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Bradysia odoriphaga (Diptera: Sciaridae) is a serious pest of Chinese chives

cultivated in China. Chemosensory proteins (CSPs) are important components

of insect olfactory systems that capture and bind environmental

semiochemicals which are then transported to olfactory receptors. Despite

their importance, the mechanism of olfaction and related behavioral processes

in B. odoriphaga have not been characterized. Here, we found that BodoCSP4

has an important olfactory function. RT-qPCR indicated that BodoCSP4

expression was highest in the heads (antennae removed) of adult males,

followed by the antennae of adult males. Competitive binding assays with

33 ligands indicated that BodoCSP4 binds well with methyl allyl disulfide,

diallyl disulfide, and n-heptadecane; the corresponding dissolution constants

(Ki) were as high as 5.71, 5.71, and 6.85 μM, respectively. 3D-structural and

molecular docking indicated that BodoCSP4 has five α-helices and surrounds

the ligand with certain hydrophobic residues including Leu60, Leu63, Leu64,

Ala67, Val28, Ile30, Ile33, Leu34, and Val86, suggesting these residues help

BodoCSP4 bind to ligands. Silencing of BodoCSP4 significantly decreased the

attraction of B. odoriphagamales to diallyl disulfide and n-heptadecane but not

to methyl allyl disulfide in Y-tube olfaction assays. These results increase our

understanding of how BodoCSP4 contributes to host and female localization by

B. odoriphaga males.
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Introduction

Insects depend on their olfactory systems to perceive

chemical signals including host plant volatiles, sex

pheromones, and alarm pheromones (Visser, 1986; Hansson,

2002; French et al., 2015). In insect olfactory systems,

chemosensory proteins (CSPs) participate in the transmission

of semiochemicals through the sensillar lymph fluid to the

olfactory receptors (ORs) (Pelosi et al., 2005; Oliveira et al.,

2018), and then transduce electrical signals in order to activate

physiological functions and regulate insect behavioral responses

(Pelosi et al., 2006; Antony et al., 2016). Therefore, insect CSPs

have an indispensable role in the recognition of semiochemicals

and help ensure that insects make timely and effective behavioral

responses to such chemical signals (Pelosi et al., 2018).

Many studies have shown that insect CSPs are found in

multiple tissues, suggesting that CSPs have additionally functions

to chemosensation (Picimbon, 2003). In addition to being

involved in host volatile recognition (Younas et al., 2022),

CSPs are also involved in development (Maleszka et al., 2007),

reproduction (Cheng et al., 2015; Zeng et al., 2020), circadian

cycle regulation (Claridge-Chang et al., 2001), leg regeneration

(Kitabayashi et al., 1998), insecticide resistance (Xu et al., 2022),

vision (Zhu et al., 2016), and physiological shifts such as

transition from the solitary to gregarious phase of Locusta

migratoria (Chen et al., 2010; Guo et al., 2011). Therefore,

studying how insect CSPs function will help to enrich our

understanding of the potential roles of CSPs, and advance the

development of comprehensive control methods using insect

CSPs as molecular targets.

The Gnat Bradysia odoriphaga is a pest of both vegetables

and mushrooms and is especially damaging to Chinese chives

cultivated in Asian countries (Feng and Zheng, 1987). Feeding by

B. odoriphaga larvae reduces the growth, development, and

edibility of Chinese chives (Li et al., 2014). This pest is

difficult to control because of its high fecundity and the soil-

borne habitat of the larvae (Dang et al., 2001; Ma et al., 2013). At

present, B. odoriphaga is mainly controlled via the application of

insecticides, but overuse of chemical pesticides results in serious

problems including insecticide resistance, environmental

pollution, pesticide residues on host plants, and negative

effects on human health (Yang et al., 2014). As a result, safe

and effective non-chemical means to control B. odoriphaga are

greatly needed.

Previous studies have shown that B. odoriphaga uses host

plant volatiles to find hosts, mates, and oviposition sites (Yang

et al., 2019). Li H. J. et al. (2007) found that B. odoriphaga females

release n-heptadecane to attract males. Because the larvae have

limited dispersal abilities, they rely on the adults to select suitable

host plants for larval feeding, growth, and development.

