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Femoral neck fractures (FNFs) are a great public health problem that leads to a high

incidence of death and dysfunction. Osteonecrosis of the femoral head (ONFH) after

internal fixation of FNF is a frequently reported complication and a major cause for

reoperation. Early intervention can prevent osteonecrosis aggravation at the preliminary

stage. However, at present, failure to diagnose asymptomatic ONFH after FNF fixation

hinders effective intervention at early stages. The primary objective of this study was to

develop a predictive model for postoperative ONFH using deep learning (DL) methods

developed using plain X-ray radiographs and hybrid patient variables. A two-center

retrospective study of patients who underwent closed reduction and cannulated screw

fixation was performed. We trained a convolutional neural network (CNN) model using

postoperative pelvic radiographs and the output regressive radiograph variables. A less

experienced orthopedic doctor, and an experienced orthopedic doctor also evaluated

and diagnosed the patients using postoperative pelvic radiographs. Hybrid nomograms

were developed based on patient and radiograph variables to determine predictive

performance. A total of 238 patients, including 95 ONFH patients and 143 non-ONFH

patients, were included. A CNN model was trained using postoperative radiographs and

output radiograph variables. The accuracy of the validation set was 0.873 for the CNN

model, and the algorithm achieved an area under the curve (AUC) value of 0.912 for

the prediction. The diagnostic and predictive ability of the algorithm was superior to

that of the two doctors, based on the postoperative X-rays. The addition of DL-based

radiograph variables to the clinical nomogram improved predictive performance, resulting

in an AUC of 0.948 (95% CI, 0.920–0.976) and better calibration. The decision curve

analysis showed that adding the DL increased the clinical usefulness of the nomogram

compared with a clinical approach alone. In conclusion, we constructed a DL facilitated

nomogram that incorporated a hybrid of radiograph and patient variables, which can be

used to improve the prediction of preoperative osteonecrosis of the femoral head after

internal fixation.
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INTRODUCTION

Hip fracture is a significant public health concern that affects 4.5
million people worldwide each year and this number is expected
to increase to 21 million in the next 40 years (1, 2). Femoral
neck fracture (FNF) is one of the most common types of hip
fracture, accounting for 49–80% of all hip fractures (3, 4). Despite
the availability of multiple effective internal fixation procedures,
∼10–48.8% femoral neck fractures require reoperation (5–7).
Osteonecrosis of the femoral head (ONFH) is a major cause
of reoperation for FNF (8). Joint disfunction, pain, disability,
and mental anguish caused by ONFH result in great suffering
for patients (9–11). End-stage ONFH often inevitably requires
artificial joint replacement surgery, an invasive and economically
costly technique. Early diagnosis can facilitate the application of
interventions that can avoid or delay arthroplasty to a certain
extent (12–14). However, misdiagnoses and delayed diagnoses
are common due to the lack of preliminary symptoms, typical
features, and internal fixation interference on radiographs (14).
Different diagnostic criteria or simple visual estimates are used
by radiologists for practical imaging diagnosis, resulting in
unsatisfactory levels of diagnostic consistency and accuracy (15).
Therefore, early accurate and consistent prediction of ONFH
in patients after FNF internal fixation may hold the key for
improving patient outcomes.

