
micromachines

Article

The Multitasking System of Swarm Robot based on
Null-Space-Behavioral Control Combined with
Fuzzy Logic

Nga Le Thi Thuy 1 and Thang Nguyen Trong 2,* ID

1 Department of Cybernetics, University of Transport and Communication, Hanoi 122000, Vietnam;
lethuynga@utc.edu.vn

2 Department of Electrical Engineering and Automation, Haiphong Private University,
Haiphong 181810, Vietnam

* Correspondence: thangnt@hpu.edu.vn; Tel.: +84-168-846-8555

Received: 26 November 2017; Accepted: 7 December 2017; Published: 9 December 2017

Abstract: A swarm robot is a collection of large numbers of simple robots used to perform complex tasks
that a single robot cannot perform or only perform ineffectively. The swarm robot works successfully
only when the cooperation mechanism among individual robots is satisfied. The cooperation mechanism
studied in this article ensures the formation and the distance between each pair of individual robots
while moving to their destination while avoiding obstacles. The solved problems in this article include;
controlling the suction/thrust force between each pair of individual robots in the swarm based on the
fuzzy logic structure of the Singer-Input-Singer-Output under Mamdani law; demonstrating the stability
of the system based on the Lyapunov theory; and applying control to the multitasking system of the
swarm robot based on Null-Space-Behavioral control. Finally, the simulation results make certain that
all the individual robots assemble after moving and avoid obstacles.

Keywords: swarm robot; Lyapunov theory; fuzzy control; multitasking

1. Introduction

A flock is a gathering of a group of creatures, found in nature of many different species such as insect
pests, ants, bees, termites, fish, etc. Flocking behavior can accomplish tasks that surpass the ability of
the individual. So, researchers have modeled flocking activity, inheriting these advantages to apply to
multi-robots. By the end of the 1980s, scientists had researched and built robotic teams with the capability
of working and coordinating to perform a specific task [1].

The characteristics of the swarm robot are intellectual without requiring the complex manufacturing
technology in the robot field [2,3]. The swarm robot can be used in many fields such as search [4,5],
cleaning [6], and transportation [7,8]. So, swarm robots are increasingly attracting the interest of
scientists around the world. A number of successful researches related to flock robots has brought
swarm robots to more and more widespread applications in life, such as multi-robot system main
principles [9–16], swarm robotics [17–20], human-multi-robot interaction [21,22], problem-specific
works [23–26], and autonomous underwater vehicles [19,27].

In order that the robot individuals of the swarm can work together to perform a certain task,
the first and most important problem that must be addressed is ensuring a collaborative mechanism
among robots. When an individual robot performs a task, it must avoid obstacles, but it is not
separated or cannot collide with others [28,29]. So, before researching the specialized applications of
the swarm robot, the first problem that needs to be solved is ensuring the swarm and the distance
among individuals while moving and avoiding obstacles.

Micromachines 2017, 8, 357; doi:10.3390/mi8120357 www.mdpi.com/journal/micromachines

http://www.mdpi.com/journal/micromachines
http://www.mdpi.com
https://orcid.org/0000-0001-8605-5931
http://dx.doi.org/10.3390/mi8120357
http://www.mdpi.com/journal/micromachines

Micromachines 2017, 8, 357 2 of 16

Some researchers have solved the above problem as in references [30–33]. All of these studies are
on the interaction between each pair of individuals and between the individual and the environment.
The interactions are expressed by the suction/thrust force among individuals, usually explicit
mathematical functions, but there is no convincing explanation. In reality, the working environment of
the swarm robot is quite complex, frequently changing, and each robot consists of a collection of many
details such as the engine, power circuit, control circuit, etc. so it is difficult to determine an explicit
mathematical model, or even impossible to identify.

In order for the model system to get closer to nature, this article proposes a solution which uses
fuzzy logic for controlling the suction/thrust force between each pair of individuals in the swarm.
The advantage of this solution is that the object can be controlled easily without the requirement
of knowing the object mathematical equation. Then, the authors applied this method to control the
multitasking system of a swarm robot.

Multitasking in a swarm robot means that each individual robot in the swarm must perform
multiple tasks at the same time; research [34] has also introduced two basic mechanisms to solve the
multitasking problem as follows:

The first is an arbitration mechanism: the controller only obeys the output commands of the
higher-priority behavior. The lower-priority behavior can only be performed if the output of the
higher-priority behavior is equal to zero. The drawback of this mechanism is that when the behaviors
are not inconsistent with each other they still cannot be done at the same time.

The second is the integration mechanism: The command is created based on a combination of
several behaviors. The drawback of this mechanism is that when the behaviors are inconsistent with
each other, they cannot be done at the same time.

Thus, the arbitration mechanism (competition) only allows one task at the same time, so this
mechanism is rarely used. The integration mechanism allows for combining several tasks to achieve
a different mission, but it is difficult to perform conflicting tasks. Research [35] has introduced a
new method to solve the above limitations, which is the null space behavioral (NSB) control method.
Based on this method, the complex task of the swarm robot can be divided into different basic tasks
(behaviors), these tasks are properly combined to achieve the objective mission. The main steps of this
method are determining the priority assignment of each basic task, then projection of the lower-priority
tasks on the null-space of the higher-priority task.

So, the current authors combine the two best-fit methods to control the swarm robot: the first is
using fuzzy logic to control the suction/thrust force among the individual robots. The advantage of this
method is that the object can be controlled easily without the requirement of knowing the mathematical
equation; the second is using the null-space behavioral control method for the multitasking system of
swarm robot. The advantage of this method is that it allows the robot to perform many tasks easily at
the same time.

2. Building the Function of the Suction/Thrust Ford Based on Fuzzy Logic

Considering a set of N individuals in n-dimensional Euclidean space (n ≤ 3). Assume that each
individual is a point and ignore their size and mass, the position of the individual (i) in the swarm is

pi =

pi

1
pi

2
...

pi
n

 ∈ Rn. The movement of individual robots in a homogeneous environment will depend

on the interaction between the individual and all other individuals. The homogeneous environment is
an environment where there is no obstruction, no external disturbance affecting the swarm. If pairs of
individuals are far apart, they need to move toward each other by suction force in order to maintain
the swarm. Conversely, if pairs of individuals are near together, they need to move away from each
other by thrust force to avoid collisions. So, the interplay among individuals in the swarm will depend

Micromachines 2017, 8, 357 3 of 16

on the distance between the pairs of individuals. The interaction force between two individuals (i and
j) is defined as follows:

f = f
(
‖pj − pi‖

)
where: ‖pj − pi‖ is the distance between two individuals i and j.

The actual distance between two robots (i and j):

σs = ‖pj − pi‖ =
√
(pj

1 − pi
1)

2
+ (pj

2 − pi
2)

2
+ · · ·+ (pj

n − pi
n)

2

Named:

g
(
‖pj − pi‖

)
=

f
(
‖pj − pi‖

)
‖pj − pi‖

=
f(σs)

σs
= ga(σs)− gr(σs) (1)

where: g(·) is the suction/thrust force between two individuals (i, j), ga(·) is the thrust force, gr(·) is
the suction force. σ∗s ∈ R is the distance between two individuals i and j, where the suction force and
thrust between the two individuals are in equilibrium, which means:

(σs)

= 0 if σs = σ∗s
< 0 if 0 < σs < σ∗s
> 0 if 0 < σ∗s < σs

∼
σs is the error between the real distance and the desired distance:

∼
σs = σs − σ∗s

The interaction force f(σs) among individuals in the swarm is a nonlinear function that depends
on the distance between each pair of individuals (i, j). So, we can construct the function f(σs) based on
a Mamdani fuzzy system with the Singer-Input-Singer-Output (SISO) structure as follows:

• First step

â The input signal is u =
∼
σs = σs − σ∗s , assume that the value domain of u is [αb, βb] ∈ R,

divide this domain into 2Nf + 1 in the range Bk as shown in Figure 1.
â The output signal is A = f(σs − σ∗s) with the value domain [αa, βa], divide this value

domain into 2Nf + 1 in the range Ak as shown in Figure 2 (k = 1, 2, . . . , 2Nf + 1). ak is the
focus of the fuzzy range Ak:

ak

< 0 if k = 1, 2, . . . Nf
= 0 if k = Nf + 1
> 0 if k = Nf + 2, . . . , 2Nf + 1

(2)

Micromachines 2017, 8, 357 3 of 16

where: p − p is the distance between two individuals i and j.
The actual distance between two robots (i and j):

 = p − p = (p − p) + (p − p) +⋯+ (p − p)

Named: g p − p = f p − p‖p − p ‖ = f()

= g () − g () (1)

where: g(·) is the suction/thrust force between two individuals (i, j), g (·) is the thrust force, g (·) is
the suction force. ∗ ∈ R is the distance between two individuals i and j, where the suction force and
thrust between the two individuals are in equilibrium, which means: () = 0		if		 = ∗								< 0		if		0 < < ∗> 0		if		0 < ∗ <

 is the error between the real distance and the desired distance:
 =	 − ∗

The interaction force f() among individuals in the swarm is a nonlinear function that depends
on the distance between each pair of individuals (i, j). So, we can construct the function f() based
on a Mamdani fuzzy system with the Singer-Input-Singer-Output (SISO) structure as follows:
• First step

 The input signal is u = = − ∗, assume that the value domain of u is [αb, βb] ∈ R,
divide this domain into 2Nf + 1 in the range Bk as shown in Figure 1.

 The output signal is A= f(− ∗) with the value domain [αa, βa], divide this value domain
into 2Nf + 1 in the range Ak as shown in Figure 2 (k = 1, 2, …, 2Nf + 1). a is the focus of the
fuzzy range Ak:

a < 0 if = 1, 2, …N= 0	if														k = N + 1						> 0 if = N + 2,… , 2N + 1 (2)

Figure 1. The membership function of the input.

Figure 2. The membership function of the output.

Figure 1. The membership function of the input.