Although olfactory proteins are clearly important for

regulating the behaviors of B. odoriphaga adults, most

research concerning the functions of such proteins has

focused on odorant binding proteins (BodoOBPs) (Tang et al.,

2019; Yang et al., 2021a; Yang et al., 2021b) rather than on

BodoCSPs.

To date, five BodoCSP genes have been identified from the B.

odoriphaga antennae transcriptome (Zhao et al., 2018), but only the

function of BodoCSP1 has been studied (Zhang et al., 2021). As

determined by the latter authors, BodoCSP1 is highly expressed in

antennae and is involved in the perception of host plant volatiles.

The present work we conducted an extensive study to explore the

potential functions of the CSP gene, BodoCSP4. We found that the

BodoCSP4 expression levels were highest in the heads (without

antennae) ofmales, followed by the antennae ofmales. To determine

the specific physiological functions of BodoCSP4, we characterized

its binding affinity with Chinese chive volatiles, modeled its protein

structure, and investigated its potential binding sites. We also used a

Y-tube olfaction assay to measure the behavioral responses of

BodoCSP4-silenced B. odoriphaga adult males to host plant

volatiles. These results increase our understanding of chemo-

sensation by B. odoriphaga and could identify new molecular

targets for controlling this important pest.

Materials and methods

Insect rearing

A population of B. odoriphaga was obtained from a Chinese

chive field in the ShunYi District of Beijing, in 2019. The

population has been maintained and fed on fresh Chinese

chives (not treated with insecticides) in a climate-controlled

chamber at 25–28°C, 70–80% relative humidity (RH), and a

16:8 h light/dark photoperiod.

RNA extraction and cDNA synthesis

Total RNAwas extracted from eggs (n = 100), larvae (n = 10),

pupae (n = 10), and adults (females and males that were <2 days
old; n = 10 for each sex), and also from the antennae (n = 500),

male heads (without antennae; n = 500), abdomens (n = 10), and

carcasses (thoraxes, wings, and legs mixed; n = 10) of males and

females. Extraction was performed with the Trizol kit

(Invitrogen, CA, United States) according to the

manufacturer’s instructions. The RNA samples were

quantified using a Nanodrop ND-2000 spectrophotometer

(Nanodrop, Wilmington, DE, United States), and the integrity

was confirmed by 2% agarose gel electrophoresis.

Tested ligands

N-phenyl-1-naphthylamine (1-NPN) was used as the

competitive fluorescent reporter. The following volatiles were
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used in binding assays with BodoCSP4: alkanes (nonane, dodecane,

tetradecane, hexadecane, n-heptadecane); terpenes (ocimene, ß-

pinene, ß-caryophyllene, (R)-(+)-limonene, a-humulene); alcohols

((Z)-3-hexen-1-ol, 1,8-cineole, citronellol, linalool); esters (butyl

levulinate, methyl phenylacetate, butyl acrylate); ketones (2-

hexanone, beta-Ionone); aldehydes (decanal, valeric aldehyde,

octanal, benzaldehyde, heptanal, nonanal); sulfur compounds

(diallyl disulfide, methyl allyl disulfide) and others

(acetophenone, carvaceol, h-11 indole). All of these compounds

and 1-NPN were purchased from Sigma-Aldrich (St. Louis, MO,

United States) and had 98% purity. Other background information

on the ligands is provided in Supplementary Table S1.

Identification, sequence analysis, and
phylogenetic tree construction of
BodoCSP4

Open reading frames (ORFs), the conserved domains, and

N-terminal signal peptides of B. odoriphaga RNA were predicted

using ORF Finder (http://www.ncbi.nlm.nih.gov/gorf/gorf.html),

SMART software (http://smart.emblheidelberg.de/) (Letunic et al.,

2015), and Signalp V5.1 (http://www.cbs.dtu.dk/services/SignalP/)

(Jannick et al., 2004). The ExPASy Proteomics Server (http://cn.

expasy.org/tools/pi_tool.html) was used to compute the isoelectric

points and molecular weights of the deduced protein sequences.