Deep learning (DL) using radiographs has a proven ability
of classifying bone structures and features in specific sites with
expert-level accuracy (16, 17). Convolutional Neural Networks
(CNNs) are the most suitable models for image recognition of
DL, and have been widely used for the orthopedic diagnosis
of wrists and ankles (18, 19). Gale et al. developed a hip
fracture detector using DL and achieved an AUC of 0.994 (20).
Cheng et al. reported on a deep convolutional neural network
(DCNN) for the detection and localization of hip fractures using
pelvic radiographs, which achieved an AUC of 0.98 for the
identification of hip fractures (21). Recently, Chee et al. made a
breakthrough discovery for the diagnosis of early ONFH using
radiography through deep learning (22). This model achieved
an AUC of 0.93 and sensitivity and specificity that were not
inferior to the diagnosis made by both the less experienced
and experienced radiologists. Their study indicated the potential
of DL for the diagnosis and prediction of ONFH, especially
for X-ray imaging. However, the implementation of DL for
the diagnosis of postoperative ONFH using digital radiography
remains unexplored. Postoperative X-rays are highly affected
by interference, such as that of internal fixation devices, which
cause difference between the images on radiographs and the
original appearance of the femoral neck and femoral head. Since
postoperative X-rays are themost commonmethod used for early
examination, a consistent diagnosis based on postoperative X-
rays made using DLmay improve the prediction of postoperative
ONFH for better prognosis. In this study, we designed and
assessed the diagnostic performance of a DL algorithm based on
the CNN network model using postoperative X-rays. We also
compared the accuracy of the diagnosis of postoperative ONFH
between this DL model and assessments made by two orthopedic
doctors of different levels of experience.

In previous studies, a large number of research studies have
indicated that patient and interventional variables, including
demography, fracture classification, laboratory examination,
reduction quality, and initial postoperative rehabilitation, are
significantly associated with postoperative ONFH (23–26).
However, intraoperative, and postoperative factors, especially
radiographic variables, including intraoperative reduction and
fracture healing, have yet to be incorporated into routine
clinical postoperative ONFH prediction. In this study, a DL
facilitated predictive model using a hybrid of patient and artificial
intelligence (AI) radiographic variables, was also developed.
Comparisons were made with a single clinical prediction model
was performed to estimate whether DL could improve the
prediction of postoperative ONFH.

MATERIALS AND METHODS

Study Population
Data were obtained from two urban tertiary hospitals, The First
Affiliated Hospital of University of Science and Technology of
China (FAH) and the Southern Branch of the First Affiliated
Hospital of University of Science and Technology of China
(SBH). One hundred thirty-nine FAH patients and 99 SBH
patients who had received closed reduction and cannulated
screw fixation from June 2013 to January 2015 were enrolled
in this study. The patient inclusion criteria were as follows: (i)
Patients over 18 years of age with fresh FNFs; (ii) Postoperative
pelvic radiographs obtained 6 months after surgery; (iii)
Continuous follow-up for a minimum of 5 years with the
clinical characteristics available. The exclusion criteria were
as follows: (i) Pathological fractures and bilateral fractures;
(ii) Long-term hormone use. The treatment standard and
strategy used for femoral neck fracture was the cannulated
compression screws fixation technique, based on American
Academy of Orthopedic Surgeons guidelines (27). Postoperative
ONFH was diagnosed using pelvic MRIs or co-diagnosis by three
experienced orthopedic surgeons based on the pelvic radiograph
obtained at the last follow-up. This study was approved by the
Ethics Committees of both hospitals. Exemption of the informed
consent, the information disclosure, and a negative opportunity
are guaranteed in the Ethical approval (20-P-049).

Demographics, comorbidities, smoking status, alcohol use,
blood tests, preoperative Garden classification, Pauwels angle,
preoperative interval from injury, operation associated data,
postoperative Garden index, preoperative interval to weight
bearing and other baseline patient and clinical data were derived
from medical and follow-up records. The data were de-identified
after patient variables were collected.

Imaging Studies
Image acquisition and retrieval procedures were conducted
using Picture Archiving and Communication Systems (PACS)
on FAH and SBH patients. Digital radiographs of the hip
were obtained using Digital Diagnostics (Philips Healthcare)
on FAH patients and Discovery XR656 (GE Healthcare) on
SBH patients. The size of the stored images varied from 2,128
× 2,248 pixels to 2,688 × 2,688 pixels, with 8-bit grayscale
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color. Each radiograph was labeled based on the final diagnosis
of postoperative ONFH. Geometric, smooth, concave, bandlike
low-signal intensity lesions at the femoral head on the T1-
weighted images were regarded as pathognomonic MRI findings
of ONFH. For MRI data not obtained at the last follow-up
(45/238, 18.9%), diagnosis was based on pelvic plain radiographs
obtained at the last follow-up and was set as a reference for
labeling. The Association Research Circulation Osseous (ARCO)
classification system was used as the diagnostic standard for
ONFH (28).

