lei et al. 2006). It is divided
into the pars externa and pars principalis, which is further
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subdivided into multiple subdivisions (Brunjes et al. 2005).
The AON is interconnected with the MOB and PIR, projects
to the OT (including the islands of Calleja) and receives inputs
from multiple areas, including the BSt and nLOT. Vasopressin
neurons, as well as cells immunoreactive for V1aR and VIbR,
are found in the pars externa and all subdivisions of the pars
principalis in male and female rats (Wacker et al. 2010).
Vasopressin neurons in the rat AON typically co-express
V1aR and always co-express V1bR, so like in the olfactory
bulb, autocrine/paracrine signalling by vasopressin is likely
important in processing olfactory information in the AON
(Wacker et al. 2010).

Exposure to a conspecific juvenile increases neuronal
activation, as assessed by the immediate early gene Egr-1,
in the lateral subdivision of the pars principalis and
trimethylthiazoline (TMT), a component of fox urine, in-
creases Egr-1 in both lateral and dorsal subdivisions of the
AON of male and female rats, suggesting a role for this
cortical region in the processing of both conspecific and
heterospecific signals (Wacker et al. 2010). Only exposure
to a conspecific juvenile increases the ratio of activated to
total vasopressin neurons in the lateral and dorsal AON,
so vasopressin signalling in this region appears to be pref-
erentially involved in the processing of conspecific cues.
Electrical stimulation of the lateral olfactory tract in-
creases immediate early gene expression in the dorsal
AON but does not increase the number of activated vaso-
pressin cells in any AON subdivision (Tsuji et al. 2017a).
Vasopressin cells in the AON are also GABAergic, so
likely represent interneurons rather than principal
(output) neurons (Kay and Brunjes 2014; Wacker et al.
2010). It is unclear how stimulation of the lateral olfacto-
ry tract might alter AON interneuron activation and how
this may differ from more specific activation of AON
microcircuits after exposure to conspecific odour combi-
nations. Vasopressin signalling in other brain regions may
also impact AON function. Mice mothers given a central
infusion of a V1aR antagonist show increased activation
of the AON, as measured by fMRI blood oxygen level-
dependent contrast imaging (aka BOLD), when exposed
to a male intruder (Caffrey et al. 2010). As it is unlikely
that infused vasopressin penetrated to the AON, these ef-
fects may have been mediated via a series of processing
steps, likely involving vasopressin-sensitive areas more
closely situated to the ventricles. However, since fMRI
BOLD assesses blood flow, it is also possible that the
V1aR antagonist caused changes in the cerebral vascula-
ture, resulting in the observed behavioural effects and/or
activation of the AON. Regardless of mechanism, vaso-
pressin signalling within the AON seems to be involved
in the processing of conspecific cues. Information from
the AON can then be transmitted to a number of brain
regions, including the nearby PIR.

Piriform cortex

The piriform cortex (PIR) is a three-layered cortex that lies
caudal to the AON. It is divided into anterior and posterior
regions, with the anterior region receiving widespread input
from the AON and the posterior region being involved in
integrating information from the anterior PIR and other brain
regions to construct a perception of odour quality (Bekkers
and Suzuki 2013; Gottfried et al. 2006; Hagiwara et al.
2012; Pitkanen 2000). The PIR receives inputs from a number
of brain regions, including the MOB, endopiriform nucleus
(En) and nLOT (Behan and Haberly 1999; Bekkers and
Suzuki 2013; Brunjes et al. 2005; Haberly and Price 1978;
Neville and Haberly 2003; Wilson 2008). It sends outputs to
the MOB, AON, OT, multiple amygdalar areas including the
MeA and COA and other higher processing regions.
Vasopressin is expressed across both anterior and posterior
parts and in all three layers of the PIR of male and female rats,
in both GABAergic interneurons and, most extensively, in
glutamatergic neurons in layer II (Tsuji et al. 2017a).
Unilateral stimulation of the rat lateral olfactory tract (biphasic
pulse, 50 Hz, 10 min) induces an increase in the immediate
early gene product Fos in vasopressin-producing pyramidal
output neurons in layer II, suggesting that vasopressin outputs
from this region are involved in the propagation of olfactory
information.