Primers used to validate the BodoCSP4 sequences are listed in

Table 1. Purified PCR products were cloned into the pEASY-T1

vector (TransGen, China) and sequenced.

Weused phylogenetic analysis to compare the resulting sequences

of the putative CSP4 from B. odoriphaga with published orthologous

CSP sequences (minus the signal peptides) from three other dipterans

(Drosophila melanogaster, Culex quinquefasciatus, and Anopheles

gambiae), two hemipterans (Adelphocoris lineolatus, Aphis

gossypii), one hymenopteran (Apis mellifera), and one lepidopteran

(Bombyx mori). Based on the predicted amino acid sequences, we

used the Multhithreaded Maxmimum Likelihood method in

MEGA6.0 to construct a phylogenetic tree for each gene; this was

done with 1,000 bootstrap replications (Tamura et al., 2013) and with

Poisson correction of distances.

Expression of the BodoCSP4 gene

Reverse transcription quantitative PCR (RT-qPCR) was used

to quantify BodoCSP4 expression in different developmental

stages of B. odoriphaga (egg, larva, pupa, and adult) and in

different tissues of B. odoriphaga adults including male heads

without antennae, female antennae, male antennae, abdomens,

and carcasses (thoraxes, wings, and legs mixed). RNA was

extracted according to reagent protocols. Primers designed

based on cDNA sequences were used for RT-qPCR (Table 1).

RPL18 and RPS15 were used as reference genes for relative

expression analysis of BodoCSP4 at different life stages, and

EF1 and ACT were used as reference genes for expression

analysis in different tissues (Shi et al., 2016).

Recombinant protein expression and
purification of BodoCSP4 protein

The BodoCSP4 cDNA was PCR amplified with specific primers

(Table 1). The PCR products were ligated into the expression vector

pBM30 according to the manufacturer’s instructions (Biomed,

Beijing, China). The ligation products containing the pBM30/

BodoCSP4 sequence were used to transform Escherichia coli

TABLE 1 Primers used in cloning and expression of CSP4 in B.odoriphaga.

Primer name Sequence (59-39)

For cloning CSP4 open reading frames

BodoCSP4-Sense AGGTCATAACAGTCACAATCACTTA

BodoCSP4-Anti- sense AATACTTTCGGACACACCGATGTAG

For tissue expression of CSP4

BodoCSP4-Sense GCACGAAAGAAGGACGTGAAC

BodoCSP4-Anti- sense GGCCGTCGGCTTCGAATAA

Heterologous expression of CSP4

BodoCSP4-Sense CACCCAGGAGTACACGAAGAAATACGATAAC

BodoCSP4-Anti- sense TTATAGGAAGGATGACCTTTTGTTGA

For dsRNA synthesis

dsBodoCSP4-Sense GGATCCTAATACGACTCACTATAGGTGTATGTGCAACTGTGGCAC

dsBodoCSP4-Anti- sense GGATCCTAATACGACTCACTATAGGCATTTGGAGCAATCTGTTTG

dsGFP-Sense TAATACGACTCACTATAGGGGTGTTCAATGCTTTTCCCGT

dsGFP-Anti- sense TAATACGACTCACTATAGGGCAATGTTGTGGCGAATTTTG
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BL21 (DE3) cells (TransGen Biotech) for protein expression and

sequencing. Positive colonies were used for expression and

purification of the recombinant BodoCSP4 protein. The results

showed that, after sonication and centrifugation, the

BodoCSP4 proteins were mainly expressed in insoluble bodies.

Protein refolding was performed according to redox methods

(Prestwich, 1993). In brief, 50 mM Tris buffer (pH 6.8)

containing 0.2% Triton X-100 was used to wash the insoluble

inclusion body, which was then dissolved in 6 M guanidine

hydrochloride. The refolded protein was then collected and

purified by Ni2+ ion affinity chromatography (GE-Healthcare,

United States). The His-tag was removed by recombinant

enterokinase (rEK) (Novagen, Beijing, China). The size and the

concentration of BodoCSP4 were determined using SDS-PAGE and

the BCA protein assay kit (CoWinbiotech, Beijing, China),

respectively.