Radiographic image files were loaded for processing using
a MATLAB library (version 2017b, MathWorks, USA). The 7
× 7 cm images centered on the bilateral femoral heads were
cropped. The center coordinates were manually recorded in
advance. Radiographs were standardized to a common size and
pixel intensity distribution. The images were down-sampled and
padded to a final size of 120 × 120 pixels. Mean pixel intensity
and standard deviation of each image was normalized.

Algorithm Development and Extraction of
Image Variables
For the development of a deep learning algorithm, we used
MATLAB (version 2017b, MathWorks, USA) to implement a
CNN model to compute abstract image features from input
image pixel arrays. The design of the CNN model is shown in
Table 1. The CNNmodel consisted of three convolutional blocks,
a dropout and full connection layers. Each convolutional block
comprised of convolutional operation, batch normalization, relu,
and average pooling. The input used was Pixel values were set
at 120∗120 using a digital image. Cubic convolution and pooling
were performed on each layer to adjust the weights of the neural
network, using the difference between the output and true labels.

The patients in the dataset were assigned to different groups
as follows: 149 (63%) for training, 17 (7%) for validation and
72 (30%) for testing. The output results underwent regression

TABLE 1 | The design of CNN model.

Type Operations Filter shape Input size

Conv1 Conv 8 × 7 × 7 × 1 120*120

batchnorm

relu

avgpool 8 × 120*120

Conv2 Conv 7 × 5 × 5 × 8 8 × 60*60

batchnorm

relu

avgpool 7 × 60*60

Conv3 Conv 5 × 3 × 3 × 7 7 × 30*30

batchnorm

relu

avgpool 5 × 30*30

Dropout Dropout 1*1 5 × 15*15

FC Fully connected 1,125*1 5 × 15*15

Regression Regression output 1*1 1*1

analysis. The network output was a probability distribution for
the continuous variables of the regression coefficient from 0 to
1.25, which was divided at 0.25 intervals into classified labels, 1–
5. Higher label values were more likely to be considered to more
strongly predict postoperative ONFH. In this study, this output
label was referred to as the AI index classification.

Algorithm Evaluation
Seventy-two independent datasets were used to test the trained
predictivemodel to evaluate its accuracy for postoperative ONFH
prediction. The probability of the diagnosis being postoperative
ONFH generated by the model was evaluated using the receiver
operating characteristic (ROC) curve and the area under the
curve (AUC). The sensitivity, accuracy, recall and specificity of
the radiographs for the prediction of ONFHweremeasured using
a cutoff level probability of 0.5. A training curve was used to
determine root mean squared error (RMSE) and loss, while a
precision-recall curve was used to determine precision and recall.

Image Predictive Variable Evaluation
We compared the AI index with the predictive measurement
scores assigned by the two orthopedic surgeons of different
levels of experience with the results of the DL algorithm
based on the same X-rays to evaluate the performance of the
algorithm. Radiographs obtained 6-months after anteroposterior
hip operations were randomly divided into two IPAC sequences
by the study coordinator. A less experienced orthopedic
doctor (Doctor A, 3rd year of residency in orthopedics) and
an experienced orthopedic doctor (Doctor B, 18 years in
orthopedics) participated in the reading session. Both doctors
were not involved in surgery, data collection or reference labeling.
A score based on the subjective prediction of the doctors using
the postoperative X-ray to determine the most likely outcome
at final follow-up was assigned using a 1–5 grading system. One
indicated that the development of ONFH was considered to be
impossible, while 5 indicated that the development of ONFH
was considered to be certain. Each doctor independently graded
the predictive variables for ONFH. Comparison between the
performance of the AI index and the evaluation made by the two
doctors was conducted through calibration and ROC analysis.

Development of Prediction Models
A multivariable logistic regression analysis was used to develop
the clinical predication model based on patient and clinical
variables. AI index classification was applied as a candidate
predictor for univariate and multivariable logistic regression
analyses for the construction of a DL-based postoperative ONFH
prediction model using hybrid variables. A clinical prediction
nomogram and a DL-based nomogram were then constructed
based on multivariate logistic regression models. The work
flowchart of this study is presented in Figure 1.