Vl1aR and V1bR mRNA is expressed and V1aR binding
has been demonstrated in the PIR of male and female rats
(Corbani et al. 2017; Dumais and Veenema 2016; Szot et al.
1994). Interestingly, while the number of vasopressin cells is
not sexually dimorphic in the rat PIR, males show greater
Vl1aR binding than females (Dumais and Veenema 2016;
Tsuji et al. 2017a). However, V1aR binding does not differ
between female rats in estrus vs. non-estrus phases, leaving
open the possibility that androgens may be involved in the
aforementioned sex differences in this region (Dumais and
Veenema 2016). Unlike in the AON, most vasopressin cells
in the PIR do not co-express V1aR or V1bR in male and
female rats (Tsuji et al. 2017a; Wacker et al. 2010, 2011).
Vasopressin’s widespread distribution across the PIR may
mean that it plays multiple regulatory roles. Future studies
should examine differences between vasopressin interneurons
and principal neurons to clarify the function or functions of
vasopressin release from these cells. For example, it is unclear
whether release from these different cell types serves the same
or disparate functions within the different layers of the PIR.

The endopiriform nucleus (En), closely associated with the
PIR, sends and receives information from the MeA and COA
and represents an area of potential integration between the
main and accessory olfactory processing pathways (Pitkanen
2000). It projects to the OT, PIR, AON and nLOT (Behan and
Haberly 1999; Cédiz-Moretti et al. 2017). V1aR binding is
prevalent in the dorsal En of prairie and montane voles
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(Wang et al. 1997) and coppery titi monkeys (Freeman et al.
2014) but has not been reported in the rat. Vasopressin binding
has been described in the En of the golden hamster (Szot et al.
1990) but this may represent binding to oxytocin receptors
(Dubois-Dauphin et al. 1992).

Olfactory tubercle

The olfactory tubercle (OT), an amalgam of multiple function-
al regions, including the islands of Calleja (IC), is located
medial to the PIR (Ikemoto 2010; Kruger et al. 1995;
Wesson and Wilson 2011). It comprises regions connected
to/from both the mesolimbic reward system and areas associ-
ated with multiple sensory modalities and recent evidence
suggests it plays a role in coding the salience of odour stimuli
(Ikemoto 2007; Scalia and Winans 1975; Scott et al. 1980;
Wesson and Wilson 2011; Yamaguchi 2017). Neurons in the
OT increase their firing rates and spike over a longer period of
time when male mice are presented with an odour previously
associated with a reward (Gadziola et al. 2015). Inhibition of
neurons in the medial OT by the DREADD receptor, hM4Di,
eliminates the preference of female mice for male versus fe-
male urine (DiBenedictis et al. 2015).

The OT, especially medial aspects, is sensitive to vasopres-
sin. Vasopressin-ir fibres have been described in medial as-
pects of the OT in male rats and male and female mice (de
Vries and Miller 1999; Otero-Garcia et al. 2014). V1aR bind-
ing and mRNA expression have been described in the rat
medial OT (Ostrowski et al. 1994; Veinante and Freund-
Mercier 1997). Though, Tribollet et al. (1988) only reported
minimal vasopressin binding in this region, attributing it to
vasopressin binding of oxytocin receptors. Szot et al. (1994)
described V1aR mRNA within the IC in male and female
Long-Evans rats but Ostrowski et al. (1994) did not detect
hybridization within this region in their extensive analysis of
male Sprague-Dawley rats. Hernando et al. (2001) reported
V1bR-immunoreactivity in the OT, including rostral aspects
of the IC, in male rats administered colchicine. The functional
relevance of vasopressin signalling in the OT, whether by
vasopressin or oxytocin receptor activation, requires addition-
al study. There is evidence that vasopressin has at least indirect
effects on OT function via V1aR activation, as it shows a
reduction in activation in response to a noxious odour, butyric
acid, when animals are pre-treated with a central infusion of a
V1aR antagonist (Reed et al. 2013).