Fluorescence binding assays

An F-380 fluorescence spectrophotometer (Tianjin, China) was

used to measure the binding affinity of BodoCSP4 to the selected

volatiles, using 1-N-phenyl-naphthylamine (1-NPN) as the

fluorescent probe. 1-NPN and 33 ligands were selected for this

assay based on previous studies (Li H. L. et al., 2007; Zhang et al.,

2016; Yang et al., 2019) (Supplementary Table S1). Both 1-NPN and

the volatile compounds were diluted in chromatographic-grade

methanol to make 1 mM stock solutions. Recombinant

BodoCSP4 was dissolved in 20 mM Tris-HCl (pH 7.4) and

diluted to a 2 µM stock solution. The dissociation constants (Kd)

between 1-NPN and the recombinant BodoCSP4 were calculated by

Scatchard analysis and the ligand binding affinity (Ki) was calculated

with the following equation: Ki = [IC50]/(1 + [1-NPN]/K1- NPN), in

which IC50 is the maximum concentration at which the ligand

replaces 50% of the fluorescence value of 1-NPN [1-NPN] is the free

concentration of 1-NPN; and K1-NPN is the dissociation constant of

1-NPN (Campanacci et al., 2003; Wei et al., 2008).

3D structure and molecular docking of
BodoCSP4

The 3D structure of BodoCSP4 was obtained with a template

of CSPMbraA6 (1N8V) and Swiss-Model software. The binding

cavity of BodoCSP4 was predicted using SYBYL 7.3 software.

Based on the results of the fluorescence binding assays, the

TABLE 2 Bioinformatics analysis of odorant-binding protein genes in B.odoriphaga.

Gene Acc.No Length of ORF Amino acid length Signal peptide Full ORF pI Mw (kDa)

BodoCSP4 MG544173 357 118 1–18 Yes 9.42 13.58

ORF, open reading frame; pI, isoelectric point; MW, molecular weight.

FIGURE 1
Gene expression profiling of CSP4 in different developmental stages (A) and tissues (B) of B. odoriphaga as determined by RT-qPCR. Egg;
Larvae; Pupae; Female; Male. Fa: Female antenna; Ma: Male antenna; Male head (without antennae); Carcass: leg + wing + thorax; Abdomen. The
expression levels were estimated using the 2−ΔΔCt method. The expression level in eggs was used as a standard to compare expression levels among
developmental stages, and the expression level in male antennae was used as a standard to compare expression levels among tissues. Values
are means ± SE; means with different letters are significantly different (p < 0.05).
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ligands diallyl disulfide, methyl allyl disulfide, and n-heptadecane

were selected to construct the molecular conformations by Sketch

mode and were optimized using the Tripos force field and

Gasteiger-Hückel charge. In addition, Surflex-Dock (SYBYL

7.3) was applied to the molecular docking modeling between

the BodoCSP4 protein and three ligands.

dsRNA synthesis and Y-tube olfactometer
assays

The primer pairs dsCSP4 and dsGFP, containing the

T7 promoter sequence, are listed in Table 1, and the

T7 RiboMAX ™ Express RNAi System was used to synthesize

double stranded RNAs (dsRNAs). The dsRNAs were

microinjected into 3-day-old pupae of B. odoriphaga, and

newly eclosed male adults were selected for dsRNA extraction

and behavioral assays as previously described (Yang et al., 2021b;

Zhang et al., 2021). According to the fluorescence binding results,

after BodoCSP4 was silenced, a Y-tube olfactometer was used to

assess the behavioral responses of B. odoriphaga male adults to

the ligands diallyl disulfide, methyl allyl disulfide, and

n-heptadecane as described in our previous report (Yang

et al., 2019). In brief, a 10-μL solution of diallyl disulfide,

methyl allyl disulfide, or n-heptadecane in hexane was placed

on a strip (4 × 40 mm) of filter paper; after 10 s, the strip was

placed at the end of one of the two Y-tube arms. As a control, a

hexane-treated filter paper strip was placed at the end of the other

arm. Two streams of clean air were passed through the Y-tube

arms to the base, and one adult male that had been previously

injected (at the pupal stage, 12 h before emergence) with

dsBodoCSP4 or dsGFP was placed in the base of the Y-tube. If

the male adult moved at least half way up one of the Y-tube arms,

the result was recorded and considered an indication of

attraction or repulsion depending on which arm was selected.