Micromachines 2017, 8, 357 4 of 16

Micromachines 2017, 8, 357 3 of 16

where: p − p is the distance between two individuals i and j.
The actual distance between two robots (i and j):

 = p − p = (p − p) + (p − p) +⋯+ (p − p)

Named: g p − p = f p − p‖p − p ‖ = f()

= g () − g () (1)

where: g(·) is the suction/thrust force between two individuals (i, j), g (·) is the thrust force, g (·) is
the suction force. ∗ ∈ R is the distance between two individuals i and j, where the suction force and
thrust between the two individuals are in equilibrium, which means: () = 0		if		 = ∗								< 0		if		0 < < ∗> 0		if		0 < ∗ <

 is the error between the real distance and the desired distance:
 =	 − ∗

The interaction force f() among individuals in the swarm is a nonlinear function that depends
on the distance between each pair of individuals (i, j). So, we can construct the function f() based
on a Mamdani fuzzy system with the Singer-Input-Singer-Output (SISO) structure as follows:
• First step

 The input signal is u = = − ∗, assume that the value domain of u is [αb, βb] ∈ R,
divide this domain into 2Nf + 1 in the range Bk as shown in Figure 1.

 The output signal is A= f(− ∗) with the value domain [αa, βa], divide this value domain
into 2Nf + 1 in the range Ak as shown in Figure 2 (k = 1, 2, …, 2Nf + 1). a is the focus of the
fuzzy range Ak:

a < 0 if = 1, 2, …N= 0	if														k = N + 1						> 0 if = N + 2,… , 2N + 1 (2)

Figure 1. The membership function of the input.

Figure 2. The membership function of the output. Figure 2. The membership function of the output.

• The second step: establishing 2Nf + 1 rule IF-THEN with the form: IF: u = Bk, THEN: A = Ak

• The third step: defuzzifier using the central area method, we have control laws as follows [36]:

f(u) =
∑2Nf+1

k=1 akµBk(u)

∑2Nf+1
k=1 µBk(u)

(3)

With the solution to design the fuzzy control through the above three steps, the relationship
between the input signal and the output signal is the relationship between the distance and the
interaction force between individuals (i, j):

f(σs) > 0, i f σs > σ∗s
f(σs) < 0, i f 0 < σs < σ∗s
f(σs) = 0, i f σs = σ∗s

(4)

The fuzzy function f(σs) is a continuous function which satisfies the following conditions:

• Upper and lower limits:
Amin ≤ f(σs) ≤ Amax (5)

where: Amin = a1, Amax = a2Nf + 1

• The equation of a part linearization:

f(σs) =

(
ak + 1 − ak)u + akuk + 1 − ak + 1uk

uk + 1 − uk (6)

where: u ∈
[
uk, uk + 1], k ∈ {1, 2, . . . , 2Nf}

Gamin, Gamax is the smallest and largest value of the suction force, Grmin, Grmax is the smallest
and largest value of the thrust. From (6) we can find the limits of the function g(σs) as follows:

0 ≤ Gamin ≤ g(σs) ≤ Gamax, if σs > σ∗s

−Grmin ≤ g(σs) ≤ Grmax < 0, if 0 < σs < σ∗s (7)

where

Gamax = max
Nf+2≤k≤2Nf+1

[
ak+1 − ak

uk+1 − uk

]

Gamin = min
Nf+2≤k≤2Nf+1

[
ak+1 − ak

uk+1 − uk

]

Grmax = max
1≤k≤Nf

[
ak+1 − ak

uk+1 − uk

]

Grmin = min
1≤k≤Nf

[
ak+1 − ak

uk+1 − uk

]

Micromachines 2017, 8, 357 5 of 16

3. The Stability of the System

Assume that the individuals move in sync and have no delay, all individuals in the swarm know
exactly the relative position of all other individuals, the dynamic Equation (1) can be rewritten as follows:

·
p

i
=

N

∑
j=1,j 6=i

f
(
‖pj − pi‖

) (pj − pi)
‖pj − pi‖

=
N

∑
j=1,j 6=i

g
(
‖pj − pi‖

)(
pj − pi

)
(8)

where: (
pj−pi)
‖pj−pi‖ displays the direction of the force from the individual (i) to the individual (j), f

(
‖pj − pi‖

)
is the interaction force depending on the distance between the pair of individuals (i, j).

If g(·) > 0, this interaction is the suction force, if g(·) < 0, this interaction is the thrust.
The center of the swarm is defined by the following formula:

pc =
1
N

N

∑
i=1

pi (9)

The derivational of the center pc:

·
p

c
= 1

N

N
∑

i=1

N
∑

j=1, j 6=i
g
(
‖pj − pi‖

)(
pj − pi)

= 1
N

N−1
∑

i=1

N
∑

j=i+1

[
g
(
‖pj − pi‖

)(
pj − pi)+ g

(
‖pi − pj‖

)(
pi − pj)] = 0

(10)

The Equation (10) shows that the center of the swarm robot described by the Equation (8) where
the suction/thrust force as Equation (3) is invariant.

The different position between individual (i) and the center is as follows:

ei = pi − pc (i = 1, 2, . . . , N)

The derivational of ei:
·
e

i
=
·
p

i
− ·p

c
=
·
p

i

Select the Lyapunov function for the individual robot (i):

Vi =
1
2
‖ei‖2

=
1
2

eiTei

The derivational of Vi:

·
Vi =

·
e

iT
ei =

·
p

iT
ei =

N

∑
j=1

g
(
‖pj − pi‖

)(
pj − pi

)T
ei (11)

The sum of Lyapunov functions of all individuals:

V =
N

∑
i=1

Vi =
1
2

N

∑
i=1

eiTei (12)

The derivational of V:

·
V =

N
∑

i=1

N
∑

j=1
g
(
‖pj − pi‖

)(
pj − pi)Tei

=
N−1
∑

i=1

N
∑

j=i+1

[
g
(
‖pj − pi‖

)(
pj − pi)Tei + g

(
‖pi − pj‖

)(
pi − pj)Tej

] (13)

where: pj − pi =
(
pj − pc)− (pi − pc) = ej − ei.

Named: e = ej − ei

Micromachines 2017, 8, 357 6 of 16

g
(
‖pj − pi‖

)(
pj − pi)Tei + g

(
‖pi − pj‖

)(
pi − pj)Tej

= g
(
‖pj − pi‖

)[(
pj − pi)Tei +

(
pi − pj)Tej

]
= g

(
‖pj − pi‖

)(
pi − pj)T(ej − ei) = −g

(
‖pj − pi‖

)
‖pj − pi‖2

So:
·

V = −
N−1
∑

i=1

N
∑

j=i+1
g
(
‖pj − pi‖

)
‖pj − pi‖2

= − 1
2

N
∑

i=1

N
∑

j=1
g
(
‖pj − pi‖

)
‖pj − pi‖2

(14)

Named: S1 =
{
(i, j) : ‖pj − pi‖ > σ∗s

}
; S2 =

{
(i, j) : ‖pj − pi‖ < σ∗s

}
∑
S1

=
N

∑
i=1

N

∑
j=1

, (i, j) ∈ S1; ∑
S2

=
N

∑
i=1

N

∑
j=1

, (i, j) ∈ S2

Equation (14) can be rewritten as follows:
·

V = − 1
2 ∑

S1

g
(
‖pj − pi‖

)
‖pj − pi‖2 − 1

2 ∑
S2

g
(
‖pj − pi‖

)
‖pj − pi‖2

= − 1
2

[
∑
S1

g
(
‖pj − pi‖

)
‖pj − pi‖2

+ ∑
S2

−g
(
‖pj − pi‖

)
‖pj − pi‖‖pj − pi‖2

]

− 1
2

[
∑
S2

g
(
‖pj − pi‖

)
‖pj − pi‖2 −∑

S2

−g
(
‖pj − pi‖

)
‖pj − pi‖‖pj − pi‖2

]

= − 1
2

[
∑
S1

g
(
‖pj − pi‖

)
‖pj − pi‖2

+ ∑
S2

−f
(
‖pj − pi‖

)
‖pj − pi‖2

]

− 1
2

[
∑
S2

g
(
‖pj − pi‖

)
‖pj − pi‖2

+ ∑
S2

f
(
‖pj − pi‖

)
‖pj − pi‖2

]
(15)

From Condition (5), we infer:

∑
S2

−f
(
‖pj − pi‖

)
‖pj − pi‖2 ≤ Amin ∑

S2

‖pj − pi‖2;

∑
S1

g
(
‖pj − pi‖

)
‖pj − pi‖2 ≥ Gamin ∑

S1

‖pj − pi‖2

Considering the second component of Equation (15):

∑
S2

g
(
‖pj − pi‖

)
‖pj − pi‖2 −∑

S2

−f
(
‖pj − pi‖

)
‖pj − pi‖2

≥ ∑
S2

g
(
‖pj − pi‖

)
‖pj − pi‖2 −∑

S2

Amin‖pj − pi‖2 (16)

The left side of the Inequality (16):

∑
S2

g
(
‖pj − pi‖

)
‖pj − pi‖2 −∑

S2

Amin‖pj − pi‖2

= ∑
S2

f(‖pj−pi‖)−A‖pj−pi‖
‖pj−pi‖ ‖pj − pi‖2

Named: fS2 = −f
(
‖pj − pi‖

)
+ Amin‖pj − pi‖

Set β is the largest value of fS2 in the domain S2. The graph of total fS2 is shown in Figure 3.
Named β = Aminσ

∗
s . So:

−∑
S2

−f
(
‖pj − pi‖

)
+ A‖pj − pi‖

‖pj − pi‖
‖pj − pi‖2 ≤ β∑

S2

‖pj − pi‖

Micromachines 2017, 8, 357 7 of 16
Micromachines 2017, 8, 357 7 of 16

Figure 3. The graph of total f .