Vasopressin in the OT is likely supplied, at least in part, by
projections from the medial extended amygdala (de Vries and
Miller 1999, Otero-Garcia et al. 2014). The MeA and related
BSt are important integrators in the social behaviour network,
a collection of interconnected brain regions that modulate ver-
tebrate social behaviour (Albers 2015). A connection between
the MeA and the OT represents another link between this
network and the mesolimbic reward system and therefore
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compromises a potential hub for sensory/behavioural integra-
tion in the larger social decision-making network (O'Connell
and Hofmann 2011).

Locus coeruleus

The locus coeruleus (LC), a nucleus in the pons of the hind-
brain, sends noradrenergic inputs to the olfactory bulbs, AON,
PIR and OT (Fallon and Moore 1978; Shipley et al. 1985). A
number of neurons in the LC, including noradrenergic neu-
rons, are immunopositive for vasopressin (Todoroki et al.
2010; Caffe et al. 1985). Vasopressin can modulate the activity
of LC neurons, thus altering norepinephrine release (Gardner
et al. 1984; Olpe and Baltzer 1981). Like vasopressin, norepi-
nephrine is involved in olfactory learning in rats (Dluzen et al.
1998; Sullivan et al. 2000; Sullivan et al. 1994). So, it is
possible that vasopressin within the LC elicits some of its
effects on olfactory learning by modulating norepinephrine
release. It is yet unclear whether vasopressin from the LC is
released directly into the olfactory bulbs. The LC projects to
multiple areas of the MOB and AOB, including the external
plexiform layer and mitral cell layer, location of the bulbar
vasopressin neurons and one of their putative targets respec-
tively (McLean et al. 1989; Tobin et al. 2010). Bilateral infu-
sions of vasopressin into the olfactory bulbs prior to a social
recognition test increase the retention interval for social mem-
ory of a juvenile to 120 min in male rats via a V1aR signalling
mechanism (Dluzen et al. 1998; Tobin et al. 2010). Depletion
of norepinephrine by 6-OHDA blocks this facilitation (Dluzen
et al. 1998). This, along with the observation that bulbar va-
sopressin administration increases norepinephrine release in
multiparous ewes, suggests a synergistic relationship between
norepinephrine and vasopressin in the olfactory bulbs (Levy et
al. 1995).

Amygdala/bed nucleus of the stria terminalis

The amygdala and related bed nucleus of the stria terminalis
(BSt) are multi-faceted interconnected structures with a num-
ber of reciprocal connections with olfactory processing areas
and other brain regions (Janak and Tye 2015; Pitkanen 2000;
Swanson and Petrovich 1998). As hubs in multiple brain net-
works, these regions are responsible for a multitude of func-
tions, the extensive treatment of which is beyond the scope of
this paper. However, with respect to vasopressin modulation
of olfactory processing, there are a number of important points
to consider. First, there are vasopressin neurons in the medial
extended amygdala, which includes the MeA and BSt. These
neurons project to a number of brain regions including the
lateral septum (LS) and the ventromedial IC of the OT
(Otero-Garcia et al. 2014). Neurons of the MeA/BSt are often
sexually dimorphic, with greater numbers in male animals and
castration of males causes a pronounced decrease in
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vasopressin-ir in these regions and its targets in multiple ver-
tebrate species (Aste et al. 1997; Miller et al. 1992; Van
Leeuwen et al. 1985; Wang and De Vries 1993). Androgen
receptor knockout mice do not show deficits in vasopressin
mRNA expression in BSt or vasopressin-ir in the LS, strongly
suggesting that local conversion of androgens to 17f3-
oestradiol by the enzyme aromatase is required for sex
steroid-induced changes in these regions (Marie-Luce et al.
2013). This is consistent with previous work showing a reduc-
tion in vasopressin immunoreactivity in cells in BSt and fibres
in LS in aromatase knockout rats (Plumari et al. 2002) and the
reversal of castration-induced decreases in vasotocin-ir in the
BSt and LS of male Japanese Quail with oestrogen adminis-
tration (Viglietti-Panzica et al. 2001). Many regions of the BSt
and subdivisions of amygdala are sensitive to vasopressin,
including the COApm, COApl, MeA and central amygdala
(Dumais and Veenema 2016; Ostrowski et al. 1994; Vaccari et
al. 1998; Veinante and Freund-Mercier 1997), though contin-
ued comparative analyses are needed to determine the extent
to which binding is species-specific and sexually dimorphic
across taxonomic groups. Receptor binding in the medial ex-
tended amygdala and its targets can be sexually dimorphic; for
example, there is greater binding in males in the medial BSt
but interestingly not the LS of rats (see Dumais and Veenema
2016 for a more extensive cross-species review of sexual di-
morphism in vasopressin signalling systems).

