
ARTICLE

A data reduction and compression description for
high throughput time-resolved electron microscopy
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Fast, direct electron detectors have significantly improved the spatio-temporal resolution of

electron microscopy movies. Preserving both spatial and temporal resolution in extended

observations, however, requires storing prohibitively large amounts of data. Here, we

describe an efficient and flexible data reduction and compression scheme (ReCoDe) that

retains both spatial and temporal resolution by preserving individual electron events. Running

ReCoDe on a workstation we demonstrate on-the-fly reduction and compression of raw data

streaming off a detector at 3 GB/s, for hours of uninterrupted data collection. The output was

100-fold smaller than the raw data and saved directly onto network-attached storage drives

over a 10 GbE connection. We discuss calibration techniques that support electron detection

and counting (e.g., estimate electron backscattering rates, false positive rates, and data

compressibility), and novel data analysis methods enabled by ReCoDe (e.g., recalibration of

data post acquisition, and accurate estimation of coincidence loss).
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Fast, back-thinned direct electron detectors are rapidly
transforming electron microscopy. These detectors ushered
in a “resolution revolution” for electron cryo-microscopy

(cryo-EM), and the prospect of seeing sub-millisecond dynamics
for in-situ electron microscopy. These transformations are driven
by three key factors: (1) improved detection efficiency, (2) shorter
detector readout times to better resolve individual electron events,
and (3) algorithms that translate these advances into improved
spatial and temporal resolution. Whereas the first two factors
have received considerable attention, it remains impractical for
many existing algorithms to process the very large raw output
produced by these movie-mode detectors. Fortunately, the useful
information on these raw data are typically sparse, hence a sui-
table data reduction and compression scheme should allow us to
fully reap the advantages offered by these detectors.

Nearly all the useful information in a single raw detector image
is contained within “secondary electron puddles”, each of which
is digitized from the cloud of secondary charged particles formed
in the wake of individual high energy electrons passing through
the detector’s sensor. While the size and shape of secondary
electron puddles contain some information1, localizing the entry
point of the incident electron from its electron cloud already
noticeably improves the spatial resolution of the image. To
accurately localize these electron puddles they must be spatio-
temporally well separated (by increasing the frame rate or redu-
cing the incident electron flux), thereby reducing the so-called
coincidence loss2. This separation creates a very high raw data
load when acquiring images that add up to a desired accumulated
electron dose. For example, the memory needed to store the
incident electron entry points, in a low coincidence-loss image
(~6%) acquired at 0.01 e/pixel/frame is approximately a hun-
dredth that of the raw detector readout, with the remainder
holding only thermal readout noise.

Currently, there are three popular options to manage the large
raw data loads that a high-throughput electron detector generates.
First, which is typical in cryo-EM, is to employ a higher internal
frame rate on the detector for counting electrons at low coin-
cidence loss, but add many of these frames together before they
are stored to disk. The downside here is the loss of temporal
resolution in the added, stored images. The second option is to
reduce the total data acquisition time. Here, an experimenter may
fill terabytes of local hard disk with raw data for 10 min, then wait
at least twice as long to offload this data to a larger networked
drive before more data acquisition can proceed. The third option
is to collect data at the maximum detector frame rate but only
store the frames that contain significant information. However,
this strategy only works at high dose rates where individual pre-
selected frames still show sufficient contrast for the experimenter
to judge whether to keep or discard them. At such high dose rates,
the experimenter has to either sacrifice spatial resolution or be
limited to atomic resolution only for radiation-hard samples.

None of these three options are ideal, especially since the vast
majority of these high data loads are storing only the detector’s
thermal and readout noise. Furthermore, these options also limit
us from using faster detectors3 to study dynamics at even shorter
timescales. Naturally, reducing and compressing the raw data
would obviate the need to choose between these three compro-
mising options. If we stored only electron arrival events, we can
enjoy high temporal and spatial resolution, while continuously
acquiring movies of dose-sensitive samples at very low dose rates
for practically hours, uninterrupted.

While more experiments that require both high temporal and
spatial resolution are emerging4–6, acquiring such movies for long
time scales remains expensive, and in many cases, infeasible. For
perspective, a 4 TB hard drive only accommodates about 21 min
of data collection at a DE-16 detector’s maximum data rate of

3.08 GB/s. A prominent example that exploits fast detectors is
motion-correction in TEM (transmission electron microscopy).
Here, the imaging resolution is demonstrably improved when fast
detectors fractionate the total electron dose on a sample onto a
time series of micrographs that are individually corrected for
relative dose-induced motion7. In fact, recent work suggests that
using more efficient data representation to further increase dose
fractionation, hence finer time resolution, can improve spatial
resolution8.

As electron microscopy becomes increasingly reliant on larger
datasets and more complex processing and analysis workflows,
there is an ever-greater push for publications to include raw data
necessary for others to validate and reproduce the analyses9.
Improved compression will make public archives like EMPIAR
more accessible and increase their adoption, and encourage
deposition of raw micrographs facilitating validation of the
structures produced using them10. Without an effective data
reduction and compression scheme, storing raw detector data will
be costly: at ~US$20 per terabyte (TB) of archival storage on
commodity HDDs and ~US$400 per TB on SSDs (based on the
prices of lower end external hard disk drives and solid-state
drives, as of April 201911,12, just 15 min of continuous data
acquisition per day on the DE-16 (Direct Electron, LP) detector at
its maximum frame rate (3 GB/s throughput) will cost between
US$ 20,000 to US$ 400,000 per year, respectively.

Here, we propose a data reduction and compression scheme
capable of file size reductions that are as high as 100× for realistic
electron-counting scenarios. The output of this scheme is a file
format known as ReCoDe (Reduced Compressed Description).
For simplicity, we refer to the reduction compression scheme as
the ReCoDe scheme (or simply ReCoDe when the context is
clear). In this scheme, the original raw data is first reduced to
keep only the information regarding identified electron puddles,
which are then further compressed. The ReCoDe scheme permits
four reduction levels and several different types of lossless com-
pression algorithms, whose combinations are discussed in this
work. We show how data stored in the least lossy ReCoDe
reduction level can be re-processed post-acquisition to remove
detector artifacts, especially those owing to slow drifts in the
thermal background. Moreover, storing data at this reduction
level retains the puddle shape and intensity information. Through
several use cases, we show the benefits of retaining this infor-
mation. One of these is coincidence loss estimation, where we
show that puddle shape information is essential for accurate
estimation. We also develop methods for estimating the pre-
valence of back scattered electrons and estimating the false
positive rates of electron events using this information. For the
DE-16 detector we estimated the ratio of primary to backscattered
electrons to be ~8.6. The ReCoDe scheme is sufficiently paralle-
lizable such that data streams from even the fastest current
detectors can be reduced and compressed on-the-fly onto net-
worked storage disks using only modest computing resources,
provided the raw data can be accessed before it is written to
disk. For instance, the raw data stream of a low dose experiment
(0.8 e/pixel/s) collected on a DE-16 detector (~3.08 GB/s
throughput) can be reduced, compressed by 10 Intel Xeon CPU
cores, then written to network-attached storage devices via a
modest 10 gigabit ethernet connection. Furthermore, the ReCoDe
data format has been designed for fast sequential and random
access, so that frames can be decompressed into the reduced
representation on demand. Using ReCoDe in-situ electron
microscopy movies can retain the high dose fractionation and
sub-millisecond time resolution while extending acquisition time
from minutes to hours. Giving users the flexibility to fractionate
their doses from tens to thousands of frames per second for more
precise temporal resolution and drift-correction where possible.
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Finally, using several publicly available EMPIAR9 datasets with
moderate to high dose rates, ranging from 0.5 to 5.0 electrons/
pixel/frame, we show that ReCoDe achieves 2–8× compression,
outperforming existing compression approaches.