Thus, the Inequality (16) is equivalent to: g p − p p − p − −f p − p p − p ≥ −A ∗ p − p (17)

The first component of Equation (15): g p − p p − p + −f p − p p − p

= g p − p p − p + A p − p

Named α = min G , A , we have: g p − p p − p + −f p − p p − p ≥ α p − p∪ (18)

Combination of Inequalities (16) and (18), with p − p ≤ ∗, (i, j) ∈ S , we have:

V ≤ −α p − p + A ∗ (19)

From the definition of the swarm robot center, we have:

p = Np (20)

Two sides of (20) minus Ne , we have: (p − p) = N(p − p)
Thus, the sum of the squared deviations is given by the formula:

e = 1N (p − p) e = 1N p − p

= 12N p − p

(21)

Combining Equations (17) and (21) we have: V ≤ −2Nα e +	A ∗

Figure 3. The graph of total fS2 .

Thus, the Inequality (16) is equivalent to:

∑
S2

g
(
‖pj − pi‖

)
‖pj − pi‖2 −∑

S2

−f
(
‖pj − pi‖

)
‖pj − pi‖2 ≥ −Aminσ

∗
s ∑

S2

‖pj − pi‖ (17)

The first component of Equation (15):

∑
S1

g
(
‖pj − pi‖

)
‖pj − pi‖2

+ ∑
S2

−f
(
‖pj − pi‖

)
‖pj − pi‖2

= ∑
S1

g
(
‖pj − pi‖

)
‖pj − pi‖2

+ ∑
S2

Amin‖pj − pi‖2

Named α = min{Gamin, Amin}, we have:

∑
S1

g
(
‖pj − pi‖

)
‖pj − pi‖2

+ ∑
S2

−f
(
‖pj − pi‖

)
‖pj − pi‖2 ≥ α ∑

S1∪S2

‖pj − pi‖2
(18)

Combination of Inequalities (16) and (18), with ‖pj − pi‖ ≤ σ∗s , (i, j) ∈ S2, we have:

·
V ≤ −α

N

∑
i=1

N

∑
j=1
‖pj − pi‖2

+ Aminσ
∗
s

2 (19)

From the definition of the swarm robot center, we have:
N

∑
j=1

pj = Npc (20)

Two sides of (20) minus Nei, we have:
N

∑
j=1

(
pi − pj

)
= N

(
pi − pc

)
Thus, the sum of the squared deviations is given by the formula:

N
∑

i=1
‖ei‖2

= 1
N

N
∑

i=1

N
∑

j=1

(
pi − pj)Tei = 1

N

N−1
∑

i=1

N
∑

j=1
‖pj − pi‖2

= 1
2N

N
∑

i=1

N
∑

j=1
‖pj − pi‖2

(21)

Combining Equations (17) and (21) we have:

·
V ≤ −2Nα

N

∑
i=1
‖ei‖2

+ Aminσ
∗
s

2

·
V < 0 when ∑N

i=1 ‖ei‖2
> Aminσ

∗
s

2

2Nα . So, we can conclude with the following theorem:

Micromachines 2017, 8, 357 8 of 16

Theorem: Swarm robots are modeled by Equation (8) with the fuzzy control law of suction/thrust force
constructed according to (3), satisfying Conditions (4). After a period, all individuals of the swarm will be
converged in a restricted area by:

Ωσ =
{
∑ ‖pj − pi‖2 ≤ σ2

}
(22)

where σ =

√
Aminσ

∗
s

2

2Nα = α∗s

√
Amin
2Nα is the convergent radius of the swarm.

The effect of the parameters on the restricted area of the swarm (Ωσ) is as follows:

• If Amin increases, the thrust increases, the restricted area of the swarm robot increases.
• If α increases, the restricted area of the swarm robot decreases.
• If the size of the swarm (N) is bigger, the restricted area is lower.

4. Multitasking-Control System of Swarm Robot

When the robots perform the task of moving to a destination, on the way they must avoid
obstacles. So, each robot in the swarm has three tasks as follows:

• The first task is avoiding obstacles
• The second task is moving to the destination.
• The third task is maintaining the swarm: Avoiding collisions among individuals in the swarm,

but not splitting the group.

In order for the robot to perform the above tasks, the supervisor selects the priority of the tasks.
In this study, the priority of the tasks in order is: Avoiding obstacles, moving to the destination, and
maintaining the swarm. Assume that the obstacles are static and are known then the speed vector
of each robot based on the null- space behavioral control technique [36] is calculated according to
Figure 4.

Micromachines 2017, 8, 357 8 of 16

V < 0 when ∑ e > ∗
α

. So, we can conclude with the following theorem:
Theorem: Swarm robots are modeled by Equation (8) with the fuzzy control law of suction/thrust force

constructed according to (3), satisfying Conditions (4). After a period, all individuals of the swarm will be
converged in a restricted area by:

σ = p − p ≤σ (22)

where σ = ∗ = ∗ is the convergent radius of the swarm.

The effect of the parameters on the restricted area of the swarm (σ)	is as follows:
• If A increases, the thrust increases, the restricted area of the swarm robot increases.
• If α increases, the restricted area of the swarm robot decreases.
• If the size of the swarm (N) is bigger, the restricted area is lower.

4. Multitasking-Control System of Swarm Robot

When the robots perform the task of moving to a destination, on the way they must avoid
obstacles. So, each robot in the swarm has three tasks as follows:
• The first task is avoiding obstacles
• The second task is moving to the destination.
• The third task is maintaining the swarm: Avoiding collisions among individuals in the swarm,

but not splitting the group.
In order for the robot to perform the above tasks, the supervisor selects the priority of the tasks.

In this study, the priority of the tasks in order is: Avoiding obstacles, moving to the destination, and
maintaining the swarm. Assume that the obstacles are static and are known then the speed vector of
each robot based on the null- space behavioral control technique [36] is calculated according to
Figure 4.

Figure 4. The speed vector of each robot based on the null-space behavioral control technique.

The speed of the robot (i) is determined as follows: v = v + N v + N v
where v , v , v are the speed vectors performing the tasks: Avoiding obstacles, moving to the
destination and maintaining the swarm. N , N are the projection matrixes according to the
priority of the tasks.

4.1. Determining the Speed Component Avoiding Obstacles

Figure 4. The speed vector of each robot based on the null-space behavioral control technique.

The speed of the robot (i) is determined as follows:

vi = vo + Novg + Nogvs

where vo, vg, vs are the speed vectors performing the tasks: Avoiding obstacles, moving to the
destination and maintaining the swarm. No, Nog are the projection matrixes according to the priority
of the tasks.

Micromachines 2017, 8, 357 9 of 16

4.1. Determining the Speed Component Avoiding Obstacles

Assume that in the working environment of the swarm the robot has M obstructions,

pom =

pom

1
pom

2
...

pom
n

 ∈ Rn×1 is the position of the obstruction (m) in n-dimensional space, (m = 1 ÷M).

σo ∈ R is the actual distance between the individual robot (i) and the obstacle (m):

σo = ‖pom − pi‖ =
√(

pom
1 − pi

1
)2

+
(
pom

2 − pi
2
)2

+ · · ·+
(
pom

n − pi
n
)2

The purpose of the speed component avoiding obstacle is that if the obstacle lies in the moving way,
the robot must be kept away from the obstacle at a safe distance σo,d = σ∗o, if the obstacle is outside the
safe area of the robot, the obstacle does not affect the movement speed of the robot. So, the movement
speed of the robot depends on the distance between the robot and the obstacle.

The Jacobi Matrix Jo ∈ RM×n shows the movement speed of the robot avoiding obstacles:

Jo =

[
po1−pi

‖po1−pi‖

]T

[
po2−pi

‖po2−pi‖

]T

...[
poM−pi

‖poM−pi‖

]T

= p̂T

io (23)

The Matrix inverse of Jo:
J+o = p̂io, J+o ∈ Rn×M

The projection matrix of Jo:

No = In − p̂iop̂T
io, No ∈ Rn × n (24)

where In is the unit matrix.
The speed component avoiding the obstacle is defined as follows:

vo = −kvoJ+o (σo − σ∗o) = −kvoJ+o
∼
σo (25)

where kvo is a negative coefficient,
∼
σo = σo − σ∗o is the error between the actual distance and the

desired distance from the robot to the obstacle.

4.2. Determining the Speed Component Moving to the Target

Named pg =

pg

1
pg

2
...

pg
n

 ∈ Rn×1 is the position of the target, σg∈ R is the actual distance between

the robot (i) and the target, σg is calculated according to the formula:

σg = ‖pg − pi‖ =
√(

pg
1 − pi

1

)2
+
(

pg
2 − pi

2

)2
+ · · ·+

(
pg

n − pi
n

)2

The purpose of the speed component moving to the target is that the desired distance (σ∗g) is
equal to 0:

σg,d = σ∗g = 0

Micromachines 2017, 8, 357 10 of 16

The Jacobi Matrix Jg ∈ R1×n:

Jg =

[
pg − pi

‖pg − pi‖

]T

= p̂T
ig (26)

The Matrix inverse of Jg:
J+g = p̂ig, J+g ∈ Rn×1

The projection matrix of Jg:

Ng = In − p̂igp̂T
ig, Ng ∈ Rn×n (27)

The speed component moving to the target (i) is rewritten as follows:

vg = kvgJ+g
(
σg − σ∗g

)
= kvgJ+g

∼
σg (28)

where kvg is a positive coefficient,
∼
σg = σg−σ∗g is the error between the actual distance and the desired

distance from the robot to the target:

∼
σg = σg − σ∗g = σg

4.3. Determining the Maintained-Swarm Speed Component

The purpose of the maintained-swarm speed component is keeping σs = σ∗s ∈ R. In this condition,
the difference between the actual distance and the desired distance is:

∼
σs = σs − σ∗s

From the model Equation (8) of the individual robot (i), the Jacobi matrix Js:

Js = p̂T
s =

Js1
Js2
...

JsN

 =

p̂T

s1
p̂T

s2
...

p̂T
sN

 =

[
p1−pi

‖p1−pi‖

]T

[
p2−pi

‖p2−pi‖

]T

...[
pN−pi

‖pN−pi‖

]T

∈ RN×n (29)

The Matrix inverse of Js:

J+s = p̂s =

Js1
Js2
...