The amygdala represents a location for potential integration
of signals between the main and accessory olfactory systems.
The COAa (main olfactory system) and MeA (accessory ol-
factory system) are interconnected (Cadiz-Moretti et al. 2017,
Pitkanen 2000) and inputs from the AOB and COA co-
modulate neuronal firing at the level of the posterior ventral
subdivision of the MeA (Keshavarzi et al. 2015). The MeA/
BSt is a hub in the social decision-making network and rep-
resents a conduit by which olfactory information can influence
context-dependent social behaviour (Bester-Meredith et al.
2015; O'Connell and Hofmann 2011). Vasopressin signalling
at MeA/BSt targets, like the LS, is involved in the modulation
of social behaviour across many species in both males and
females, from social odour recognition to pair bonding to ag-
gression (Bester-Meredith and Marler 2001; Bielsky et al.
2005; Goodson and Wang 2006; Liu et al. 2001; Veenema et
al. 2012; Veenema et al. 2010). For example, vasopressin-ir
neurons in the posterior medial BSt show a significant in-
crease in activation, as assessed by the immediate early gene
product Fos, after copulation in male mice (Ho et al. 2010). In
a comparison of multiple species of male and female finches,
Goodson and Wang (2006) found more vasotocin-ir cells in
the medial BSt of socially affiliative vs. territorial species and
that gregarious species show a greater activation of those cells
after exposure to a same-sex conspecific. However, results
proved more complex in one highly territorial and notoriously
aggressive species, the violet-eared waxbill. While activation

of vasotocin neurons in the BSt decreased when waxbills were
exposed to same-sex conspecifics, activation actually in-
creased when an animal was exposed to its mate. This sug-
gests that a species’ natural history should be carefully con-
sidered when comparing vasopressin signalling across spe-
cies. Such examples are not restricted to birds. Male Syrian
hamsters show much longer recognition of conspecific flank
gland odours than male rats show to conspecifics in social
recognition or habituation/dishabituation tests (Ferguson et
al. 2002; Song et al. 2016). Flank gland odour recognition is
mediated by central oxytocin receptor activation, unlike social
recognition in male rats, which involves V1aR activation in
the LS and MOB (Bielsky et al. 2005; Landgraf et al. 1995;
Song et al. 2016; Tobin et al. 2010). Species-level differences
in vasopressin signalling between animals in the same genus
are also well characterised (Bester-Meredith et al. 1999;
Dewan et al. 2008; Insel et al. 1994) and vasopressin systems
can also change in individuals across different life history
stages, which is especially apparent in seasonally breeding
animals (Goodson et al. 2012; Hermes et al. 1990).

Vasopressin-signalling systems can also change with social
environment during development (Bester-Meredith et al.
1999; Grundwald et al. 2016; Yohn et al. 2017). For example,
male and female California mice who were more often re-
trieved by their fathers as pups show both higher aggression
and a greater number of vasopressin-ir cells within the BSt as
adults (Yohn et al. 2017). Adult female rats whose mothers
were exposed to stress during late pregnancy show reduced
V1aR mRNA expression in the LS and BSt and have deficits
in social odour memory after a 3-h retention interval in a social
discrimination test (Grundwald et al. 2016). There are also
changes in vasopressin signalling machinery observed during
adult development, with fatherhood eliciting changes in mul-
tiple species (Bamshad et al. 1993; Lambert et al. 2011; Perea-
Rodriguez et al. 2015). Experience and condition-induced
changes in vasopressin signalling are often seen in sexually
dimorphic regions like the BSt but changes in other regions
have also been reported. More work is needed to determine
whether there are seasonal and social condition-induced
changes in vasopressin signalling in areas where vasopressin
neurons have been more recently described, such as the olfac-
tory bulbs, AON and PIR.