Results
Data reduction levels. A secondary electron puddle is char-
acterized by its spatial location, its two-dimensional (2D) shape,
and the pixel intensities within this shape. To accommodate
various downstream processing needs we define four logical data
reduction levels: L1, L2, L3, and L4, with progressively higher
levels of file size reduction and hence information loss from L1 to
L4 (Fig. 1).

All four data reduction schemes begin with a thresholding step,
which produces a binary map identifying pixels as containing
useful signal or not. The ADU (analog-digital unit) threshold used
to label signal pixels are independent for each pixel and decided
based on the signal-noise calibration procedure (discussed below).
In ReCoDe level L1, the sparsified signal pixel intensities are then
bit-packed into a dense format. Bit packing removes unused bits
and converts the list of ADU values into a continuous string of bits.
The binary map and the bit packed intensity values are
independently compressed and the two compressed data are
stacked to create an L1 reduced compressed frame. As L1 reduction
retains all the information about electron puddles, electron
counting can be performed long afterward, should the user wish
to explore different counting algorithms and/or parameters. Both
thresholding and packing are sufficiently fast to make L1 suitable
for on-the-fly processing (discussed in “Demonstration of on-the-
fly Reduction and Compression” section). Even for relatively
high electron flux data (0.05 e/pixel/frame) L1 reduction alone
achieves a 10× reduction in file size. This reduced data can
be further compressed to achieve an overall 25× file size reduction
(see below).

In L3 reduction, the pixel intensities are discarded during
thresholding and only the binary map is retained and compressed.
L3 is therefore optimized for speed, at the expense of puddle
specific ADU (analog-digital unit, or pixel intensity) information.

To compute puddle specific features, in L2 and L4 reductions,
the clusters of connected pixels that constitute individual puddles
are identified from the binary map using a connected components
labeling algorithm, discussed in the Methods section. In L4
reduction, each puddle in the binary map is further reduced to the
single pixel, where the primary electron was likely incident. L4
reduction, therefore, results in a highly sparse binary map that is
optimized for maximum compression. At the same electron flux
(0.05 e/pixel/frame) L4 reduction and compression results in 45×
file size reduction. This increased compression comes at the cost
of throughput since counting has to be performed as part of the
reduction step.

In L2 reduction, a summary statistic, such as mean, maximum
or sum of ADU (analog-digital unit), is extracted for each
electron puddle. Preliminary studies suggest that such informa-
tion may correlate with whether a measured electron was
elastically or inelastically scattered1. The sparse puddle features
are then packed into a dense format and the binary map and the
dense puddle features are independently compressed. Several
applications that record diffraction patterns benefit from a high
dynamic range but do not necessarily need to retain the entire
signal as done in L1. L2 is designed for such applications.

In L1 and L2 reductions, the binary maps and the packed
intensity summary statistics are independently compressed and
then stacked. As the binary maps and intensity values have very
different characteristics, compressing them independently results
in optimal compression (Fig. 1b–d).

The reduced compressed data formats are detailed in
Supplementary Method 1.

All four data reduction schemes in ReCoDe first reduce the
data by removing primarily readout noise (thresholding) and
then compressing the signal. Accurate signal-noise separation is
therefore critical. To remove pixel-level differences in dark noise
and gain that can bias the identification of isolated electron
puddles, individual thresholds are calculated per pixel based on
calibration data (see “Methods” section). For the DE-16 detector,
this calibration can be done with a single dataset with flat-field
illumination at a low dose rate and extended exposure times.
Since different detectors may require custom calibration, ReCoDe
only requires the per pixel thresholds for separating signal-noise
as input and is agnostic of the calibration method used. These
thresholds are specified in a single image frame, which is reloaded
by ReCoDe at user-specified intervals. External programs can
update the thresholds intermittently for on-the-fly recalibration
to accommodate changing detector response.

Calibrating parameters for data reduction. An appropriate
threshold separating signal from noise is critical for electron
counting to be effective. Typically, this threshold is established
through calibration, based on dark and gain references obtained
during data acquisition. In most imaging software these calibrations
depend on several hyper-parameters that are predetermined (for
instance, the number of frames used in the dark reference). Once
the calibrated frames are reduced to electron counted images, the
calibration cannot be revised, and the effects of the hyper-
parameters are permanent. The L1 reduction presents an alter-
native, where the data can be recalibrated post-acquisition without
having to store the entire dataset, as long as a sufficiently permissive
threshold is used. In low dose rate experiments, during data
acquisition, the quality of images cannot be verified through visual
inspection. The effectiveness of the calibration can, therefore, be
difficult to judge. The ability to recalibrate datasets in such cases can
significantly improve image quality, as shown in Fig. 2. Here, the
data was recalibrated by using a higher threshold for separating
dark noise and signal and pixel gains were recalculated after
removing single pixel puddles (see Fine calibration in “Methods”
section for details). We observed that such recalibration can sig-
nificantly reduce the number of false positive electron events.

Even small deviations in calibration can significantly bias
counting and therefore recalibration (or at least a quality
assessment) should be a necessary step in ensuring accurate
counting. L1 reduced data facilitates such post-hoc analysis. This
includes using the electron puddle size/shape distributions to
estimate realistic coincidence losses specific to the detector and
imaging conditions (Table 1).

Table 1 shows coincidence losses estimated using five different
techniques. In the first three (columns from left to right) puddles
are assumed to be of fixed shape and size, whereas, in the last two,
the actual puddle shape and size information are included in the
calculation (see “Methods” section). Clearly, the knowledge of
puddle shape and size is essential for accurate coincidence loss
estimation. Therefore, accurately estimating coincidence loss
requires retaining data at reduction levels L1–L3.