JsN

T

=

p̂T

s1
p̂T

s2
...

p̂T
sN

T

=

[
p1−pi

‖p1−pi‖

]T

[
p2−pi

‖p2−pi‖

]T

...[
pN−pi

‖pN−pi‖

]T

T

∈ Rn×N (30)

The projection matrix of Js:
Ns = In − p̂sp̂T

s , Ns ∈ Rn×n (31)

The maintained-swarm speed component of the individual robot (i) is defined as follows:

vs = J+s f(
∼
σs) ∈ Rn×1 (32)

Micromachines 2017, 8, 357 11 of 16

Combining all the speed vectors of each robot when performing all three tasks based on the NSB
method is shown in Figure 4:

vi = vo + Novg + Nogvs = −kvoJ+o
∼
σo + kvgNoJ+g

∼
σg + NogJ+s f(

∼
σs) (33)

where: vi ∈ Rn×1, Jog =

[
Jo
Jg

]
, Jog ∈ R(M+1)×n, Nog = In − J+ogJog, Nog ∈ Rn×n.

4.4. The Algorithm of Swarm Robot Control for Performing Multiple-Task

The algorithm of swarm robot control for performing multiple-tasks includes the following steps:

• The first step

â Enter the number (N) of robots in the swarm.
â Enter the number (M) of obstacles in the moving space.
â Initially the position of individual robots in n-dimensional space:

p1 =

p1

1
p1

2
...

p1
n

, p2 =

p2

1
p2

2
...

p2
n

, ... pN =

pN

1
pN

2
...

pN
n

â Placement of M obstacles and the destination (g) in n-dimensional space:

po1 =

po1

1
po1

2
...

po1
n

, po2 =

po2

1
po2

2
...

po2
n

, . . . poM =

poM

1
poM

2
...

poM
n

, pg =

pg

1
pg

2
...

pg
n

â Enter the safe distance between the individual robot and obstacle σ∗o, the safe distance

among robot individuals σ∗s
â Enter the coefficients kvo and kvg

â Enter the number of steps to calculate (K).

• The second step

â Calculating the distance between each robot (i) and each obstacle σo, the distance between
each robot and target, the distance between robot (i) and robot (j).

â Calculating the suction/thrust force f(σs) according to Equation (3), satisfying Condition (4).

• The third step

â Comparing the actual distance and safe distance from the robot (i) to the obstacle (m):

⏤ U+23E4 \strns∗

⏥ U+23E5 \fltns∗

⏦ U+23E6 \accurrent∗

⏧ U+23E7 \elinters∗

␣ U+2423 \mathvisiblespaceⓇ U+24C7 \circledRⓈ U+24C8 \circledS
■ U+25A0 \mdlgblksquare∗, \blacksquare
□ U+25A1 \mdlgwhtsquare∗, \square, \Box
▢ U+25A2 \squoval∗

▣ U+25A3 \blackinwhitesquare∗

▤ U+25A4 \squarehfill∗

▥ U+25A5 \squarevfill∗

▦ U+25A6 \squarehvfill∗

▧ U+25A7 \squarenwsefill∗

▨ U+25A8 \squareneswfill∗

▩ U+25A9 \squarecrossfill∗

▪ U+25AA \smblksquare∗

▫ U+25AB \smwhtsquare∗

▬ U+25AC \hrectangleblack∗

▭ U+25AD \hrectangle∗

▮ U+25AE \vrectangleblack∗

▯ U+25AF \vrectangle∗

▰ U+25B0 \parallelogramblack∗

▱ U+25B1 \parallelogram∗

▲ U+25B2 \bigblacktriangleup∗

▴ U+25B4 \blacktriangle∗

▶ U+25B6 \blacktriangleright∗

▸ U+25B8 \smallblacktriangleright∗

▹ U+25B9 \smalltriangleright∗

► U+25BA \blackpointerright∗

▻ U+25BB \whitepointerright∗

▼ U+25BC \bigblacktriangledown∗

▽ U+25BD \bigtriangledown
▾ U+25BE \blacktriangledown∗

▿ U+25BF \triangledown∗

◀ U+25C0 \blacktriangleleft∗

◂ U+25C2 \smallblacktriangleleft∗

◃ U+25C3 \smalltriangleleft∗

◄ U+25C4 \blackpointerleft∗

◅ U+25C5 \whitepointerleft∗

◆ U+25C6 \mdlgblkdiamond∗

◇ U+25C7 \mdlgwhtdiamond∗

◈ U+25C8 \blackinwhitediamond∗

◉ U+25C9 \fisheye∗

◊ U+25CA \mdlgwhtlozenge, \lozenge,
\Diamond

◌ U+25CC \dottedcircle∗

◍ U+25CD \circlevertfill∗

◎ U+25CE \bullseye∗

● U+25CF \mdlgblkcircle∗

◐ U+25D0 \circlelefthalfblack∗

◑ U+25D1 \circlerighthalfblack∗

◒ U+25D2 \circlebottomhalfblack∗

◓ U+25D3 \circletophalfblack∗

◔ U+25D4 \circleurquadblack∗

◕ U+25D5 \blackcircleulquadwhite∗

◖ U+25D6 \blacklefthalfcircle∗

◗ U+25D7 \blackrighthalfcircle∗

◘ U+25D8 \inversebullet∗

◙ U+25D9 \inversewhitecircle∗

◚ U+25DA \invwhiteupperhalfcircle∗

◛ U+25DB \invwhitelowerhalfcircle∗

◜ U+25DC \ularc∗

◝ U+25DD \urarc∗

◞ U+25DE \lrarc∗

◟ U+25DF \llarc∗

◠ U+25E0 \topsemicircle∗

◡ U+25E1 \botsemicircle∗

◢ U+25E2 \lrblacktriangle∗

◣ U+25E3 \llblacktriangle∗

◤ U+25E4 \ulblacktriangle∗

◥ U+25E5 \urblacktriangle∗

◦ U+25E6 \circ, \smwhtcircle
◧ U+25E7 \squareleftblack∗

◨ U+25E8 \squarerightblack∗

◩ U+25E9 \squareulblack∗

◪ U+25EA \squarelrblack∗

◬ U+25EC \trianglecdot
◭ U+25ED \triangleleftblack∗

◮ U+25EE \trianglerightblack∗

◯ U+25EF \lgwhtcircle∗

◰ U+25F0 \squareulquad∗

◱ U+25F1 \squarellquad∗

◲ U+25F2 \squarelrquad∗

◳ U+25F3 \squareurquad∗

◴ U+25F4 \circleulquad∗

◵ U+25F5 \circlellquad∗

◶ U+25F6 \circlelrquad∗

◷ U+25F7 \circleurquad∗

◸ U+25F8 \ultriangle∗

6

If σo ≥ σ∗o, the robot (i) does not need to avoid the obstacle (o), it means Jo = [0].

⏤ U+23E4 \strns∗

⏥ U+23E5 \fltns∗

⏦ U+23E6 \accurrent∗

⏧ U+23E7 \elinters∗

␣ U+2423 \mathvisiblespaceⓇ U+24C7 \circledRⓈ U+24C8 \circledS
■ U+25A0 \mdlgblksquare∗, \blacksquare
□ U+25A1 \mdlgwhtsquare∗, \square, \Box
▢ U+25A2 \squoval∗

▣ U+25A3 \blackinwhitesquare∗

▤ U+25A4 \squarehfill∗

▥ U+25A5 \squarevfill∗

▦ U+25A6 \squarehvfill∗

▧ U+25A7 \squarenwsefill∗

▨ U+25A8 \squareneswfill∗

▩ U+25A9 \squarecrossfill∗

▪ U+25AA \smblksquare∗

▫ U+25AB \smwhtsquare∗

▬ U+25AC \hrectangleblack∗

▭ U+25AD \hrectangle∗

▮ U+25AE \vrectangleblack∗

▯ U+25AF \vrectangle∗

▰ U+25B0 \parallelogramblack∗

▱ U+25B1 \parallelogram∗

▲ U+25B2 \bigblacktriangleup∗

▴ U+25B4 \blacktriangle∗

▶ U+25B6 \blacktriangleright∗

▸ U+25B8 \smallblacktriangleright∗

▹ U+25B9 \smalltriangleright∗

► U+25BA \blackpointerright∗

▻ U+25BB \whitepointerright∗

▼ U+25BC \bigblacktriangledown∗

▽ U+25BD \bigtriangledown
▾ U+25BE \blacktriangledown∗

▿ U+25BF \triangledown∗

◀ U+25C0 \blacktriangleleft∗

◂ U+25C2 \smallblacktriangleleft∗

◃ U+25C3 \smalltriangleleft∗

◄ U+25C4 \blackpointerleft∗

◅ U+25C5 \whitepointerleft∗

◆ U+25C6 \mdlgblkdiamond∗

◇ U+25C7 \mdlgwhtdiamond∗

◈ U+25C8 \blackinwhitediamond∗

◉ U+25C9 \fisheye∗

◊ U+25CA \mdlgwhtlozenge, \lozenge,
\Diamond

◌ U+25CC \dottedcircle∗

◍ U+25CD \circlevertfill∗

◎ U+25CE \bullseye∗

● U+25CF \mdlgblkcircle∗

◐ U+25D0 \circlelefthalfblack∗

◑ U+25D1 \circlerighthalfblack∗

◒ U+25D2 \circlebottomhalfblack∗

◓ U+25D3 \circletophalfblack∗

◔ U+25D4 \circleurquadblack∗

◕ U+25D5 \blackcircleulquadwhite∗

◖ U+25D6 \blacklefthalfcircle∗

◗ U+25D7 \blackrighthalfcircle∗

◘ U+25D8 \inversebullet∗

◙ U+25D9 \inversewhitecircle∗

◚ U+25DA \invwhiteupperhalfcircle∗

◛ U+25DB \invwhitelowerhalfcircle∗

◜ U+25DC \ularc∗

◝ U+25DD \urarc∗

◞ U+25DE \lrarc∗

◟ U+25DF \llarc∗

◠ U+25E0 \topsemicircle∗

◡ U+25E1 \botsemicircle∗

◢ U+25E2 \lrblacktriangle∗

◣ U+25E3 \llblacktriangle∗

◤ U+25E4 \ulblacktriangle∗

◥ U+25E5 \urblacktriangle∗

◦ U+25E6 \circ, \smwhtcircle
◧ U+25E7 \squareleftblack∗

◨ U+25E8 \squarerightblack∗

◩ U+25E9 \squareulblack∗

◪ U+25EA \squarelrblack∗

◬ U+25EC \trianglecdot
◭ U+25ED \triangleleftblack∗

◮ U+25EE \trianglerightblack∗

◯ U+25EF \lgwhtcircle∗

◰ U+25F0 \squareulquad∗

◱ U+25F1 \squarellquad∗

◲ U+25F2 \squarelrquad∗

◳ U+25F3 \squareurquad∗

◴ U+25F4 \circleulquad∗

◵ U+25F5 \circlellquad∗

◶ U+25F6 \circlelrquad∗

◷ U+25F7 \circleurquad∗

◸ U+25F8 \ultriangle∗

6

If σo < σ∗o, the robot (i) needs to avoid the obstacle (o), calculating Jo by
Formula (26). Calculating J+o , No, vo.