Assessment of Nomogram Performance
AI-based nomogram and clinical nomogram calibration
were assessed using a calibration curve. The discrimination
performance of both the AI-based nomogram and clinical
nomogram were quantified using the AUC.

Frontiers in Medicine | www.frontiersin.org 3 October 2020 | Volume 7 | Article 573522

https://www.frontiersin.org/journals/medicine
https://www.frontiersin.org
https://www.frontiersin.org/journals/medicine#articles


Zhu et al. Deep-Learning Improves Postoperative Osteonecrosis Prediction

FIGURE 1 | Flowchart of hybrid nomogram construction.

Clinical Use
Decision curve analysis (DCA) was performed by calculating the
net benefits for a range of threshold probabilities to estimate the
clinical utility of the nomogram.

Statistical Analysis
Median and mean standard deviation (SD) were used to describe
continuous variables. Categorical variables were presented as
frequencies and percentages. Statistical comparisons between
groups were performed using the Mann-Whitney U-test and
Chi-square test. R software version 3.0.1 was used to construct
the nomogram. The “pROC” package was used to plot ROC
curves. Nomogram construction and calibration plot creation
were performed using the “rms” package. DCA was performed
using the “dca.R” package. Model selection was based on the
forward–backward step-wise method using the likelihood ratio
test with Akaike’s information criterion as the stopping rule.
The model with the smallest Akaike Information Criterion was
selected as the final model. The statistical significance levels
reported are all two-sided, with statistical significance set at a
P-value of 0.05.

RESULTS

Patient and Radiograph Characteristics
Postoperative radiographs of a total of 238 patients, including
95 ONFH patients and 143 normal patients were used for
the development of the DL model and construction of the
predictive nomogram. Imaging feature variables were extracted
from each radiograph and were referred to as the AI index of
all patients. Table 2 shows the baseline characteristics of the
patients. Significant differences were found in BMI, Charlson

comorbidity index, Injury Severity Score (ISS), d-dimer, timing
of reduction, Garden classification and AI index between patients
with ONFH and those without ONFH (Table 2).

Performance of the CNN Model
A CNN model was established for the extraction of radiograph
variables. The precision-recall curve of the test set is shown in
Figure 2A, while the threshold value at the break-even point
was 0.425. This point was set as the highest sum of sensitivity
and specificity. Training accuracy values at this threshold for the
training set was 0.903 and 0.873 for the test set. The change
in RMSE and loss during the training process are shown in
Figure 2B. Deviation of the RMSE in the training set and test
set gradually decreased and the two curves leveled off (upper
diagram) along with the increase of iterations. Similarly, as the
number of iterations increased the deviation in loss between the
training set and test set gradually decreased.

Performance of the Predictive Radiograph
AI Variables
The calibration curve of the AI index for the prediction of
postoperative ONFH demonstrated good agreement between
prediction and actual observations, compared with that of Doctor
A andDoctor B (Figure 3A). The sensitivity value was 0.910 (95%
CI, 0.871–0.949) for the AI index, 0.657 (95%CI, 0.591–0.724) for
the less experienced Doctor A and 0.827 (95% CI, 0.776–0.879)
for experienced Doctor B (Figure 3B). The DCA curves shown
in Figure 3C indicate that when the threshold probability for a
doctor or a patient was within the range of 0.09–0.96, the AI index
added more net benefits for the prediction, than that of Doctor A
or Doctor B.
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TABLE 2 | Patients baseline characteristics stratified by ONFH.