A recent study8 has proposed storing L4 reduced data in a
sparse format to benefit from higher dose fractionation without
overwhelming acquisition systems with storage requirements. To
achieve super-resolution electron counting, which is critical for
improving reconstruction resolution in cryo-EM, they propose
subdividing each pixel before counting and storing the higher-
resolution spatial locations of electron events using a higher bit-
depth. ReCoDe’s L1 reduction scheme enables super-resolution
electron counting without the need to subdivide pixels at the time
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of acquisition, thus eliminating the need to predetermine to what
extent pixels should be partitioned.

Reducibility and compressibility with increasing electron
fluxes. With increasing electron flux, the data naturally becomes

less reducible and less compressible. To quantify this change, we
simulated images at eight electron fluxes between 0.0025 to
0.07 e/pixel/frame (Fig. 3). This range was chosen for tolerable
coincidence loss during electron counting (Table 1). For data
without any reduction (unreduced compression line in Fig. 3), the
compression ratio remains similar across all fluxes (~4×), because
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of readout dark noise. L3 and L4 reduced data are essentially
binary images with 1-bit per pixel (Fig. 1). Therefore, if the input
data uses n bits to represent each pixel’s intensity, a factor of
n reduction is achieved using L3 or L4 reduction alone. In Fig. 3, a
16× reduction is seen for the 16-bit simulated data. In L1 and L2,
pixel intensity information and event summary statistics are
retained in addition to the L3 binary map. As electron flux
increases, more pixel intensities/event statistics need to be stored.
However, due to coincidence loss the number of counted electron
events and L1 and L2 file sizes increase only sub-linearly.

With increasing electron flux the binary images used to store
location and shape information in the reduced format, also
become less compressible. This is evident from the L3 and L4
“reduction+ compression” lines in Fig. 3. At the same time, for
L1 reduction, the proportion of reduced data containing pixel
intensities increases rapidly with increasing electron flux. As a
result, the compressibility of L1 reduced data falls very quickly
with increasing electron flux.

At moderate (0.01 e/pixel/frame) and low (0.001 e/pixel/frame)
electron flux L1 reduction compression results in 60× and 170×
data reduction, respectively.

Reduction L4, where only puddle locations are retained, is
optimized for maximum compression and can achieve reduction
compression ratios as high as 45×, 100×, and 250× at high
(0.05 e/pixel/frame), moderate (0.01 e/pixel/frame) and low
(0.001 e/pixel/frame) electron flux, respectively.

Compression algorithms exploit the same basic idea: by
representing the more frequently occurring symbols with fewer
bits the total number of bits needed to encode a dataset is
effectively reduced. Consequently, data is more compressible
when symbols are sparsely distributed. Such sparse distributions
are readily present in the back-thinned DE-16 electron detector,
where nearly 80% of the digitized secondary electron puddles
span fewer than three pixels (Supplementary Fig. 8). Even for
puddles that span four pixels (of which there are 110 possibilities)
nearly half (48.3%) are the 2 × 2-pixel square motif.

Fig. 1 Data reduction levels and scheme. a The leftmost image (L0) depicts a 10 × 10 pixel image (the raw detector output) with four secondary electron
puddles. The remaining four images from left to right correspond to the four data reduction levels, L1 to L4, respectively. Each image represents a
reconstruction of the original image (L0) using only the information retained at that level (see table at the bottom). The L1 image retains all the useful
information about the secondary puddles by first removing detector readout/thermal noise from L0. In L2, the spatial location of the four puddles, the
number of pixels (area) in each puddle, the shape of the four puddles and an intensity summary statistic (sum, maximum or mean) for each puddle are
retained. Each reduction level offers different advantages in terms of speed, compression, information loss, spatial or temporal resolution, etc (see row
labeled “Optimized For”). The row labeled “Reduced Representation” describes how the information retained at each level is packed in the reduced format.
These packings are tuned to provide a good balance between reduction speed and compressibility. In L3, the puddle area, shape and location information
are all encoded in a single binary image, which is easily computed and highly compressible. These three aspects in L1 and L2 are packed as the binary image
used in L3. Only the most likely locations of incident electrons are saved as binary maps in L4. Panels b, c, d, and e are the reduction compression pipelines
for reduction levels L1, L2, L3, and L4, respectively. Here, the thresholding step produces a binary map identifying pixels as signal or noise. Bit packing
removes unused bits and converts the list of ADU values into a continuous string of bits. The connected components labeling algorithm identifies clusters
of connected pixels that constitute individual electron puddles from this binary map. Puddle centroid extraction further reduces each puddle to a single
representative pixel; and puddle feature extraction computes puddle specific features such as mean or maximum ADU.

Fig. 2 Recalibration of L1 reduced data to remove artifacts. Panels a and b are Fourier transforms (FT) of summed L1 reduced frames of HRTEMmovies of
a molybdenum disulfide 2-D crystal, acquired using a JEOL 2200 microscope operating at 200 keV and a DE-16 detector running at 300 fps, with a pixel
resolution of 0.2□ (a) is L1 reduced using fast on-the-fly calibration using a 3□ threshold (see “Methods” section) (b) is the result of recalibrating (a) with
a more stringent fine calibration that uses an area threshold and a 4□ threshold (see “Methods” section). The Fourier peaks indicated with orange arrows
in a are due to detector artifacts, which are not readily visible in the image but can severely impact drift correction. a and b are the sum of FFTs of 9000
frames.
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The randomly distributed centroids of secondary electron
puddles account for the largest fraction of memory needed to
store the reduced frames. We considered three representations for
storing these centroids and ultimately adopted a binary image
representation (Methods section).

Compression algorithms. Any lossless compression algorithm
can operate on the reduced data levels in Fig. 1. Compression
algorithms are either optimized for compression power or for
compression speed, and the desired balance depends on the
application. For on-the-fly compression, a faster algorithm is
preferable even if it sub-optimally compresses the data, whereas
an archival application may prefer higher compression power at
the expense of compression speed.

We evaluated the compression powers and speeds of six
popular compression algorithms that are included by default
in the ReCoDe package: Deflate13, Zstandard (Zstd), bzip2
(Bzip)14,15, LZMA16, LZ417, and Snappy18 (Fig. 4). Each
algorithm offers different advantages; bzip, for instance, is
optimized for compression power whereas Snappy is optimized
for compression and decompression speed. All five algorithms
can be further parameterized to favor compression speed or
power. We evaluated the two extreme internal optimization
levels of these algorithms: fastest but sub-optimal compression,
and slowest but optimal compression.

Data reduction schemes similar to L1 have been previously
used to compress astronomical radio data in Masui et al.19. They
proposed the bitshuffle algorithm for compressing radio data
after removing thermal noise from it. We experimented with

Table 1 Coincidence loss estimation methods.