â Comparing the actual distance and the desired distance from the robot (i) to the target:

⏤ U+23E4 \strns∗

⏥ U+23E5 \fltns∗

⏦ U+23E6 \accurrent∗

⏧ U+23E7 \elinters∗

␣ U+2423 \mathvisiblespaceⓇ U+24C7 \circledRⓈ U+24C8 \circledS
■ U+25A0 \mdlgblksquare∗, \blacksquare
□ U+25A1 \mdlgwhtsquare∗, \square, \Box
▢ U+25A2 \squoval∗

▣ U+25A3 \blackinwhitesquare∗

▤ U+25A4 \squarehfill∗

▥ U+25A5 \squarevfill∗

▦ U+25A6 \squarehvfill∗

▧ U+25A7 \squarenwsefill∗

▨ U+25A8 \squareneswfill∗

▩ U+25A9 \squarecrossfill∗

▪ U+25AA \smblksquare∗

▫ U+25AB \smwhtsquare∗

▬ U+25AC \hrectangleblack∗

▭ U+25AD \hrectangle∗

▮ U+25AE \vrectangleblack∗

▯ U+25AF \vrectangle∗

▰ U+25B0 \parallelogramblack∗

▱ U+25B1 \parallelogram∗

▲ U+25B2 \bigblacktriangleup∗

▴ U+25B4 \blacktriangle∗

▶ U+25B6 \blacktriangleright∗

▸ U+25B8 \smallblacktriangleright∗

▹ U+25B9 \smalltriangleright∗

► U+25BA \blackpointerright∗

▻ U+25BB \whitepointerright∗

▼ U+25BC \bigblacktriangledown∗

▽ U+25BD \bigtriangledown
▾ U+25BE \blacktriangledown∗

▿ U+25BF \triangledown∗

◀ U+25C0 \blacktriangleleft∗

◂ U+25C2 \smallblacktriangleleft∗

◃ U+25C3 \smalltriangleleft∗

◄ U+25C4 \blackpointerleft∗

◅ U+25C5 \whitepointerleft∗

◆ U+25C6 \mdlgblkdiamond∗

◇ U+25C7 \mdlgwhtdiamond∗

◈ U+25C8 \blackinwhitediamond∗

◉ U+25C9 \fisheye∗

◊ U+25CA \mdlgwhtlozenge, \lozenge,
\Diamond

◌ U+25CC \dottedcircle∗

◍ U+25CD \circlevertfill∗

◎ U+25CE \bullseye∗

● U+25CF \mdlgblkcircle∗

◐ U+25D0 \circlelefthalfblack∗

◑ U+25D1 \circlerighthalfblack∗

◒ U+25D2 \circlebottomhalfblack∗

◓ U+25D3 \circletophalfblack∗

◔ U+25D4 \circleurquadblack∗

◕ U+25D5 \blackcircleulquadwhite∗

◖ U+25D6 \blacklefthalfcircle∗

◗ U+25D7 \blackrighthalfcircle∗

◘ U+25D8 \inversebullet∗

◙ U+25D9 \inversewhitecircle∗

◚ U+25DA \invwhiteupperhalfcircle∗

◛ U+25DB \invwhitelowerhalfcircle∗

◜ U+25DC \ularc∗

◝ U+25DD \urarc∗

◞ U+25DE \lrarc∗

◟ U+25DF \llarc∗

◠ U+25E0 \topsemicircle∗

◡ U+25E1 \botsemicircle∗

◢ U+25E2 \lrblacktriangle∗

◣ U+25E3 \llblacktriangle∗

◤ U+25E4 \ulblacktriangle∗

◥ U+25E5 \urblacktriangle∗

◦ U+25E6 \circ, \smwhtcircle
◧ U+25E7 \squareleftblack∗

◨ U+25E8 \squarerightblack∗

◩ U+25E9 \squareulblack∗

◪ U+25EA \squarelrblack∗

◬ U+25EC \trianglecdot
◭ U+25ED \triangleleftblack∗

◮ U+25EE \trianglerightblack∗

◯ U+25EF \lgwhtcircle∗

◰ U+25F0 \squareulquad∗

◱ U+25F1 \squarellquad∗

◲ U+25F2 \squarelrquad∗

◳ U+25F3 \squareurquad∗

◴ U+25F4 \circleulquad∗

◵ U+25F5 \circlellquad∗

◶ U+25F6 \circlelrquad∗

◷ U+25F7 \circleurquad∗

◸ U+25F8 \ultriangle∗

6

If σg = 0, the robot (i) reached the target g, Jg = [0].

⏤ U+23E4 \strns∗

⏥ U+23E5 \fltns∗

⏦ U+23E6 \accurrent∗

⏧ U+23E7 \elinters∗

␣ U+2423 \mathvisiblespaceⓇ U+24C7 \circledRⓈ U+24C8 \circledS
■ U+25A0 \mdlgblksquare∗, \blacksquare
□ U+25A1 \mdlgwhtsquare∗, \square, \Box
▢ U+25A2 \squoval∗

▣ U+25A3 \blackinwhitesquare∗

▤ U+25A4 \squarehfill∗

▥ U+25A5 \squarevfill∗

▦ U+25A6 \squarehvfill∗

▧ U+25A7 \squarenwsefill∗

▨ U+25A8 \squareneswfill∗

▩ U+25A9 \squarecrossfill∗

▪ U+25AA \smblksquare∗

▫ U+25AB \smwhtsquare∗

▬ U+25AC \hrectangleblack∗

▭ U+25AD \hrectangle∗

▮ U+25AE \vrectangleblack∗

▯ U+25AF \vrectangle∗

▰ U+25B0 \parallelogramblack∗

▱ U+25B1 \parallelogram∗

▲ U+25B2 \bigblacktriangleup∗

▴ U+25B4 \blacktriangle∗

▶ U+25B6 \blacktriangleright∗

▸ U+25B8 \smallblacktriangleright∗

▹ U+25B9 \smalltriangleright∗

► U+25BA \blackpointerright∗

▻ U+25BB \whitepointerright∗

▼ U+25BC \bigblacktriangledown∗

▽ U+25BD \bigtriangledown
▾ U+25BE \blacktriangledown∗

▿ U+25BF \triangledown∗

◀ U+25C0 \blacktriangleleft∗

◂ U+25C2 \smallblacktriangleleft∗

◃ U+25C3 \smalltriangleleft∗

◄ U+25C4 \blackpointerleft∗

◅ U+25C5 \whitepointerleft∗

◆ U+25C6 \mdlgblkdiamond∗

◇ U+25C7 \mdlgwhtdiamond∗

◈ U+25C8 \blackinwhitediamond∗

◉ U+25C9 \fisheye∗

◊ U+25CA \mdlgwhtlozenge, \lozenge,
\Diamond

◌ U+25CC \dottedcircle∗

◍ U+25CD \circlevertfill∗

◎ U+25CE \bullseye∗

● U+25CF \mdlgblkcircle∗

◐ U+25D0 \circlelefthalfblack∗

◑ U+25D1 \circlerighthalfblack∗

◒ U+25D2 \circlebottomhalfblack∗

◓ U+25D3 \circletophalfblack∗

◔ U+25D4 \circleurquadblack∗

◕ U+25D5 \blackcircleulquadwhite∗

◖ U+25D6 \blacklefthalfcircle∗

◗ U+25D7 \blackrighthalfcircle∗

◘ U+25D8 \inversebullet∗

◙ U+25D9 \inversewhitecircle∗

◚ U+25DA \invwhiteupperhalfcircle∗

◛ U+25DB \invwhitelowerhalfcircle∗

◜ U+25DC \ularc∗

◝ U+25DD \urarc∗

◞ U+25DE \lrarc∗

◟ U+25DF \llarc∗

◠ U+25E0 \topsemicircle∗

◡ U+25E1 \botsemicircle∗

◢ U+25E2 \lrblacktriangle∗

◣ U+25E3 \llblacktriangle∗

◤ U+25E4 \ulblacktriangle∗

◥ U+25E5 \urblacktriangle∗

◦ U+25E6 \circ, \smwhtcircle
◧ U+25E7 \squareleftblack∗

◨ U+25E8 \squarerightblack∗

◩ U+25E9 \squareulblack∗

◪ U+25EA \squarelrblack∗

◬ U+25EC \trianglecdot
◭ U+25ED \triangleleftblack∗

◮ U+25EE \trianglerightblack∗

◯ U+25EF \lgwhtcircle∗

◰ U+25F0 \squareulquad∗

◱ U+25F1 \squarellquad∗

◲ U+25F2 \squarelrquad∗

◳ U+25F3 \squareurquad∗

◴ U+25F4 \circleulquad∗

◵ U+25F5 \circlellquad∗

◶ U+25F6 \circlelrquad∗

◷ U+25F7 \circleurquad∗

◸ U+25F8 \ultriangle∗

6

If σg > 0, the robot (i) has not reached the target, calculating Jg by the Formula (24).