All patients Non-ONFH group ONFH group p

N = 238 N = 143 N = 95

Age 46.4 ± 12.7 45.6 ± 13.3 47.6 ± 11.7 0.215

Sex 0.167

Female 106 (44.5%) 58 (40.6%) 48 (50.5%)

Male 132 (55.5%) 85 (59.4%) 47 (49.5%)

BMI 22.7 ± 2.88 22.4 ± 2.82 23.2 ± 2.93 0.048

Smoking 0.875

No 148 (62.2%) 90 (62.9%) 58 (61.1%)

Yes 90 (37.8%) 53 (37.1%) 37 (38.9%)

Alcohol use 0.696

No 165 (69.3%) 101 (70.6%) 64 (67.4%)

Yes 73 (30.7%) 42 (29.4%) 31 (32.6%)

WIC 1.34 ± 1.40 1.10 ± 1.21 1.68 ± 1.59 0.003

CVD 0.097

No 220 (92.4%) 136 (95.1%) 84 (88.4%)

Yes 18 (7.56%) 7 (4.90%) 11 (11.6%)

ISS score 0.029

≤16 210 (88.2%) 132 (92.3%) 78 (82.1%)

>16 28 (11.8%) 11 (7.69%) 17 (17.9%)

WBC 7.42 ± 2.44 7.51 ± 2.51 7.28 ± 2.34 0.484

RBC 4.30 ± 0.57 4.31 ± 0.59 4.28 ± 0.55 0.638

Hb 130 ± 16.4 130 ± 16.5 131 ± 16.3 0.871

PLT 181 ± 58.2 178 ± 56.6 185 ± 60.6 0.387

ALB 40.9 ± 3.18 41.1 ± 3.18 40.7 ± 3.19 0.360

D-dimer 4.40 ± 5.59 5.16 ± 6.40 3.27 ± 3.86 0.005

Causes of injury 0.192

High energy trauma 63 (26.5%) 33 (23.1%) 30 (31.6%)

Low energy trauma 175 (73.5%) 110 (76.9%) 65 (68.4%)

Timing of reduction <0.001

<72 h 100 (42.0%) 72 (50.3%) 28 (29.5%)

72–120 h 97 (40.8%) 58 (40.6%) 39 (41.1%)

>120 h 41 (17.2%) 13 (9.09%) 28 (29.5%)

ASA grade 0.223

Grade 1 118 (49.6%) 76 (53.1%) 42 (44.2%)

Grade 2–3 120 (50.4%) 67 (46.9%) 53 (55.8%)

Garden classification 0.014

Type 2 19 (7.98%) 17 (11.9%) 2 (2.11%)

Type 3 116 (48.7%) 63 (44.1%) 53 (55.8%)

Type 4 103 (43.3%) 63 (44.1%) 40 (42.1%)

Pauwels angle 53.2 ± 14.8 53.9 ± 15.4 52.1 ± 13.8 0.346

Garden index 0.130

1 43 (18.1%) 29 (20.3%) 14 (14.7%)

2 61 (25.6%) 34 (23.8%) 27 (28.4%)

3 70 (29.4%) 36 (25.2%) 34 (35.8%)

4 64 (26.9%) 44 (30.8%) 20 (21.1%)

Interval to part weightbearing 0.393

<1m 16 (6.72%) 10 (6.99%) 6 (6.32%)

1–3m 89 (37.4%) 58 (40.6%) 31 (32.6%)

3–6m 122 (51.3%) 67 (46.9%) 55 (57.9%)

>6m 11 (4.62%) 8 (5.59%) 3 (3.16%)

Interval to full weightbearing 0.474

<3m 25 (10.5%) 15 (10.5%) 10 (10.5%)

3–6m 161 (67.6%) 93 (65.0%) 68 (71.6%)

>6m 52 (21.8%) 35 (24.5%) 17 (17.9%)

AI index 0.48 ± 0.39 0.24 ± 0.24 0.83 ± 0.29 <0.001
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FIGURE 2 | Performance of CNN model in postoperative ONFH prediction. (A) Precision-recall curve of test set. The threshold value at Break-Even point is 0.425 and

the accuracy at this threshold set is 0.873. (B) The change of root mean square error (RMSE) and loss during the training process. Dotted line, RMSE and loss of the

training set. Blue wave, RMSE of the validation set. Red wave, loss of the validation set.