Dose rate
(e−/pixel/ frame)

Coincidence loss (Fraction of e− events lost)

Simulated with fixed size and shape Analytically computed using size
distribution

Simulated using size and shape
distributions

Assuming 3 × 3
pixel PSF

Assuming 2 × 2
pixel PSF

Assuming 1 pixel PSF

0.0025 0.060 0.031 0.011 0.0140 0.0156
0.005 0.117 0.061 0.022 0.0354 0.0317
0.01 0.725 0.119 0.044 0.0784 0.0619
0.02 0.407 0.227 0.087 0.1524 0.1207
0.03 0.556 0.324 0.128 0.2115 0.1767
0.04 0.676 0.413 0.167 0.2590 0.2296
0.05 0.772 0.492 0.205 0.2975 0.2801
0.06 0.846 0.563 0.242 0.3288 0.3272
0.07 0.902 0.626 0.278 0.3544 0.3726
0.08 0.942 0.684 0.312 0.3753 0.4155
0.09 0.969 0.734 0.345 0.3923 0.4558
0.1 0.983 0.779 0.376 0.4061 0.4940

Fig. 3 Reducibility and compressibility of data with increasing electron flux. The solid black line (“unreduced compression”) shows the compression
ratios achieved on unreduced raw data (including dark noise) using Deflate-1. The dashed lines show the compression ratios achieved with just the four
levels of data reduction and without any compression. The solid lines show the compression ratios after compressing the reduced data using Deflate-1. The
coincidence loss levels corresponding to the electron fluxes label the second y-axis on the right.
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Blosc, a meta-compressor for binary data, that implements
bitshuffle in addition to breaking the data into chunks that fit into
the system’s L1 cache, to improve compression throughputs
(Fig. 4).

LZ4 and SNAPPY have the highest throughputs across all
reduction levels and electron fluxes, with reduction compression

ratios slightly worse than the remaining five algorithms. At the
lowest dose rate (0.01 e/pixel/frame) Bzip results in the best
reduction compression ratios, regardless of the internal optimiza-
tion level. At higher dose rates (0.03 and 0.05 e/pixel/frame) Zstd
has the highest compression ratio. Considering all dose rates and
internal optimization levels, Zstd on average offers the best

Fig. 4 Comparison of compression algorithms with L1 reduction at three dose rates. Each scatter plot shows the reduction compression ratios and the
compression throughputs of six compression algorithms (Deflate, Zstandard (Zstd), bzip2 (Bzip), LZ4, LZMA, and SNAPPY), plus the Blosc variants of
Deflate, Zstandard (Zstd), LZ4, and SNAPPY. Reduction compression ratio (horizontal axes in all panels) is the ratio between the raw (uncompressed) data
and the reduced compressed data sizes. The three rows of scatter plots correspond to three different electron fluxes: 0.01, 0.03, and 0.05 e/pixel/frame,
from top to bottom. The left and right columns of scatter plots correspond to the two most extreme internal optimization levels of the compression
algorithms: fastest but suboptimal compression labeled “Optimal Speed” (left column), and optimal but slow compression labeled “Optimal Compression”
(right column). The data throughputs (vertical axes in all panels) are based on single threaded operation of ReCoDe and include the time taken for both
reduction and compression. The decompression throughputs of the six algorithms are presented in Supplementary Fig. 2.
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balance between compression ratio and throughput. The choice
of internal optimization level only marginally affects the
reduction compression level but significantly improves
throughput.

Deflate optimized for speed for instance is almost ~25× faster
than Deflate optimized for compression, across the three dose
rates. We use Deflate optimized for speed (referred to as Deflate-
1) as the reference compression algorithm for the rest of the
paper, as it represents a good average case performance among all
the compression algorithms. In subsequent sections, we will show
that Deflate-1 is fast enough for on-the-fly compression. All
algorithms have higher decompression throughput than com-
pression throughput (Supplementary Fig. 2). Deflate-1 has ten
times higher decompression throughput than compression
throughput, which means the same computing hardware for
reduction and compression can support on-the-fly retrieval and
decompression of frames for downstream data processing.

For most compression algorithms Blosc marginally improves
compression throughput (Fig. 4), except in the case of optimal
compression with LZ4, where Blosc improves throughput by as
much as 400MB/s.

Demonstration of on-the-fly reduction and compression.
Electron microscopy imaging often has to be performed at low
electron flux to reduce beam induced damage, if the sample is
dose sensitive, as well as to minimize beam induced reactions.
Observing rare events or slow reactions in such cases require
extended acquisition, that is not feasible with current detector
software without compromising temporal resolution. Loss of
temporal resolution, in turn, degrades drift correction and
therefore limits spatial resolution. ReCoDe’s on-the-fly reduction
compression fills this critical gap, enabling hours long continuous
acquisition without overwhelming storage requirements, com-
promising on temporal resolution, or losing puddle information.

ReCoDe is easily parallelized, with multiple threads indepen-
dently reducing and compressing different frames in a frame
stack. In this multithreaded scheme, each thread reduces and
compresses the data to an intermediate file, which are merged
when data collection is complete. The merging algorithm reads
from the intermediate files and writes to the merged file
sequentially and is therefore extremely fast. The intermediate
and merged (ReCoDe) file structures and the merging process are
described in Supplementary Method 1.

With this multithreaded scheme, ReCoDe can achieve
throughputs matching that of the detectors enabling on-the-fly
reduction and compression. In addition, intermediate files can be
accessed sequentially in both forward and reverse directions, with
frames indexed by frame number, time stamp, and optionally
scan position. Owing to the small size of the reduced compressed
frames, they can be read from intermediate files by external
programs for live processing and feedback during acquisition
even without merging them back into a single file. Users also have
the option of retaining raw (unreduced and uncompressed)
frames at specified intervals for validation or for on-the-fly
recalibration. In electron microscopy facilities data is often
archived in high capacity network-attached storage (NAS)
servers. A schematic of this on-the-fly reduction compression
pipeline is shown in Fig. 5a. We evaluated the feasibility of
directly collecting the reduced-compressed data onto NAS
servers, to avoid the overhead of transferring data after collecting
it on the microscope’s local computer.

With the DE-16 detector running at 400 fps, at a dose rate of
0.001 e/pixel/frame and ReCoDe using 10 CPU cores of the
acquisition computer that shipped with the DE-16 detector, we
continuously captured data directly onto NAS servers connected

by a 10 gigabits/s Ethernet (10 GbE) connection, for 90 min (see
“Methods” subsection: On-the-fly Compression Pipeline). To
further evaluate this multithreaded scheme, we simulated a series
of on-the-fly data reduction and compression at different electron
fluxes. The implementation used for these simulations emulates
the worst-case write performance of ReCoDe, where a single
thread sequentially accesses the disk (see Supplementary Discus-
sion 3 for details). At relatively low electron flux (0.01 e/pixel/s)
we are able to achieve throughputs as high as 8.3 gigabytes
per second (GB/s, Fig. 5b) using 50 threads on a 28 core system.
At the same dose rate, to keep up with the DE-16 detector (which
has a throughput of ~3.08 GB/s) only 10 CPU cores are sufficient.
For perspective, another popular direct electron detector, the K2-
IS (Gatan Inc.), nominally outputs bit-packed binary files at
approximately 2.2 GB/s. However, since we did not have to incur
extra computation time to unpack bits on the raw data from DE-
16, the DE-16 benchmarks on Fig. 5 will not directly apply to K2-
IS data.