The LS, a primary target of MeA/BSt vasopressin neurons,
is involved in olfactory-based short-term social recognition in
rodents. Application of a V1aR antagonist into the LS but not
the MeA, of male mice reduces habituation to an ovariecto-
mized female in a habituation/dishabituation test (Bielsky et
al. 2005). Male V1aR gene knockout mice show severe defi-
cits in this test, which can be rescued with induced viral-
mediated V1aR expression into the LS alone (Bielsky et al.
2004; Bielsky and Young 2004). However, Wersinger et al.
(2007) demonstrated that male V1aR gene knockouts show
normal social recognition with the same habituation/
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dishabituation test design, though these animals did show re-
duced olfactory investigation of novel social (urine) and non-
social (almond scent) stimuli. These contradictory findings
have been previously reported but their underpinnings remain
unclear. Considering that prenatal stress can induce changes in
oxytocin and vasopressin signalling systems and subsequent
social behaviour in adult male and female rats (de Souza et al.
2013; Grundwald et al. 2016) and that vasopressin can bind
and activate oxytocin receptors (Song and Albers 2017; Song
et al. 2016), it is possible that varying developmental experi-
ences led to different compensatory neural mechanisms in
these animals, perhaps involving oxytocin receptor signalling.
Similar vasopressin/oxytocin interactions were recently dem-
onstrated in male oxytocin knockout mice, which show in-
creased V1bR expression in the hippocampus and reduced
vasopressin expression in the hypothalamus, as well as altered
social behaviour (Lazzari et al. 2017). It is becoming clear that
the social environment during development and adulthood
must be considered when comparing the behavioural rele-
vance of vasopressin signalling, even within the same model
species.

Vasopressin and visual/light processing

In mammals, light is transduced by two sets of photoreceptive
cells in the retina, the rods and cones and the intrinsically
photoreceptive retinal ganglion cells, or ipRGCs (Berson et
al. 2002; Sterling and Demb 1990). This gives an animal two
lines of information, one used for processing the identifica-
tion, location, movement, etc. of stimuli within the visual field
and another for processing information about time of day and
day length to entrain circadian rhythms to properly match
morphology, physiology and behaviour with predictable envi-
ronment change. Visual information received by rods and
cones is funnelled through a variety of bipolar cells modulated
by horizontal and amacrine cells and sent towards the brain by
multiple types of ganglion cell (Ghosh et al. 2004; Stephan
and Zucker 1972; Sterling and Demb 1990). This information
is then processed by and transmitted through the lateral genic-
ulate nucleus (LGN) of the thalamus to a series of cortical
processing areas, where perception of visual stimuli is refined
(Priebe and McGee 2014; Sherman and Koch 1986). Light
information received by ipRGCs is transmitted directly to
the ventrolateral SCN to facilitate photoentrainment and to
the olivary pretectal nucleus (OPN) to mediate the pupillary
light reflex (Antle et al. 2009; Clarke and Ikeda 1985; Gall et
al. 2017; Hattar et al. 2002; Morin 2013). The retina also
projects to the superior colliculus (SC) to coordinate proper
eye movements and gaze shifts (Klier et al. 2001; Lee et al.
1988). Vasopressin and its receptors are expressed at a number
of locations in the visual and light information processing

@ Springer

pathways and plays a critical function in the modulation of
circadian rhythmicity.