⏤ U+23E4 \strns∗

⏥ U+23E5 \fltns∗

⏦ U+23E6 \accurrent∗

⏧ U+23E7 \elinters∗

␣ U+2423 \mathvisiblespaceⓇ U+24C7 \circledRⓈ U+24C8 \circledS
■ U+25A0 \mdlgblksquare∗, \blacksquare
□ U+25A1 \mdlgwhtsquare∗, \square, \Box
▢ U+25A2 \squoval∗

▣ U+25A3 \blackinwhitesquare∗

▤ U+25A4 \squarehfill∗

▥ U+25A5 \squarevfill∗

▦ U+25A6 \squarehvfill∗

▧ U+25A7 \squarenwsefill∗

▨ U+25A8 \squareneswfill∗

▩ U+25A9 \squarecrossfill∗

▪ U+25AA \smblksquare∗

▫ U+25AB \smwhtsquare∗

▬ U+25AC \hrectangleblack∗

▭ U+25AD \hrectangle∗

▮ U+25AE \vrectangleblack∗

▯ U+25AF \vrectangle∗

▰ U+25B0 \parallelogramblack∗

▱ U+25B1 \parallelogram∗

▲ U+25B2 \bigblacktriangleup∗

▴ U+25B4 \blacktriangle∗

▶ U+25B6 \blacktriangleright∗

▸ U+25B8 \smallblacktriangleright∗

▹ U+25B9 \smalltriangleright∗

► U+25BA \blackpointerright∗

▻ U+25BB \whitepointerright∗

▼ U+25BC \bigblacktriangledown∗

▽ U+25BD \bigtriangledown
▾ U+25BE \blacktriangledown∗

▿ U+25BF \triangledown∗

◀ U+25C0 \blacktriangleleft∗

◂ U+25C2 \smallblacktriangleleft∗

◃ U+25C3 \smalltriangleleft∗

◄ U+25C4 \blackpointerleft∗

◅ U+25C5 \whitepointerleft∗

◆ U+25C6 \mdlgblkdiamond∗

◇ U+25C7 \mdlgwhtdiamond∗

◈ U+25C8 \blackinwhitediamond∗

◉ U+25C9 \fisheye∗

◊ U+25CA \mdlgwhtlozenge, \lozenge,
\Diamond

◌ U+25CC \dottedcircle∗

◍ U+25CD \circlevertfill∗

◎ U+25CE \bullseye∗

● U+25CF \mdlgblkcircle∗

◐ U+25D0 \circlelefthalfblack∗

◑ U+25D1 \circlerighthalfblack∗

◒ U+25D2 \circlebottomhalfblack∗

◓ U+25D3 \circletophalfblack∗

◔ U+25D4 \circleurquadblack∗

◕ U+25D5 \blackcircleulquadwhite∗

◖ U+25D6 \blacklefthalfcircle∗

◗ U+25D7 \blackrighthalfcircle∗

◘ U+25D8 \inversebullet∗

◙ U+25D9 \inversewhitecircle∗

◚ U+25DA \invwhiteupperhalfcircle∗

◛ U+25DB \invwhitelowerhalfcircle∗

◜ U+25DC \ularc∗

◝ U+25DD \urarc∗

◞ U+25DE \lrarc∗

◟ U+25DF \llarc∗

◠ U+25E0 \topsemicircle∗

◡ U+25E1 \botsemicircle∗

◢ U+25E2 \lrblacktriangle∗

◣ U+25E3 \llblacktriangle∗

◤ U+25E4 \ulblacktriangle∗

◥ U+25E5 \urblacktriangle∗

◦ U+25E6 \circ, \smwhtcircle
◧ U+25E7 \squareleftblack∗

◨ U+25E8 \squarerightblack∗

◩ U+25E9 \squareulblack∗

◪ U+25EA \squarelrblack∗

◬ U+25EC \trianglecdot
◭ U+25ED \triangleleftblack∗

◮ U+25EE \trianglerightblack∗

◯ U+25EF \lgwhtcircle∗

◰ U+25F0 \squareulquad∗

◱ U+25F1 \squarellquad∗

◲ U+25F2 \squarelrquad∗

◳ U+25F3 \squareurquad∗

◴ U+25F4 \circleulquad∗

◵ U+25F5 \circlellquad∗

◶ U+25F6 \circlelrquad∗

◷ U+25F7 \circleurquad∗

◸ U+25F8 \ultriangle∗

6

Calculating J+g , Ng, vg, calculating: Jog, J+og, Nog.

Micromachines 2017, 8, 357 12 of 16

â Comparing the actual distance and the desired distance from the robot (i) to the robot (j):

⏤ U+23E4 \strns∗

⏥ U+23E5 \fltns∗

⏦ U+23E6 \accurrent∗

⏧ U+23E7 \elinters∗

␣ U+2423 \mathvisiblespaceⓇ U+24C7 \circledRⓈ U+24C8 \circledS
■ U+25A0 \mdlgblksquare∗, \blacksquare
□ U+25A1 \mdlgwhtsquare∗, \square, \Box
▢ U+25A2 \squoval∗

▣ U+25A3 \blackinwhitesquare∗

▤ U+25A4 \squarehfill∗

▥ U+25A5 \squarevfill∗

▦ U+25A6 \squarehvfill∗

▧ U+25A7 \squarenwsefill∗

▨ U+25A8 \squareneswfill∗

▩ U+25A9 \squarecrossfill∗

▪ U+25AA \smblksquare∗

▫ U+25AB \smwhtsquare∗

▬ U+25AC \hrectangleblack∗

▭ U+25AD \hrectangle∗

▮ U+25AE \vrectangleblack∗

▯ U+25AF \vrectangle∗

▰ U+25B0 \parallelogramblack∗

▱ U+25B1 \parallelogram∗

▲ U+25B2 \bigblacktriangleup∗

▴ U+25B4 \blacktriangle∗

▶ U+25B6 \blacktriangleright∗

▸ U+25B8 \smallblacktriangleright∗

▹ U+25B9 \smalltriangleright∗

► U+25BA \blackpointerright∗

▻ U+25BB \whitepointerright∗

▼ U+25BC \bigblacktriangledown∗

▽ U+25BD \bigtriangledown
▾ U+25BE \blacktriangledown∗

▿ U+25BF \triangledown∗

◀ U+25C0 \blacktriangleleft∗

◂ U+25C2 \smallblacktriangleleft∗

◃ U+25C3 \smalltriangleleft∗

◄ U+25C4 \blackpointerleft∗

◅ U+25C5 \whitepointerleft∗

◆ U+25C6 \mdlgblkdiamond∗

◇ U+25C7 \mdlgwhtdiamond∗

◈ U+25C8 \blackinwhitediamond∗

◉ U+25C9 \fisheye∗

◊ U+25CA \mdlgwhtlozenge, \lozenge,
\Diamond

◌ U+25CC \dottedcircle∗

◍ U+25CD \circlevertfill∗

◎ U+25CE \bullseye∗

● U+25CF \mdlgblkcircle∗

◐ U+25D0 \circlelefthalfblack∗

◑ U+25D1 \circlerighthalfblack∗

◒ U+25D2 \circlebottomhalfblack∗

◓ U+25D3 \circletophalfblack∗

◔ U+25D4 \circleurquadblack∗

◕ U+25D5 \blackcircleulquadwhite∗

◖ U+25D6 \blacklefthalfcircle∗

◗ U+25D7 \blackrighthalfcircle∗

◘ U+25D8 \inversebullet∗

◙ U+25D9 \inversewhitecircle∗

◚ U+25DA \invwhiteupperhalfcircle∗

◛ U+25DB \invwhitelowerhalfcircle∗

◜ U+25DC \ularc∗

◝ U+25DD \urarc∗

◞ U+25DE \lrarc∗

◟ U+25DF \llarc∗

◠ U+25E0 \topsemicircle∗

◡ U+25E1 \botsemicircle∗

◢ U+25E2 \lrblacktriangle∗

◣ U+25E3 \llblacktriangle∗

◤ U+25E4 \ulblacktriangle∗

◥ U+25E5 \urblacktriangle∗

◦ U+25E6 \circ, \smwhtcircle
◧ U+25E7 \squareleftblack∗

◨ U+25E8 \squarerightblack∗

◩ U+25E9 \squareulblack∗

◪ U+25EA \squarelrblack∗

◬ U+25EC \trianglecdot
◭ U+25ED \triangleleftblack∗

◮ U+25EE \trianglerightblack∗

◯ U+25EF \lgwhtcircle∗

◰ U+25F0 \squareulquad∗

◱ U+25F1 \squarellquad∗

◲ U+25F2 \squarelrquad∗

◳ U+25F3 \squareurquad∗

◴ U+25F4 \circleulquad∗

◵ U+25F5 \circlellquad∗

◶ U+25F6 \circlelrquad∗

◷ U+25F7 \circleurquad∗

◸ U+25F8 \ultriangle∗

6

If σs > σ∗s , the robot (i) and the robot (j) move towards each other by the suction
force f(σs) > 0.