At moderate electron flux, writing directly to GPFS NAS servers
using both 10 GbE and IPoIB (Internet Protocol over InfiniBand)
has comparable throughputs to that of collecting data locally on the
microscope’s computer (Fig. 5c,d). However, at very low electron
flux writing directly to the NAS server with IPoIB has slightly
higher throughput. This is likely due to the reduced communication
overhead per call in IPoIB and the distributed data access (IBM
GPFS) supported by NAS servers, both of which are optimized to
handle multiple simultaneous small write requests. In the absence of
such a parallel data access ReCoDe still executes at close to 89%
parallel (Supplementary Discussion 3).

Both the reduction and compression steps are essential for high
throughput on-the-fly processing. Without compression, the
reduced data is still too large to write over 10 GbE, particularly
at moderate electron flux (Fig. 5e). Without reduction, the data is
not compressible enough; the throughput of Deflate-1 compres-
sion without any data reduction (Fig. 5f) is abysmally low even
when using 50 threads.

Effects of reduction on counted image quality. In many appli-
cations, the L2 and L3 reduced data has to be ultimately reduced
to L4 (electron-counted image). Here, we consider how the
information lost in L2 and L3 reductions affect the resolution in
L4 images. In L4 puddles are reduced to a single pixel, which
ideally contains the entry point of the incident electron. However,
there is no clear consensus on the best approximation strategy for
determining an electron’s entry point, given a secondary electron
puddle1. The three common strategies are, to reduce the puddle
to (1) the pixel that has the maximum intensity, (2) the pixel
intensity weighted centroid (center of mass) or (3) the
unweighted centroid of the puddle. Unlike L1 reduction, where all
the information needed for counting with any of these strategies
are retained, with L2 and L3 reductions, the pixel intensity
information is either partially or completely lost. The puddles can
then only be reduced to the unweighted centroid of the puddle
using the third strategy. With L4 reduction, the approximation
strategy has to be chosen prior to data acquisition. To evaluate
how this information loss affects image quality we performed a
knife-edge test using a beam blanker (see “Methods” section for
implementation details). The results show (Supplementary Fig. 4)
that the choice of approximation strategy, and therefore the
choice of reduction level, has little consequence on image
resolution.

Discussion
Studying millisecond in-situ dynamics with TEM, such as
surface-mediated nanoparticle diffusion in water20, requires us to
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operate at the maximum frame rates of these detectors. In
addition, longer total acquisition times would be beneficial for
studying reactions such as spontaneous nucleation21 where the
experimenter systematically searches a large surface for samples.
Several pixelated TEM electron detectors are now able to achieve
sub-millisecond temporal resolutions, with the downside that the

local buffer storage accessible to these detectors fills up very
quickly. Figure 6 shows that current TEM detectors running at
maximum frame rates produce 1 TB of data in several minutes.
When the temporal resolution is critical for an imaging modality,
reducing the frame rate is not an option. An example is fast
operando electron tomography22. To capture how the 3D
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morphology of an object evolves over several seconds, a full-tilt
series of the object has to be rapidly acquired at the detector’s
peak frame rate. Here again, the duration of these observations
can be significantly extended by substantially reducing the output
data load with ReCoDe.

4D scanning transmission electron microscopy (4D STEM)
techniques including Ptychography were used to image weak
phase objects and beam sensitive samples such as Metal Oxide
Frameworks (MOFs)23. Here, a converged electron probe raster
scans a sample collecting 2D diffraction patterns at each scan
point. Although these experiments can produce hundreds of
gigabytes of data in minutes24, the diffraction patterns tend to be
sparse outside of the central diffraction spot. As noise-robust
STEM-Ptychography becomes a reality25, their convergent beam
electron diffraction patterns will be even sparser. ReCoDe level L1
reduction and compression, which preserves the patterns’

dynamic range while removing only dark noise, are likely to be
useful for such data. Once the large datasets in 4D STEM are
reduced they will readily fit into the RAM of desktop work-
stations, which also facilitates sparse and efficient implementa-
tions of processing algorithms.

Electron beam-induced damage is a major limitation for all
cryo-EM modalities. In single-particle analysis (SPA) the energy
deposited by inelastically scattered electrons manifests as sample
damage and ice drift, where global and site-specific sample
damage is detectable even at exposures as low as 0.1 e/Å226. Here
higher electron dose fractionation improves resolution in two
ways: (1) by reducing coincidence loss and thereby improving
detection efficiency27 and (2) by enabling more accurate esti-
mation of sample drift at a higher temporal resolution8.
Increasing detector frame rates can reduce the average displace-
ment of each particle captured in each dose-fractionated frame,

Fig. 5 Pipeline and data throughput of on-the-fly reduction and compression. a ReCoDe’s multithreaded reduction compression pipeline used for live
data acquisition. The CMOS detector writes data into the RAM-disk in timed chunks, which the ReCoDe server processes onto local buffers and then
moves to NAS servers. The ReCoDe Queue Manager synchronizes interactions between the ReCoDe server and the detector. b L1 reduction and
compression throughput (GB/s) of Deflate-1, with multiple cores at four electron fluxes. The throughput of ReCoDe depends only on the number of
electron events every second, hence the four dose rates (horizontal axis) are labeled in million electrons/second. The simulations were performed on a
28-core system, as a result, throughput scales non-linearly when using more than 28 cores (Supplementary Fig. 3). c, d Show throughputs when using
10 GbE and IPoIB connections to write directly to NAS, respectively. In e, throughput of L1 reduction without any compression; (f) throughput of Deflate-1
when compressing the unreduced raw data. g Shows the conversion between million e/s and e/pixel/frame for two different frame size-frame rate
configurations of the DE-16 detector.

Fig. 6 Maximum data acquisition time of 1 TB of movie-mode TEM without data reduction and compression. Each cell’s horizontal and vertical grid
position marks the temporal resolution (or, equivalently, frame rate) and frame size of a hypothetical movie-mode data acquisition scenario, respectively. A
cell’s text and color indicates the time taken to acquire one terabyte (TB) of data at that frame size and temporal resolution without reduction and
compression. For larger frames and high temporal resolution (top right corner), acquisitions lasting merely tens of seconds already produce 1 TB of data.
With a 95× reduction in data size the same experiment can span 20 times longer, enabling the observation of millisecond dynamics in reactions that span
several minutes. The yellow dots show a few of the frame size-frame rate combinations available for the DE-16 detector.
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but doing so further inflates the already large amounts of movie-
mode data collected (see Supplementary Fig. 6). On-the-fly
reduction and compression can significantly reduce the storage
costs of movie-mode data, to accommodate image correction
algorithms that operate at a degree of dose fractionation that is
higher than current practice.