Each of six treatment combinations (3 host plant volatiles with

controls and dsBodoCSP4 or dsGFP microinjected adults) are

represented by 60 replicate assays.

Statistical analysis

All RT-qPCR experiments were analyzed using one-way

ANOVA followed by Tukey-HSD tests with SPSS

20.0 software. All RT-qPCR experiments were conducted

using three independent biological replicates. In each of the

six Y-tube olfactometer assays (3 ligands and controls without

ligand × two types of microinjected B. odoriphaga adult males),

behavioral responses to filter paper with or without ligand were

analyzed by a chi-square test (χ 2).

Results

Identification and phylogenetic analysis of
BodoCSP4 in B. odoriphaga

We identified a CSP gene named BodoCSP4 (Accession

number: MG544173) in a previously published B. odoriphaga

transcriptome dataset, and we verified its identity by RT-PCR

(Table 2; Fig. S1A). The full-length BodoCSP4 sequence contains

an ORF of 357 bp. The predicted amino acid sequence has the

typical four-cysteine signature (Wanner et al., 2004) with a motif

of C1-X6-8-C2-X16-21-C3-X2-C4 (Supplementary Figure S1B) and

an 18 amino acid-signal peptide in the N terminus

(Supplementary Figure S1B). BodoCSP4 has a molecular

weight of 13.58 kDa and an isoelectric point of 9.42 (Table 2).

In a phylogenetic tree of BodoCSP4 and other insect CSPs,

BodoCSP4 was clustered with the CSPs of the dipterans D.

melanogaster and A. gambiae (Supplementary Figure S2).

FIGURE 2
Binding curves for 1-NPN and Scatchard plots of recombinant BodoCSP4 (A) and fluorescence competitive binding curves of the recombinant
protein BodoCSP4 with five ligands (B).
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Expression profile analysis of BodoCSP4

Among developmental stages, the expression level of

BodoCSP4 was lowest in eggs and highest in adult males (F =

11.711, df = 4,14, p = 0.001) (Figure 1A). Regarding tissue-

specific expression analysis in adults, expression levels of

BodoCSP4 were highest in adult male heads (antennae

removed), followed by adult male antennae (F = 14.68, df =

4,14, p = 0.000) (Figure 1B).

Recombinant protein expression and
purification of BodoCSP4

The recombinant BodoCSP4 protein was successfully

expressed and purified in Escherichia coli, yielding a high

concentration (up to 0.68 mg/ml). BodoCSP4 was mainly

expressed in insoluble bodies and its molecular weight is <
15 kDa, which was consistent with the predicted results

(Supplementary Figure S3).

FIGURE 3
3D structure model and binding cavity of Bradysia odoriphaga chemosensory protein 4 (BodoCSP4). (A) Sequence alignment of BodoCSP4 and
CSPMbraA6 (1N8V). The black spiral coils represent α-helices. (B) 3D model of the target protein BodoCSP4 based on the crystal structure of the
template protein of CSPMbraA6; two disulfide bridges are labeled in blue, and the five α-helices are marked in green. (C) Alignment of the target
protein BodoCSP4 (red) and the template protein CSPMbraA6 (purple, 1N8V). 3D models of interactions of the recombinant protein
BodoCSP4 with (D) three ligands (diallyl disulfide, methyl allyl disulfide, and n-heptadecane), (E) diallyl disulfide, (F)methyl allyl disulfide, and (G) and
n-heptadecane. In D-G, the yellow residues present hydrophobic residues, the blue residues represent hydrophilic residues, and the brown residues
represent the hydrophobic residues of the long chain of n-heptadecane.