Retina

Vasopressin-ir cells were described in the ganglion cell layer
of the rat retina over 20 years ago but received little attention
until recently (Djeridane 1994). Tsuji et al. (2017b) character-
ized these neurons as a subset of glutamatergic retinal gangli-
on cells (VP-RGCs) in male and female rats. VP-RGCs show
an upregulation of the immediate early gene product Fos in
response to light, with some neurons activated and others
inhibited by this stimulus. Some, but not all, VP-RGCs ex-
press melanopsin, so while a subset of these cells are inher-
ently photosensitive, others likely receive input from nearby
ipRGCs. VP-RGCs project to the intergeniculate leaflet (IGL),
OPN and ventrolateral SCN, supplying important information
about light exposure to these regions.

Suprachiasmatic nucleus

The hypothalamic suprachiasmatic nucleus (SCN) is the loca-
tion of the mammalian master clock, which coordinates pe-
ripheral clocks and facilitates circadian physiology, morphol-
ogy and behaviour (Antle and Silver 2005; Stephan and
Zucker 1972). The SCN is typically subdivided into a
dorsomedial shell and ventrolateral core, with the ventrolateral
region receiving most but not all, of the retinal input (Antle et
al. 2009; Morin 2007). This organization, however, is species-
specific and other methods of defining SCN subdivisions have
been proposed (Campos et al. 2014; Morin 2007). Neurons in
the ventrolateral core receive and transduce light information
into the rhythmic expression of clock genes to facilitate
photoentrainment (Antle and Silver 2005). This information
is integrated and passed along to the inherently rhythmic
dorsomedial shell, which is populated by vasopressin neurons
(Antle and Silver 2005; Evans et al. 2015; Morin 2013).
Vasopressin-ir cells in the SCN help orchestrate circadian
rhythmicity (Kalsbeek et al. 2010; Kalsbeek et al. 2006;
Sofroniew and Weindl 1980). As vasopressin neuron number,
development of vasopressin expression and V1aR binding is
not sexually dimorphic, the SCN does not appear to be sensi-
tive to gonadal steroids like the extended medial amygdala
(De Vries and Panzica 2006; Dumais and Veenema 2016;
Smith et al. 2017; Swaab et al. 1985; Szot and Dorsa 1993).
Vasopressin neurons in the SCN project to multiple neural
areas in the rat, including the dorsomedial nucleus of the hy-
pothalamus (DMH), LS, organum vasculosum laminae
terminalis (OVLT) and PVN (Buijs 1978; Hoorneman and
Buijs 1982; Sofroniew and Weindl 1978). Campos et al.
(2014) described similar projections from the SCN to the
DMH and PVN in the tufted capuchin monkey and also addi-
tional connections to other hypothalamic regions. Within the
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SCN, vasopressin mRNA expression and neuronal firing cy-
cle, with peaks during the day (Cagampang et al. 1994,
Kalsbeek et al. 2010; Uhl and Reppert 1986; Young 3rd et
al. 1993). Vasopressin levels show similar cycles in the cere-
brospinal fluid as well (Reppert et al. 1981). Vasopressin se-
cretion within the SCN also cycles, with increases during the
day and it is yet unclear whether these peaks in secretion
represent somato-dendritic release from the SCN itself and/
or axonal input from VP-RGCs (Kalsbeek et al. 1995; Tsuji
et al. 2017b). The SCN contains V1 receptors, upon which
vasopressin can act to modulate neuronal firing (Mihai et al.
1994; Phillips et al. 1988; Swaab et al. 1975; Szot et al. 1994;
Vaccari et al. 1998). V1aR mRNA expression and vasopressin
induced neuronal excitation within the SCN cycles, with
peaks in the night, differing from the daytime peaks as seen
for vasopressin mRNA (Liou and Albers 1989; Young 3rd et
al. 1993). Vasopressin also regulates targets outside of the
SCN to help orchestrate circadian physiology and behaviour
(Gizowski et al. 2016; Mihai et al. 1994; Miller et al. 2006).
ICV injections of vasopressin rescue a normal luteinizing hor-
mone (LH) surge in female mice with mutant CLOCK genes
(i.e., Clock/Clock mutants) (Miller et al. 2004, 2006) and va-
sopressin secretion from the SCN is required for properly
timed glucocorticoid release in male rats (Kalsbeek et al.
1996). However, microinjection of vasopressin directly into
the SCN does not reset the circadian clock in male hamsters or
rats (Albers et al. 1984, Arnauld et al. 1989). Vasopressin
output from the SCN also regulates non-endocrine targets.
For example, vasopressin release from SCN neurons activates
cells in the OVLT to induce pre-sleep thirst in mice to prevent
night-time dehydration (Gizowski et al. 2016, 2018).