The recently proposed compressed MRCZ format28 and
ReCoDe offer complementary strategies to reduce file sizes gen-
erated by electron detectors. MRCZ is ideal for compressing
information-dense images of electron counts integrated over
longer acquisition times. ReCoDe, however, excels in reducing
and compressing the much sparser raw detector data that are
used to produce the integrated images typically meant for MRCZ.
By doing so ReCoDe can preserve the arrival times of incident
electrons that are lost when they are integrated into a single
frame. Applying an MRCZ-like scheme on the raw un-reduced
signal is inefficient, as shown with the “Unreduced Compression”
line in Fig. 3. Figure 7a compares compression ratios obtained by
MRCZ and ReCoDe on publicly available EMPIAR datasets from
multiple published results29–32, spanning a range of dose rates
and detectors as listed in Table 2. Figure 7b shows the com-
pression ratios achieved by the two approaches on simulated
images. Across the range of dose rates ReCoDe produces better
compression ratios on the EMPIAR datasets. As low dose rate
datasets (below 0.58 electrons/pixel/frame) are likely to be sparse,
ReCoDe as expected, achieves higher compression ratios than
MRCZ (Fig. 7b). However, surprisingly, ReCoDe outperforms
MRCZ even for some datasets with much higher average dose
rates (EMPIAR-10346 in Fig. 7a). These datasets have particularly
high contrast resulting in higher average dose rates but are still
very sparse (Supplementary Fig. 7c), making them well suited for
compression with ReCoDe.

We have described three novel analysis methods that demon-
strate the necessity of reduction levels L1–L3. These methods
cannot be applied on counted (L4 reduced) data, as they rely on
puddle shape and intensity information. The first is the recali-
bration of L1 reduced data post acquisition, to improve counting
accuracy. The second analysis uses puddle shape information to
accurately estimate coincidence loss. When counting electrons,
coincidence loss adversely affects spatial resolution (Supplemen-
tary Fig. 5). However, as we have shown, estimates of coincidence
loss from the counted data can be inaccurate (Table 1). As
reduction levels L1–L3 retain puddle shape information these can
be used when accurate coincidence loss estimates are desired. In
the third analysis we use a series of L1 reduced data sets with
diminishing dose rates and extremely sparse electron events to
estimate false positive rates of detecting electron events (Sup-
plementary Note 12).

We also describe a novel method for estimating the proportion
of backscattered electrons, using counted (L4 reduced) data
(Supplementary Note 13). Using this analysis we estimated the
proportion of primary to backscattered electrons for the DE-16
detector is ~8.6. In the future, it may be possible to even classify
and eliminate backscattered electrons based on their sizes, shapes
and proximity to primary electrons. Development of such tech-
niques requires retaining more information than is currently
done using counted data. The L1-L3 reduction levels in ReCoDe
are designed to facilitate such future developments.

In summary, we present the ReCoDe data reduction and
compression framework for high-throughput electron-counting
detectors, which comprises interchangeable components that can
be easily configured to meet application-specific requirements.
ReCoDe supports four data reduction levels to balance
application-specific needs for information preservation and pro-
cessing speed. We further tested three electron localization stra-
tegies, and show that they produce similar spatial resolutions even

when the electron puddle intensity information is absent. By
comparing five candidate compression algorithms on reduced
electron data, we found that although LZ4 is the fastest, Deflate-1
offers the best compromise between speed and compressibility.

Remarkably, we demonstrated on-the-fly data reduction and
compression with ReCoDe on the DE-16 detector for 90 min.
Using only a desktop workstation, we continuously converted a
3 GB/s raw input data stream into a ~200MB/s output that was,
in turn, streamed onto networked drives via 10 Gbit ethernet.
Crucially, this demonstration showed that on-the-fly data
reduction and compression at low dose rates on our fastest
S/TEM detectors is not compute-limited if the detector’s raw data
stream is accessible (via a RAM-disk) before it is stored to SSDs.
Even higher throughputs will be achievable with direct in-
memory access to this raw data stream without the need for a
RAM-disk. In the absence of fast simultaneous read-write, there is
a critical lack of feedback in low dose rate, long time experiments.
The experimenter is left blind in such situations, as individual
frames do not have sufficient contrast and the frames available on
disk cannot be read to produce a summed image with sufficient
contrast. On-the-fly data reduction and compression with
ReCoDe enables continuous feedback without interrupting data
acquisition for hours.

The ReCoDe scheme can dramatically increase the throughput of
electron microscopy experiments. Furthermore, the quality of
observations for electron microscopy experiments can also improve.
In cryo-EM, ReCoDe can support movies of higher frame rates,
which can lead to better drift correction and lower coincidence loss.
For in-situ experiments, higher frame rates can also improve the
temporal and spatial resolution of the imaged samples.

Currently, a clear barrier for commercial vendors to produce
higher throughput detectors is that users cannot afford to store
the increased raw data that these faster detectors will bring. Going
forward, the readout rates of CMOS detectors may increase to
their internal megahertz clock rates33, or even into the gigahertz
regime34. This uptrend is troubling if one considers, by default,
that a detector’s raw data output rate increases linearly with its
readout rate. However, because the ReCoDe format has very little
storage overhead per frame, in principle, its processing and sto-
rage rate only scales with the total electron dose when the
detector readout rate is fast enough to resolve individual electron
puddles. Consequently, the ReCoDe output rate will not increase
substantially with megahertz frame rates when the total electron
dose is held constant. By efficiently reducing raw data into
compact representations, ReCoDe prepares us for an exciting
future of megahertz electron detectors in three crucial ways: it
limits the storage costs of electron microscopy experiments,
facilitates much longer data acquisition experimental runs, and
very efficient processing algorithms that only compute on the
essential features. More broadly, making ReCoDe open source
encourages its own development by the community and incen-
tivizes commercial vendors to specialize in much-needed hard-
ware innovation. The full impact of electron counting detectors,
quite possibly, is still ahead of us.

Methods
Data acquisition. All experimental data were collected on a DE-16 detector (Direct
Electron Inc., USA) installed on the JEM-2200FS microscope (JEOL Inc., Tokyo,
Japan) equipped with a field emission gun and operating at 200 keV accelerating
voltage. StreamPix (Norpix Inc., Montreal, Canada) acquisition software was used
to save the data in sequence file format without any internal compression. Data for
puddle shape and size analysis (Supplementary Fig. 8) and MTF characterization
with the knife-edge method (Fig. 5) were collected at 690 frames per second and
400 frames per second respectively with an electron flux of ~0.8 e/pixel/s.