⏤ U+23E4 \strns∗

⏥ U+23E5 \fltns∗

⏦ U+23E6 \accurrent∗

⏧ U+23E7 \elinters∗

␣ U+2423 \mathvisiblespaceⓇ U+24C7 \circledRⓈ U+24C8 \circledS
■ U+25A0 \mdlgblksquare∗, \blacksquare
□ U+25A1 \mdlgwhtsquare∗, \square, \Box
▢ U+25A2 \squoval∗

▣ U+25A3 \blackinwhitesquare∗

▤ U+25A4 \squarehfill∗

▥ U+25A5 \squarevfill∗

▦ U+25A6 \squarehvfill∗

▧ U+25A7 \squarenwsefill∗

▨ U+25A8 \squareneswfill∗

▩ U+25A9 \squarecrossfill∗

▪ U+25AA \smblksquare∗

▫ U+25AB \smwhtsquare∗

▬ U+25AC \hrectangleblack∗

▭ U+25AD \hrectangle∗

▮ U+25AE \vrectangleblack∗

▯ U+25AF \vrectangle∗

▰ U+25B0 \parallelogramblack∗

▱ U+25B1 \parallelogram∗

▲ U+25B2 \bigblacktriangleup∗

▴ U+25B4 \blacktriangle∗

▶ U+25B6 \blacktriangleright∗

▸ U+25B8 \smallblacktriangleright∗

▹ U+25B9 \smalltriangleright∗

► U+25BA \blackpointerright∗

▻ U+25BB \whitepointerright∗

▼ U+25BC \bigblacktriangledown∗

▽ U+25BD \bigtriangledown
▾ U+25BE \blacktriangledown∗

▿ U+25BF \triangledown∗

◀ U+25C0 \blacktriangleleft∗

◂ U+25C2 \smallblacktriangleleft∗

◃ U+25C3 \smalltriangleleft∗

◄ U+25C4 \blackpointerleft∗

◅ U+25C5 \whitepointerleft∗

◆ U+25C6 \mdlgblkdiamond∗

◇ U+25C7 \mdlgwhtdiamond∗

◈ U+25C8 \blackinwhitediamond∗

◉ U+25C9 \fisheye∗

◊ U+25CA \mdlgwhtlozenge, \lozenge,
\Diamond

◌ U+25CC \dottedcircle∗

◍ U+25CD \circlevertfill∗

◎ U+25CE \bullseye∗

● U+25CF \mdlgblkcircle∗

◐ U+25D0 \circlelefthalfblack∗

◑ U+25D1 \circlerighthalfblack∗

◒ U+25D2 \circlebottomhalfblack∗

◓ U+25D3 \circletophalfblack∗

◔ U+25D4 \circleurquadblack∗

◕ U+25D5 \blackcircleulquadwhite∗

◖ U+25D6 \blacklefthalfcircle∗

◗ U+25D7 \blackrighthalfcircle∗

◘ U+25D8 \inversebullet∗

◙ U+25D9 \inversewhitecircle∗

◚ U+25DA \invwhiteupperhalfcircle∗

◛ U+25DB \invwhitelowerhalfcircle∗

◜ U+25DC \ularc∗

◝ U+25DD \urarc∗

◞ U+25DE \lrarc∗

◟ U+25DF \llarc∗

◠ U+25E0 \topsemicircle∗

◡ U+25E1 \botsemicircle∗

◢ U+25E2 \lrblacktriangle∗

◣ U+25E3 \llblacktriangle∗

◤ U+25E4 \ulblacktriangle∗

◥ U+25E5 \urblacktriangle∗

◦ U+25E6 \circ, \smwhtcircle
◧ U+25E7 \squareleftblack∗

◨ U+25E8 \squarerightblack∗

◩ U+25E9 \squareulblack∗

◪ U+25EA \squarelrblack∗

◬ U+25EC \trianglecdot
◭ U+25ED \triangleleftblack∗

◮ U+25EE \trianglerightblack∗

◯ U+25EF \lgwhtcircle∗

◰ U+25F0 \squareulquad∗

◱ U+25F1 \squarellquad∗

◲ U+25F2 \squarelrquad∗

◳ U+25F3 \squareurquad∗

◴ U+25F4 \circleulquad∗

◵ U+25F5 \circlellquad∗

◶ U+25F6 \circlelrquad∗

◷ U+25F7 \circleurquad∗

◸ U+25F8 \ultriangle∗

6

If σs < σ∗s , the robot (i) and the robot (j) move away from each other by the thrust
force f(σs) < 0.

i. If σs = σ∗s , the robot (i) and the robot (j) keep their route because of f(σsi) = 0.
ii. Calculating Js, J+s , vs.

• The fourth step

â The speed of the individual (i) at the step k (k = 0 ÷ K − 1) is determined by the formula:

vi[k] = vo[k] + No[k]vg[k] + Nog[k]vs[k]

â The distance moved of the robot (i) in a step time(∆t):

∆Si[k + 1] = ∆Si[k] + vi[k] × ∆t

â The new position of the robot (i) after k + 1 steps:

pi[k + 1] = pi[k] + ∆Si[k + 1]

Repeat from the second step to the fourth step until all individuals converge at the target and
after K calculation steps.

5. Simulation Results and Analysis

We ran the simulation in the two-dimensional coordinate system [500, 500]. The initial position of
the robots, obstacles, and targets are random. The convergence process of the swarm robot without
obstacles is shown in Figure 5.

Micromachines 2017, 8, 357 12 of 16

∆S [k + 1] = ∆S [k] + v [k] 	×	∆t
 The new position of the robot (i) after k + 1 steps: p [k + 1] = p [k] + ∆S [k + 1]

Repeat from the second step to the fourth step until all individuals converge at the target and
after K calculation steps.

5. Simulation Results and Analysis

We ran the simulation in the two-dimensional coordinate system [500, 500]. The initial position
of the robots, obstacles, and targets are random. The convergence process of the swarm robot
without obstacles is shown in Figure 5.

Figure 5. The convergence process of the swarm robot without obstacles.

R is the actual convergence radius of the swarm robot, R is also the distance from the nearest
robot to the center of the swarm. The results of the calculation of the parameters in certain cases are
presented in Table 1.

Table 1. The parameters in certain cases.

N ∗ α β σ R
10 10 0.02 9.74 15.61 6.18
10 30 0.02 25.37 43.62 17.06
20 10 0.02 8.40 10.25 4.10
20 30 0.02 25.33 30.82 15.18
30 10 0.02 8.23 8.77 3.91
30 30 0.02 25.25 25.23 15.04

The results in Table 1 show that:
• If the size of the swarm (N) increases, the convergence radius decreases;
• If the safe distance (∗) increases, the convergence radius increases;

Figure 5. The convergence process of the swarm robot without obstacles.

Micromachines 2017, 8, 357 13 of 16

R is the actual convergence radius of the swarm robot, R is also the distance from the nearest
robot to the center of the swarm. The results of the calculation of the parameters in certain cases are
presented in Table 1.

Table 1. The parameters in certain cases.

N σ∗s α β σ R

10 10 0.02 9.74 15.61 6.18
10 30 0.02 25.37 43.62 17.06
20 10 0.02 8.40 10.25 4.10
20 30 0.02 25.33 30.82 15.18
30 10 0.02 8.23 8.77 3.91
30 30 0.02 25.25 25.23 15.04

The results in Table 1 show that:

• If the size of the swarm (N) increases, the convergence radius decreases;
• If the safe distance (σ∗s) increases, the convergence radius increases;
• The actual convergent radius (R) is always smaller than the calculated value (σ).

The simulation results are consistent with the theorem that the authors expressed above.
Run the swarm robot model with the obstacles, then the simulation results when the number of

robots are changing and the priority coefficient is changing are shown in Figures 6 and 7.
Figure 6 shows that all individual robots have moved to their destination and avoided obstacles

along the way. After individual robots converge to the destination, they only move around the
destination area and do not move away.

The simulation results when changing the priority coefficients kvo and kvg are shown in Figure 7.
From the simulation results, we see:

• If the coefficient kvg is larger, the individual movement to the target is faster.
• If we want to increase the coefficient kvg but not let the robot collide with obstacles, we must

reduce the coefficient kvo. This means, if kvg is more positive, kvo must be more negative.
• If the number of obstacles (M) is bigger, the avoid-obstacle-coefficient (kvo) must be more negative.

If the coefficient kvo is more negative, the ability of the robots to avoid obstacles is better, but the
moving time to the destination will be longer.

Micromachines 2017, 8, 357 13 of 16

• The actual convergent radius (R) is always smaller than the calculated value (σ).

The simulation results are consistent with the theorem that the authors expressed above.
Run the swarm robot model with the obstacles, then the simulation results when the number of

robots are changing and the priority coefficient is changing are shown in Figures 6 and 7.

Figure 6. The simulation results of the multi task process after a period.

Figure 7.The simulation results of the multitask process when the coefficients k 	 and k are
changing.

Figure 6. The simulation results of the multi task process after a period.

Micromachines 2017, 8, 357 14 of 16

Micromachines 2017, 8, 357 13 of 16

• The actual convergent radius (R) is always smaller than the calculated value (σ).

The simulation results are consistent with the theorem that the authors expressed above.
Run the swarm robot model with the obstacles, then the simulation results when the number of

robots are changing and the priority coefficient is changing are shown in Figures 6 and 7.

Figure 6. The simulation results of the multi task process after a period.

Figure 7.The simulation results of the multitask process when the coefficients k 	 and k are
changing.

Figure 7. The simulation results of the multitask process when the coefficients kvo and kvg are changing.

6. Conclusions

In this paper, the authors applied both fuzzy logic to control the suction/thrust force between
individuals in the swarm, and the null-space behavioral control technique to determine the total
speed vector of each robot. The proposed solution is close to nature with high flexibility by
selecting the input/output, defuzzifier, and the fuzzy rules. The simulation results coincide with
the theories proposed by the authors. Compared with the previous methods, the advantage of our
proposed method is that the object can be controlled easily without the requirement of knowing the
mathematical equation. We controlled effectively a swarm robot without the object model equations.
All individuals of the swarm move together to the destination without collision, and ensure the task of
avoiding obstacles.

Author Contributions: Nga Le Thi Thuy proposed the initial idea. Thang Nguyen Trong and Nga Le Thi Thuy
developed the research and analyzed the results together. Thang Nguyen Trong wrote the paper.

Conflicts of Interest: The authors declare no conflict of interest.

Micromachines 2017, 8, 357 15 of 16

References

1. Darmanin, R.N.; Bugeja, M.K. A review on multi-robot systems categorised by application domain.
In Proceedings of the 2017 25th Mediterranean Conference on Control and Automation (MED), Valletta, Malta,
3–6 July 2017; pp. 701–706.