FIGURE 4
Effects of treatment of Bradysia odoriphaga male adults with
dsGFP or dsBodoCSP4 on their mRNA levels of BodoCSP4 (as
determined by RT-qPCR). The values are means ± SEM; means
with different letters are significantly different (p < 0.05).
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Fluorescence binding assays with
BodoCSP4

To determine the function of the recombinant protein, we

measured the ligand-binding affinity of recombinant CSP4 in a

competitive fluorescence binding assay with 33 ligands (Figure 2

and Supplementary Table S2). The dissociation constant (Kd) of

BodoCSP4/1-NPN was 1.076 µM (Figure 2A). The binding

affinity results showed that BodoCSP4 specifically bound to

3 of the 33 ligands: diallyl disulfide (5.71 µM), methyl allyl

disulfide (5.71 µM), and n-heptadecane (6.85 µM) (Figure 2B).

The binding affinities between BodoCSP4 and the other ligands

are listed in Supplementary Table S2.

3D model structuring and molecular
docking of BodoCSP4

Based on the high alignment and high sequence identity

(42%) between BodoCSP4 and the template protein CSPMbraA6

(Figure 3A), BodoCSP4 has five α-helices located between

residues Asn29-Asn36 (α1), Asp37-Lys50 (α2), Thr54-Thr70
(α3), Cys75-Arg93 (α4), and Arg94-Asp106 (α5) (Figure 3B).

To better understand the potential key amino acid residues

involved in the interaction between the BodoCSP4 protein and a

ligand, we examined BodoCSP4 and ligand complexes by

molecular docking (Figure 3). Some hydrophobic residues of

BodoCSP4 surround the ligands (diallyl disulfide, methyl allyl

disulfide, and n-heptadecane), including Leu60, Leu63, Leu64,

and Ala67 (Figure 3C). Because diallyl disulfide, methyl allyl

disulfide, and n-heptadecane have similar structures and

conformations (diallyl disulfide and methyl allyl disulfide in

particular have the same disulfide bond group), they have

almost the same BodoCSP4 binding site (Figures 3D, E).

Unlike diallyl disulfide and methyl allyl disulfide, however,

n-heptadecane occupied a narrow and hydrophobic tunnel of

BodoCSP4 owing to the ligand’s long hydrophobic tail; the

hydrophobic tunnel included residues Val28, Ile30, Ile33,

Leu34, Val86, among others (Figure 3F). The following

hydrophobic residues of BodoCSP4 surround the three ligands

and are likely binding sites: Leu60, Leu63, Leu64, Ala67, Val28,

Ile30, Ile33, Leu34, and Val86.

Behavioral effect of BodoCSP4
knockdown by RNAi

To further determine whether BodoCSP4 is important for

recognizing the above three ligands, we silenced the BodoCSP4

gene and measured the attraction of dsBodoCSP4- and dsGFP-

treated adult males to each ligand or to a control without ligand

in Y-tube olfaction assays. Treatment of adult males with

dsBodoCSP4, but not with dsGFP, significantly reduced

BodoCSP4 expression (F = 7.952,df = 2,11,p = 0.01)

(Figure 4). The dsGFP-treated adults were attracted to methyl

allyl disulfide (Figure 5A; χ2 = 5.952, df = 1, p = 0.025), diallyl

disulfide (Figure 5B; χ2 = 4.849, df = 1, p = 0.028), and

n-heptadecane (Figure 5C; χ2 = 4.604, df = 1, p = 0.032). The

dsBodoCSP4-treated adults were attracted to methyl allyl

disulfide (Figure 5A; χ2 = 3.998, df = 1, p = 0.046), however

no olfactory attraction to diallyl disulfide (Figure 5B; χ2 = 0.08,

df = 1, p = 0.777) and n-heptadecane (Figure 5C; χ2 = 0.501, df =

1, p = 0.479) was observed. These results suggest that BodoCSP4 is

important for the behavioral response of B. odoriphaga adults to

diallyl disulfide and n-heptadecane but not to methyl allyl

disulfide.