All simulations of on-the-fly data collection were performed on a 28-core (14
core × 2 chips) system with 2.6 GHz E5-2690v4 Intel Broadwell Xeon processors
and 512 GB DDR4-2400 RAM.
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Fig. 7 Comparison of ReCoDe and MRCZ for archival datasets in EMPIAR. a Shows that the compression ratios obtained by ReCoDe (filled stars) on
relatively low dose rate EMPIAR datasets are higher than those due to MRCZ (filled circles). b Compression ratios obtained using MRCZ and ReCoDe on
simulated 16-bit unsigned integer data. The crossover point for performance occurs at 0.58 electron/pix/frame. At dose rates below this ReCoDe achieves
higher compression ratios than MRCZ, whereas at dose rates above this MRCZ achieves slightly higher compression ratios. The number of electron events
per pixel follows a Poisson distribution in these simulated datasets. The underlying compression algorithms used in a and b is Blosc+Deflate (zlib) for
both MRCZ and ReCoDe. Table 2 lists a short description of the seven EMPIAR dataset used to generate (a). Overall in the simulated data, for both
compression algorithms, compression ratios reduce as dose rate increases, as expected. However, for the EMPIAR datasets, there are two groups, one for
the floating-point data (datasets 0–5) and another for integer data (datasets 6 and 7). Although the floating-point data have lower dose rates than the
integer type data, the former is less compressible because they are naturally less sparse than the latter. Nevertheless, within each group, the expected
trend (reduction in compression ratio with increasing dose rate) holds true and ReCoDe outperforms MRCZ. A comparison where all the datasets are
standardized to the same integer data type, presented in Supplementary Fig. 6, shows that the results from EMPIAR datasets and simulated data are quite
similar.
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Connected components labeling. To compute the features specific to each elec-
tron puddle (e.g., centroids in L4 and the user-chosen summary statistics (ADU
sum or maximum) in L2), the set of connected pixels (components) that constitute
individual puddles have to be identified from the thresholded image. This con-
nected components labeling can be computationally expensive for large puddles.
Fortunately, puddle sizes tend to be small for most back-thinned direct electron
detectors. For the DE-16 detector, 90% of the puddles are fewer than five pixels in
size (Supplementary Fig. 8). Therefore, we use a greedy approach similar to the
watershed segmentation algorithm35 to perform connected components labeling.
The algorithm assigns unique labels to each connected component or puddle, and
the pixels associated with a given puddle are identified by the label of that puddle.
In L2 reduction, these labels are used to extract the chosen summary statistics from
the puddle and in L4 reduction, these labels are used to approximate the secondary
electron puddle to a single pixel, by computing the centroid or center of mass, etc.).

Representation of puddle centroids. The randomly distributed centroids of
secondary electron puddles account for the largest fraction of memory needed to
store the reduced frames. We considered three representations for storing these
centroids In the first representation, a centroid is encoded as a single 2n-bit linear
index. In the second representation, these linear indices are sorted and run-length
encoded (RLE) since the ordering of centroids in a single frame is inconsequential.
In the third representation, the centroids are encoded as a binary image (similar to
L4). The RLE and binary image representations were found to be much more
compressible than linear indices (Supplementary Fig. 9). Ultimately, the binary
image representation was adopted in ReCoDe because the sorting needed for RLE
is computationally expensive, for only a marginally higher compression.

Signal-noise calibration. In the current implementation, ReCoDe requires as
input a single set of pre-computed calibration parameters, comprising each pixel’s
dark and gain corrected threshold for separating signal and noise at that pixel. Any
calibration method can be used to compute this calibration frame. The “On-the-fly
Calibration” methods subsection below describes a fast routine, for estimating this
calibration frame, which we applied to the DE-16 detector. The “Fine Calibration”
methods subsection thereafter details a more deliberate data collection approach,
where additional diagnostics on the detector are also measured. Both calibration
approaches yield practically similar results at dose rates above 10−4 e/pix/frame
(Supplementary Fig. 14).

On-the-fly calibration. First, a flat-field illuminated dataset, comprising many raw
detector frames preferably at the same low dose rate targeted for actual imaging
afterward, is collected. An estimate of the incident dose rate is then computed using
this dataset. Whereas this could be obtained with an independent measurement
(e.g., Faraday cup), the dose rate computed by the procedure described here factors
in the detector’s detective quantum efficiency. Ideally, a pixel’s intensity across the
calibration frames would follow a mixture of two well-separated normal distribu-
tions, corresponding to either dark noise or signal. However, in practice, because
the detector PSF is larger than a pixel, charge sharing from fast electrons incident
on neighboring pixels will contribute to a single pixel’s intensity, which causes the
noise and signal distributions to overlap severely (Supplementary Fig. 10).

The calibration (summarized in Supplementary Note 11) begins by first
estimating a single global threshold that separates signal from noise for all pixels.
Assuming the histogram of dark values are normally distributed, this global
threshold is estimated based on a user-specified upper limit on the tolerable false
positive rate of a surmised normal distribution(r). However, because individual
pixels behave differently from each other, using the same threshold for all pixels
can severely bias electron counting. To remove this bias the global threshold has to
be adapted for each pixel individually based on the pixel’s gain and dark noise level.

Now we are ready to estimate the effective detectable electron count on the
detector from the dataset directly. Given the low dose rate in this calibration
dataset, only in a small fraction of frames does an individual pixel see electron
events. Therefore, a pixel’s median across all calibration frames is effectively its
dark noise level, at this dose rate. Given the compact PSF and high SNR of DE-16

detectors, to calculate each pixel’s gain, we assume that direct electron hits result in
larger intensities than those due to charge sharing, even when the pixels have
different gains. If the calibration dataset has a total dose of N e/pixel, where N is
sufficiently small such that the probability of two electrons hitting the same pixel is
negligible, then a pixel’s gain is the median of the N largest intensities it has across
all calibration frames. Therefore, we first estimate the total dose per pixel in the
calibration dataset using a few randomly selected small two-dimensional (2D)
patches. Separate thresholds are identified for individual pixels in these patches in a
similar manner to the global threshold (i.e., assuming normality in the dark
distribution and using a false positive rate parameter r). These thresholds are used
to identify the connected components in each selected 2D patch across all frames in
the calibration dataset. The number of connected components emanating from the
central pixel of a 2D patch across all calibration frames gives an estimate of the
number of electron events (nc) at the central pixel of that patch. The average of
these values across all randomly selected patches (ṉc) is used as the estimated total
dose per pixel in the calibration dataset. Here, a puddle is assumed to emanate
from the pixel that has the maximum value in the puddle. Finally, using the per-
pixel dark noise levels and gains the global threshold is adapted to compute each
pixel’s independent threshold. To compute a pixel’s threshold the global threshold
is first shifted such that the pixel’s dark noise level matches the global mean dark
noise level and then scaled such that the pixel’s gain matches the global gain.