Studies examining V1R signalling have further highlighted
vasopressin’s critical role in maintaining proper circadian
rhythmicity. Intracerebroventricular injections of a V1aR an-
tagonist reduce both light-induced and retino-hypothalamic
tract stimulation-induced firing of SCN neurons of male and
female rats (Tsuji et al. 2017b). While male and female V1aR
gene knockout mice maintain normal locomotor rhythms on a
12:12 light dark cycle, they increase their activity when placed
in constant darkness, with some animals eventually becoming
arrthythmic (Li et al. 2009). Mice that lack both VIR subtypes
entrain to new light dark cycles in less than half the time of
wild-type animals, suggesting that vasopressin normally acts
to slow photoentrainment (Yamaguchi et al. 2013).

Other visual/light processing areas

The actions of vasopressin in the SCN have received much
more attention than those in other visual/light processing re-
gions. The SC, LGN, IGL and OPN all receive vasopressin
input and/or are sensitive to vasopressin in at least some spe-
cies. The SC receives retinal input from a variety of retinal
ganglion subtypes, integrating this information with that from

other brain areas and sensory systems to facilitate appropriate
eye and gaze movements (Gandhi and Katnani 2011; Lee et al.
1988). Vasopressin binding has been demonstrated in the SC
of a number of species, including male and female rats, prairie
voles and montane voles (Insel et al. 1994; Phillips et al. 1988;
Smith et al. 2017). Compared to other vasopressin-sensitive
brain regions, there is a relatively high level of inter-individual
variation in vasopressin binding in the superior colliculi of
lab-reared prairie voles but the function of this difference is
yet unclear (Hammock et al. 2005). Unlike the SCN, the SC
does not receive projections from VP-RGCs, rather from SCN
neurons (Buijs 1978; Tsuji et al. 2017b).

The dorsal LGN receives and processes input from retinal
ganglion cells and sends visual information on for further
processing by visual cortical areas (Monavarfeshani et al.
2017). Vasopressin binding has been demonstrated in the
LGN of a few species, including male and female coppery titi
monkeys and singing mice (Campbell et al. 2009; Freeman et
al. 2014). Receptor binding intensity was shown to vary
across two different species of singing mice within the
Genus Scotinomys but the functional relevance of this differ-
ence and vasopressin binding within the dorsal LGN more
generally, has yet to be examined in great detail (Campbell
et al. 2009).

The OPN receives input from VP-RGCs (Tsuji et al. 2017a,
b). This nucleus helps mediate the pupillary light reflex, as
lesions to the OPN prevent this response (Clarke and Tkeda
1985; Gall et al. 2017). Since ipRGCs mediate at least some of
the input underlying the pupillary light reflex, it would be
helpful to know whether and how VP-RGCs contribute to this
response at the level of the OPN (Barrionuevo and Cao 2016;
Tsuji et al. 2017b). The IGL also receives input from VP-
RGCs. This region shares connections with the OPN, SCN,
SC and the LC (another source of neural vasopressin) and
sends projections to the DMH (also a SCN target) and PVN
(Monavarfeshani et al. 2017; Moore et al. 2000). IGL lesions
in female diurnal grass rats lead to a reduction in neuronal
activation in the OPN when animals are given a light pulse
during the dark phase of'a 12:12 cycle (Gall et al. 2014). The
presence of ipRGC input and other physiological evidence
suggests that the IGL is involved in photoentrainment, though
it is clear that the SCN is the primary mediator of circadian
rhythmicity (Edelstein and Amir 1999; Gall et al. 2014;
Monavarfeshani et al. 2017).