Discussion

Like odorant-binding proteins (OBPs), CSPs are important

components of insect olfactory systems, and are required by

FIGURE 5
Behavioral responses of Bradysia odoriphaga male adults previously injected with dsRNAi to (A) diallyl disulfide (or a control), (B) methyl allyl
disulfide (or a control), or (C) and n-heptadecane (or a control) in Y-tube olfactometer assays. In (A–C), one arm of the olfactometer contained the
indicated ligand in solvent (hexane), and the other arm contained the solvent alone (control). For each assay, a treated male adult was placed at the
base of the olfactometer, and its movement into one of the two arms was recorded; an asterisk indicates that significantly more adults
responded to the ligand than to the control in the indicated assay. For each combination of ligand/control and dsGFP-treated or dsBodoCSP4-
treated adult in (A–C), n = 60. Asterisks indicate statistically significant differences between the behavioral response to the ligand vs. the control as
determined by chi-square tests: *p < 0.05, **p < 0.01.
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insects to search for and detect host plants, suitable oviposition

sites, and mates (Vogt et al., 1985; Field et al., 2000; Sun et al.,

2014). Previous research clarified the physiology and function of

BodoCSP1, but the physiology and function of other CSPs in B.

odoriphaga remained unknown prior to the current study.

That CSPs are widely distributed on insect chemosensory

and non-chemosensory organs suggests that they have diverse

functions (Jacquin-Joly et al., 2001). The current study with B.

odoriphaga revealed that BodoCSP4 is mainly expressed in the

heads (without antennae) of adult males, followed by the

antennae of adult males. The broad expression profile of

BodoCSP4 among B. odoriphaga tissues indicates that CSP4

may have other functions besides olfaction in this insect.

Previous studies showed that OBP genes were highly

expressed in insect heads, suggesting that they contribute to

the detection of host plant volatiles and sex pheromones (Chang

et al., 2015; Liu et al., 2015; Wang et al., 2016). The following

studies also showed that the indicated CSPs are highly expressed

in the male antennae of the following insects: CSP11 of Plutella

xylostella (Fu et al., 2020), CSP8 of Nilaparvata lugens (Waris

et al., 2018), CSP1 of Cylas formicarius (Hua et al., 2021), and

CSP3 of Cnaphalocrocis medinalis (Zeng et al., 2018). High

expression of CSP in male antennae suggests that they may be

more involved in the perception of sex pheromones than plant

volatiles. Based on the current results with B. odoriphaga, we

speculate that BodoCSP4 is involved not only in the searching

and localization of host plants by males, but also in finding

females.

To explore the role of BodoCSP4, we determined the binding

affinity of BodoCSP4 to 33 ligands. The results indicated that

BodoCSP4 displayed high binding affinities (Ki < 10 μM) to two

sulfur-containing volatiles, diallyl disulfide and methyl allyl

disulfide, and to n-heptadecane. Liu et al. (2020) found that

sulfur-containing secondary isothiocyanates (ITCs) affected the

preference of P. xylostella for Arabidopsis thaliana; the latter

study also reported that knockdown of PxylOr35 or PxylOr49

reduced the effect of ITCs on P. xylostella selection of oviposition

sites, and that knockdown of both genes reduced the attraction of

P. xylostella to ITCs. In addition, researchers recently reported

that ITCs are not only chemical signals used by adult Scaptomyza

flava to find host plants, but are also involved in the evolution of

the olfactory receptor SflaOr67bs (Matsunaga et al., 2022). Our

previous results showed that the sulfur-containing volatiles from

Chinese chives, diallyl disulfide and methyl allyl disulfide, elicit

strong electrophysiological responses from the antennae of both

male and female B. odoriphaga (Yang et al., 2019). In the current

study, however, the expression levels of BodoCSP4 were highest

in male heads followed by male antennae. We therefore

hypothesized that diallyl disulfide and methyl allyl disulfide

are chemical cues that are specifically recognized by the

olfactory gene BodoCSP4 and may help male B. odoriphaga

adults locate Chinese chives. Interestingly, the current results

indicated that BodoCSP4 also displayed a high binding affinity

with n-heptadecane, which was obtained as an extract from the

abdomen of B. odoriphaga females and elicits a behavioral

response in male adults (Li H. J. et al., 2007). This finding is

similar to that for CSPA6 of Mamestra brassicae (Jacquin-Joly

et al., 2001) and SinfCSP19 of Sesamia inferen (Zhang et al.,

2014), suggesting that BodoCSP4 may be involved in the

recognition of sex pheromones by B. odoriphaga.