For sufficiently sparse calibration data, even mean pixel intensity, which is
much more efficiently computed than median, can be used to estimate the dark
noise level for the pixel, although at the expense of a slightly higher false
positive rate.

Fine calibration. To further assess the fast, on-the-fly calibration, a slower and
more intricate calibration, referred to as fine calibration, was also implemented.
The fine calibration adds two steps to the on-the-fly calibration procedure
described above, a common-mode correction and a puddle area based filtering. The
common-mode correction eliminates dynamically fluctuating biases in electron
counting due to correlated thermal fluctuations between pixels that are connected
to the same local voltage (hence thermal) source; the area threshold filters electron
puddles to reduce false positive puddle detection. Analysis of the temporal response
of DE-16’s pixels revealed local detector regions of size 4 × 256 pixels that have
correlated responses (Supplementary Note 12 and Supplementary Fig. 12). The fine
calibration steps are summarized in Supplementary Fig. 13.

A series of datasets with increasingly sparse data was used to compare the two
calibrations. The controlled reduction in dose rate was achieved by increasing
magnification in successive datasets by 200× while keeping the electron flux
constant. A comparison of the rate of decay of the estimated dose rates with
counting following the two calibration strategies revealed that on-the-fly
calibration includes a substantial number of false positive puddles (Supplementary
Fig. 14A-B). However, this can be easily remedied with area-based filtering
following L1 reduced data acquisition. While the common-mode correction has
only a marginal effect on counting with the DE-16 detector (Supplementary
Fig. 14C), it might be essential for other detectors.

Backthinning of direct electron detectors was instrumental in reducing noise
from backscattered electrons while also shrinking electron puddle sizes36. The
smaller puddle sizes and improved signal-to-noise ratio, in turn, made electron
counting feasible. By comparing the distribution of neighboring puddle distances in
the ultra-low dose rate datasets with those in simulated images, we were able to
estimate the ratio of primary to backscattered electrons to be ~8.6 (Supplementary
Note 13). A feature of L1 reduction is that all the puddle shape information is
retained. In the future this shape information may be useful in algorithmically
distinguishing backscattered electrons from primary electrons, leading to a further
reduction in noise due to backscattered electrons.

On-the-fly compression pipeline. Continuous on-the-fly data reduction and
compression for 90 min were performed using 10 cores of the computer shipped
with the DE-16 detector. This computer has two E5-2687v4 Intel Xeon processors
(24-cores, 12 cores per chip, each core running at an average of 3.0 GHz base clock

Table 2 EMPIAR datasets used to compare ReCoDe and MRCZ in Fig. 7.

No. EMPIAR ID/dataset Dose rate (e/pixel/s) Detector Image size Data type Ref.

0 10299/MRCS_Diamond 0.69 K2 Summit 7676 × 7420 Float 32-bit 29

1 10299/MRCS_GAIN_1608 1.03 Falcon II 7676 × 7420 Float 32-bit
2 10299/MRCS_GAIN_1609 0.67 Falcon II 7676 × 7420 Float 32-bit
3 10299/MRCS_GAIN_1611 1.107 Falcon II 7676 × 7420 Float 32-bit
4 10313 1.01 K2 Summit 3838 × 3710 Float 32-bit 30

5 10317 1.46 K2 Summit 3838 × 3710 Float 32-bit 31

6 10346 5.19 K3 11520 × 8184 Unsigned byte 32

7 10346 4.51 K3 11520 × 8184 Unsigned byte
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rate), 128 GB DDR4 RAM, and is connected to a 1 Petabyte IBM GPFS NAS via a
10 GbE connection.

If the raw data stream coming from the detector is accessible in-memory
(RAM), reduction compression can be performed directly on the incoming data
stream. However, many detectors (including the DE-16 detector) make the raw
data available only after it is written to disk. Reduction compression then requires
simultaneously reading the data from disk back into RAM while more data from
the detector is being written to disk. While sufficiently fast SSDs in RAID 0 can
support multiplexed reads and writes to different parts of the RAID partition, a
more scalable solution is to use a virtual file pointer to a location in fast DDR RAM
(using RAM-disk). DDR RAMs, in fact, have sufficient read-write throughputs
such that multiple ReCoDe threads can read different sections of the available data
stream parallelly, while new data coming from the detector is written.

For continuous on-the-fly data collection, the StreamPix software was
configured with a script to acquire data in five-second chunks and save each chunk
in a separate file. The DE-16 acquisition software does not allow direct in-memory
access to data coming from the detector to RAM, restricting access to data only
after it has been written to disk. While SSDs have fast enough write speeds to keep
up with the throughput of the DE-16 detector, on-the-fly reduction compression
requires simultaneous write and read, each at 3 GB/s, which is not possible even
with SSDs. To overcome this problem, a virtual file pointer to a location in fast
DDR RAM (using RAM-disk) was used. When StreamPix finishes writing a five-
second file to RAM-disk, the ReCoDe queue manager adds the file to the queue and
informs the ReCoDe server. The ReCoDe server then picks off the next five-second
file in the queue, where each processing thread in the server independently reads a
different subset of frames within this file. Subsequently, each thread independently
appends its reduced and compressed output to its own intermediate file on the
NAS server via the 10 GigE connection. When the ReCoDe server is finished
processing a five-second file in the queue it informs ReCoDe queue manager, which
then deletes this file from RAM-disk. When the acquisition is complete all
intermediate files are automatically merged into a single ReCoDe file where the
reduced and compressed frames are time-ordered.

While the RAM-disk based approach bypasses read-writes to SSDs, it requires
copying the same data in RAM twice. First, the data stream from the detector is
written to an inaccessible partition on the RAM, then copied to the readable RAM-
disk partition. If we had direct access to first copy in the currently inaccessible
partition on the RAM, the subsequent copy to the RAM-disk can be eliminated,
hence freeing up important read-write bandwidth on the RAM. At the DE-16
detector’s throughput of 3.08 GB/s, this copying (read and write) uses a significant
portion of the RAM’s bandwidth (6.16 GB/s out of DDR4 RAM’s 21–27 GB/s, or
20–25 GiB/s, transfer rate). Direct access to the detector’s data stream without such
copying will, therefore, enable reduction compression at even higher throughputs.

Data availability
Raw detector data that were used to generate the figures in this manuscript are available
upon email request to the corresponding author.

Code availability
A fully parallelized Pythonic implementation of ReCoDe with features for on-the-fly
reduction compression is available at the Github code repository37: https://github.com/
NDLOHGRP/pyReCoDe. Python notebooks used to generate the figures in this
manuscript are also included in this code repository.
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