2. Li, D.; Fan, Q.; Dai, X. Research status of multi-robot systems task allocation and uncertainty treatment.
J. Phys. Conf. Ser. 2017, 887, 012081. [CrossRef]

3. Gautam, A.; Mohan, S. A review of research in multi-robot systems. In Proceedings of the 2012 7th IEEE
International Conference on Industrial and Information Systems (ICIIS), Chennai, India, 6–9 August 2012;
pp. 1–5.

4. Bruemmer, D.J.; Dudenhoeffer, D.D.; McKay, M.D.; Anderson, M.O. A Robotic Swarm for Spill
Finding and Perimeter Formation. 2002. Available online: https://pdfs.semanticscholar.org/baa7/
5fc5db081a730a01ecfccb42167c62d39c58.pdf (access on 9 December 2017).

5. Mataric, M.J. Behaviour-based control: Examples from navigation, learning, and group behaviour. J. Exp.
Theor. Artif. Intell. 1997, 9, 323–336. [CrossRef]

6. Correll, N.; Martinoli, A. Multirobot inspection of industrial machinery. IEEE Robot. Autom. Mag. 2009, 16,
103–112. [CrossRef]

7. Kube, C.R.; Bonabeau, E. Cooperative transport by ants and robots. Robot. Auton. Syst. 2000, 30, 85–101.
[CrossRef]

8. Miyata, N.; Ota, J.; Arai, T.; Asama, H. Cooperative transport by multiple mobile robots in unknown static
environments associated with real-time task assignment. IEEE Trans. Robot. Autom. 2002, 18, 769–780. [CrossRef]

9. Farinelli, A.; Iocchi, L.; Nardi, D. Multirobot systems: A classification focused on coordination. IEEE Trans.
Syst. Man Cybern. Part B (Cybern.) 2004, 34, 2015–2028. [CrossRef]

10. Parker, L.E. Multiple mobile robot systems. In Springer Handbook of Robotics; Springer: Berlin/Heidelberg,
Germany, 2008; pp. 921–941.

11. Cai, Y.; Yang, S.X. A survey on multi-robot systems. In Proceedings of the World Automation Congress
(WAC), Puerto Vallarta, Mexico, 24–28 June 2012; pp. 1–6.

12. Yan, Z.; Jouandeau, N.; Cherif, A.A. A survey and analysis of multi-robot coordination. Int. J. Adv. Robot.
Syst. 2013, 10, 399. [CrossRef]

13. Cao, Y.; Yu, W.; Ren, W.; Chen, G. An overview of recent progress in the study of distributed multi-agent
coordination. IEEE Trans. Ind. Inf. 2013, 9, 427–438. [CrossRef]

14. Gerkey, B.P.; Matarić, M.J. A formal analysis and taxonomy of task allocation in multi-robot systems. Int. J.
Robot. Res. 2004, 23, 939–954. [CrossRef]

15. Khamis, A.; Hussein, A.; Elmogy, A. Multi-robot task allocation: A review of the state-of-the-art. Coop. Robot.
Sens. Netw. 2015, 604, 31–51.

16. Dias, M.B.; Zlot, R.; Kalra, N.; Stentz, A. Market-based multirobot coordination: A survey and analysis.
Proc. IEEE 2006, 94, 1257–1270. [CrossRef]

17. Brambilla, M.; Ferrante, E.; Birattari, M.; Dorigo, M. Swarm robotics: a review from the swarm engineering
perspective. Swarm Intell. 2013, 7, 1–41. [CrossRef]

18. Dorigo, M.; Floreano, D.; Gambardella, L.M.; Mondada, F.; Nolfi, S.; Baaboura, T.; Burnier, D.
Swarmanoid: A novel concept for the study of heterogeneous robotic swarms. IEEE Robot. Autom. Mag.
2013, 20, 60–71. [CrossRef]

19. Champion, B.T.; Joordens, M.A. Underwater swarm robotics review. In Proceedings of the 2015 10th System
of Systems Engineering Conference (SoSE), San Antonio, Texas, USA, 17–20 May 2015; pp. 111–116.

20. Son, J.H.; Ahn, H.S. Cooperative reinforcement learning: brief survey and application to bio-insect and
artificial robot interaction. In Proceedings of the IEEE/ASME International Conference on Mechtronic and
Embedded Systems and Applications, 2008 (MESA 2008), Beijing, China, 12–15 October 2008; pp. 71–76.

21. Goodrich, M.A.; Schultz, A.C. Human-robot interaction: A survey. Found. Trends Hum.-Comput. Interact.
2007, 1, 203–275. [CrossRef]

22. Chen, J.Y.; Barnes, M.J. Human-agent teaming for multirobot control: A review of human factors issues.
IEEE Trans. Hum.-Mach. Syst. 2014, 44, 13–29. [CrossRef]

http://dx.doi.org/10.1088/1742-6596/887/1/012081
https://pdfs.semanticscholar.org/baa7/5fc5db081a730a01ecfccb42167c62d39c58.pdf
https://pdfs.semanticscholar.org/baa7/5fc5db081a730a01ecfccb42167c62d39c58.pdf
http://dx.doi.org/10.1080/095281397147149
http://dx.doi.org/10.1109/MRA.2008.931633
http://dx.doi.org/10.1016/S0921-8890(99)00066-4
http://dx.doi.org/10.1109/TRA.2002.803464
http://dx.doi.org/10.1109/TSMCB.2004.832155
http://dx.doi.org/10.5772/57313
http://dx.doi.org/10.1109/TII.2012.2219061
http://dx.doi.org/10.1177/0278364904045564
http://dx.doi.org/10.1109/JPROC.2006.876939
http://dx.doi.org/10.1007/s11721-012-0075-2
http://dx.doi.org/10.1109/MRA.2013.2252996
http://dx.doi.org/10.1561/1100000005
http://dx.doi.org/10.1109/THMS.2013.2293535

Micromachines 2017, 8, 357 16 of 16

23. Guanghua, W.; Deyi, L.; Wenyan, G.; Peng, J. Study on formation control of multi-robot systems.
In Proceedings of the 2013 Third International Conference on Intelligent System Design and Engineering
Applications (ISDEA), Hong Kong, China, 16–18 January 2013; pp. 1335–1339.

24. Yang, M.; Yan, G.G.; Tian, Y.T. A review of studies in flocking for multi-robot system. In Proceedings of the
2010 International Conference on Computer, Mechatronics, Control and Electronic Engineering (CMCE),
Changchun, China, 24–26 August 2010; pp. 28–31.

25. Portugal, D.; Rocha, R. A Survey on Multi-Robot Patrolling Algorithms. 2011. Available online: http://ap.isr.uc.
pt/archive/dportugalPR11_Doceis2011.pdf (access on 9 December 2017).

26. Liu, Y.; Nejat, G. Robotic urban search and rescue: A survey from the control perspective. J. Intell. Robot. Syst.
2013, 72, 147. [CrossRef]

27. Cook, D.; Vardy, A.; Lewis, R. A survey of AUV and robot simulators for multi-vehicle operations. In Proceedings
of the 2014 IEEE/OES Autonomous Underwater Vehicles (AUV), Oxford, MS, USA, 6–9 October 2014; pp. 1–8.

28. Xiong, N.; He, J.; Yang, Y.; He, Y.; Kim, T.H.; Lin, C. A survey on decentralized flocking schemes for a set of
autonomous mobile robots. JCM 2010, 5, 31–38. [CrossRef]

29. Olfati-Saber, R. Flocking for multi-agent dynamic systems: Algorithms and theory. IEEE Trans. Autom. Contr.
2006, 51, 401–420. [CrossRef]

30. Gazi, V.; Passino, K.M. Stability analysis of swarms. IEEE Trans. Autom. Contr. 2003, 48, 692–697. [CrossRef]
31. Wang, L.; Fang, H. Stability analysis of practical anisotropie swarms. In Proceedings of the 2010 11th

International Conference on Control Automation Robotics & Vision (ICARCV), Singapore, 7–10 December 2010;
pp. 768–772.

32. Chen, X.B.; Pan, F.; Li, L.; Fang, H. Practical stability analysis for swarm systems. In Proceedings of the
IECON 2006-32nd Annual Conference on IEEE Industrial Electronics, Paris, France, 6–10 November 2006;
pp. 3904–3909.

33. Xue, Z.; Zeng, J.; Feng, C.; Liu, Z. Swarm target tracking collective behavior control with formation coverage
search agents & globally asymptotically stable analysis of stochastic swarm. JCP 2011, 6, 1772–1780.

34. Brooks, R. A robust layered control system for a mobile robot. IEEE J. Robot. Autom. 1986, 2, 14–23. [CrossRef]
35. Marino, A.; Parker, L.E.; Antonelli, G.; Caccavale, F. A decentralized architecture for multi-robot systems

based on the null-space-behavioral control with application to multi-robot border patrolling. J. Intell.
Robot. Syst. 2013, 71, 423–444. [CrossRef]

36. Wolkenhauer, O. A course in fuzzy systems and control. Int. J. Electr. Eng. Educ. 1997, 34, 282. [CrossRef]

© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://ap.isr.uc.pt/archive/dportugalPR11_Doceis2011.pdf
http://ap.isr.uc.pt/archive/dportugalPR11_Doceis2011.pdf
http://dx.doi.org/10.1007/s10846-013-9822-x
http://dx.doi.org/10.4304/jcm.5.1.31-38
http://dx.doi.org/10.1109/TAC.2005.864190
http://dx.doi.org/10.1109/TAC.2003.809765
http://dx.doi.org/10.1109/JRA.1986.1087032
http://dx.doi.org/10.1007/s10846-012-9783-5
http://dx.doi.org/10.1177/002072099703400310
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	Building the Function of the Suction/Thrust Ford Based on Fuzzy Logic
	The Stability of the System
	Multitasking-Control System of Swarm Robot
	Determining the Speed Component Avoiding Obstacles
	Determining the Speed Component Moving to the Target
	Determining the Maintained-Swarm Speed Component
	The Algorithm of Swarm Robot Control for Performing Multiple-Task

	Simulation Results and Analysis
	Conclusions