Integration of vasopressin signalling
across neural pools

Vasopressin is produced and signals, in multiple sensory and
higher brain processing areas, many of which are intercon-
nected. Here, we reviewed vasopressin’s role in the processing
of olfactory, pheromonal and visual/light information. Other
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authors have outlined how this neuropeptide modulates the
processing of auditory and other sensory cues and yet others
have described vasopressin’s well-known actions mediating
affiliative and agonistic social behaviours in a multitude of
vertebrates (Albers 2015, Bester-Meredith et al. 2015,
Goodson and Bass 2001, Rose and Moore 2002, Wilczynski
et al. 2017). Despite the connections between many
vasopressin-producing and vasopressin-sensitive areas, its ac-
tions can be discrete and its functions region-specific. For
example, vasopressin released from neurons in the olfactory
bulbs has primarily local effects (though there is some evi-
dence for scant projections to the AON) (Tobin et al. 2010).
Expression and binding of vasopressin is sexually dimorphic
and dependent on gonadal steroids in some brain regions (e.g.,
vasopressin-ir cell number in rat BSt; binding in the ventro-
lateral hypothalamus in hamsters) but not in others (e.g.,
vasopressin-ir cell number in olfactory bulbs, AON and
PIR), suggesting brain region-specific modulation of vaso-
pressin signalling (Delville and Ferris 1995; Dumais and
Veenema 2016; Miller et al. 1992; Tobin et al. 2010; Tsuji et
al. 2017a; Van Leeuwen et al. 1985; Wacker et al. 2010). Still,
vasopressin signalling across multiple neural networks is crit-
ical for the integration of social and environmental stimuli and
context-appropriate social behaviour. One excellent example
of multiple vasopressin systems coordinating to modulate be-
haviour involves short-term social recognition in rodents.
Vasopressin produced by neurons in the MOB acts locally
and vasopressin produced by neurons in the MeA/BSt acts
within the LS to mediate such recognition (Bielsky et al.
2005; Tobin et al. 2010). These two vasopressin signalling
pools are thought to be segregated but both function to medi-
ate appropriate behavioural responses in recognition tests.
The extent to which vasopressin from different source
pools might interact within brain regions, especially
extrahypothalamic areas, to mediate changes in social dis-
crimination and other behaviours has not yet been fully ex-
plored. For example, it is possible that separate populations of
vasopressin-producing neurons in the MOB, AON, PIR and
LC co-modulate vasopressin signalling in the MOB. Such
signalling could be elicited via different mechanisms, as is
the case for axonal vs. somato-dendritic vasopressin release
from magnocellular neurons in the SON (Ludwig and Leng
2006; Ludwig and Stern 2015). This might allow for a fine
tuning of responses, involving multiple signalling centres.
Neuronal tract tracing, immunohistochemical labelling and
electron microscopy could be combined to establish whether
axonal projections to the olfactory bulbs from these areas con-
tain vasopressin (Landry et al. 2003). For example, it would
be helpful to know how frequently vasopressin is co-localized
with norepinephrine in axons of LC neurons in the olfactory
bulb, or whether the putative connection from the MeA to the
olfactory bulbs contains vasopressin. The potential for such
integrative signalling is not restricted to the olfactory bulbs.
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For instance, it is yet unclear the extent to which SCN and
retinal vasopressin might co-modulate circadian function
within the SCN itself.

Vasopressin released from multiple neural sources acts at a
variety of targets (both local and distant) by activating V1aR,
V1bR and oxytocin receptors to mediate changes in olfactory
and light/visual processing and social behaviour. Vasopressin
signalling systems sometimes show differences associated
with the natural history of the species examined, developmen-
tal stress, social condition and the ebb and flow of gonadal
steroids across annually repeating life history stages. Some
vasopressin signalling pools are sexually dimorphic, while
others are not. All of these factors must be considered to
achieve a more complete understanding of vasopressin’s role
in sensory processing and behavioural modulation.
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