Homology modeling and molecular docking have been used

to explore specific ligand-binding features (Liu et al., 2019). In

the previous study, the modeled BodoCSP4 only had five α-
helixes, which is similar to SfurCSP5 (Chen et al., 2018).

BodoCSP4, however, differs from other insect CSPs, which

contain six α-helixes (Campanacci et al., 2003; Tomaselli

et al., 2006; Jean-François, 2014); as a result, it will be

necessary to confirm or modify the actual 3D structure of

BodoCSP4 in future studies. Kulmuni and Havukainen (2013)

found that insect CSPs with five α-helixes are mostly involved in

searching for mates. We therefore suggest that BodoCSP4may be

involved in finding females and in other olfactory functions.

Binding models in the current study showed that

BodoCSP4 bound to the ligands of methyl allyl disulfide,

diallyl disulfide, and n-heptadecane near many

BodoCSP4 hydrophobic residues (including Leu60, Leu63,

Leu64, and Ala67, Val28, Ile30, Ile33, Leu34, and Val86) but

not the most polar hydrophobic residues (Figure 3). Mármol

et al. (2021) reported that interactions with hydrophobic residues

contribute to odor molecule binding and thereby mediate ligand

recognition. In addition, previous studies have reported that

leucine is the key amino acid for ligand binding, as was

observed for Mamestra brassicae CSP6 (Campanacci et al.,

2003), SfurCSP5 (Chen et al., 2018), and BminCSP3 (Cui

et al., 2022). The hydrophobic residues of

BodoCSP4 interacted with all three ligands, indicating their

key involvement in ligand binding of BodoCSP4. This feature

is consistent with other OBPs and CSPs (Tomaselli et al., 2006;

Zheng et al., 2015; Northey et al., 2016). However, molecular

docking can only assist in predicting binding mechanisms, and as

such we will use site-directed mutagenesis to further investigate

the specific functions of these hydrophobic amino acids. Based

on both the homology modeling, molecular docking, and

competitive binding results, we conclude that CSP4 can bind

to both sulfur volatiles and sex pheromones, and that

CSP4 therefore participates in multiple physiological functions

in B. odoriphaga.

In the present study we used RNA interference and

behavioral assays to further confirm the physiological

functions of BodoCSP4 in B. odoriphaga. The results indicated

that silencing of the BodoCSP4 gene significantly decreased the

behavioral response of B. odoriphaga male adults to diallyl

disulfide and n-heptadecane but did not decrease the

behavioral response to methyl allyl disulfide. In contrast,

Zhang et al. (2021) reported that silencing of BodoCSP1

reduced the behavioral response of B. odoriphaga male adults
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to diallyl disulfide and methyl allyl disulfide. In addition,

previous reports indicated that BodoOBP1, BodoOBP2 (Tang

et al., 2019), BodoOBP5 (Yang et al., 2021a), and BodoOBP8

(Yang et al., 2021b) bind well to diallyl disulfide and methyl allyl

disulfide. We suggest that BodoCSP4, however, may work

together with other OBPs or CSPs to recognize methyl allyl

disulfide methyl allyl disulfide. For example, Sun et al. (2016)

found that CmedOBP2 and CmedOBP3 co-regulate odorant

recognition by C. medinalis adults, and Maguire et al. (2022)

found that AgamOR2 and ORCO can together alter the olfactory

preferences of Anopheles mosquitoes. Based on the current

results, we speculate that diallyl disulfide and n-heptadecane

but not methyl allyl disulfide can be specifically recognized by

BodoCSP4, and that diallyl disulfide and n-heptadecane are the

main chemical signals perceived by BodoCSP4 in host plant

recognition and localization by males, as well as female

localization.

Overall, the results of this study suggest that BodoCSP4 may

be involved in the recognition and localization of host plants and

mates. Determining whether diallyl disulfide and n-heptadecane

function as attractants to regulate B. odoriphaga behavior will

require additional research.
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