FIGURE 3 | Performance of predictive value of AI index. (A) Calibration plots for prediction of AI, Doctor A and Doctor B. Calibration curves depict the calibration of

the nomogram in terms of agreement between the predicted risk and outcomes. The 45◦ gray ideal line represents a perfect Prediction. The closer the dotted line fit is

to the ideal line, the better the predictive accuracy of the diagnosis and nomogram is. (B) ROC curves for prediction of AI, Doctor A and Doctor B. (C) DCA analysis

curves for radiodiagnosis of AI, Doctor A and Doctor B. It showed that if the threshold probability is between 0.09 and 0.96, then using the AI index adds more benefit

than testing either all or no patients.

Development of a Hybrid Prediction Model
In the univariate logistic regression analysis, BMI, Injury Severity
Score (ISS), timing of reduction, Garden classification and AI
index were found to be significant factors associated with ONFH
in the training cohort (all P < 0.05; Table 2). In the final
multivariate logistic regression model, BMI (HR 0.471, 95% CI
0.187–1.147, P = 0.101), ISS (HR 3.427, 95% CI 0.919–13.05,
P = 0.068), timing of reduction (72 h-120 h: HR 1.533, 95%
CI 0.564–4.253, P = 0.403; >120 h: HR 9.464, 95% CI 2.471–
40.38, P = 0.002), Garden classification (Type 3: HR 0.336, 95%
CI 0.050–3.315, P = 0.292; Type 4: HR 1.344, 95% CI0.243–
12.98, P = 0.745) and AI index (HR 6.043, 95% CI 4.071–9.717,
P < 0.001) were identified as hybrid independent predictors of
ONFH (Table 3). We then created a prediction nomogram that
incorporated the above independent predictors and presented it

as a hybrid nomogram (Figure 4A). A clinical nomogram was
also constructed based on independent predictors excluded from
the AI index (Figure 4B).

Performance of the Hybrid Nomogram
The calibration curve of the hybrid nomogram for the prediction
of postoperative ONFH demonstrated good agreement between
prediction and actual observations, compared with that of
the clinical nomogram (Figure 5A). The AUC of the AI-
based nomogram was 0.948 (95% CI, 0.920–0.976), while the
AUC for the clinical nomogram was 0.696 (95% CI, 0.629–
0.763) (Figure 5B). The difference was statistically significant,
which indicated that the hybrid nomogram showed better
discrimination and prediction ability for the diagnosis of ONFH.
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TABLE 3 | The results of univariate and step-wise multivariate analyses of confounding variables.

Variable Univariate model Multivariate model

HR (95% CI) P HR (95% CI) P

Age 1.013 (0.992–1.035) 0.227 – –

Sex, male 0.668 (0.395–1.126) 0.131 – –

BMI, ≤24 0.618 (0.361–1.054) 0.077 0.471 (0.187–1.147) 0.101

Smoking, yes 1.083 (0.633–1.847) 0.769 – –

Alcoholism, yes 1.164 (0.663–2.036) 0.593 – –

Causes of injury 1.431 (0.851–2.419) 0.147 – –

ASA grade, grade 2-3 1.412 (0.851–2.419) 0.178 – –

WIC 1.348 (1.116–1.643) 0.002 Not selected –

CVD, yes 2.544 (0.964–7.155) 0.063 Not selected –

ISS score, >16 2.615 (1.178–6.028) 0.020 3.427 (0.919–13.05) 0.068

WBC 0.962 (0.862–1.071) 0.488 – –

RBC 0.897 (0.567–1.414) 0.640 – –

PLT 1.002 (0.998–1.007) 0.379 – –

Hb 1.001 (0.986–1.018) 0.871 – –

Alb 0.962 (0.885–1.044) 0.358 – –

D2D 1.411 (0.839–2.382) 0.195 – –

Timing of reduction – –

<72 h Reference

72–120 h 1.729 (0.956–3.159) 0.072 1.533 (0.564–4.253) 0.403

>120 h 5.538 (2.562–12.53) <0.001 9.464 (2.471–40.38) 0.002

Garden classification

Type 2 Reference Reference

Type 3 5.397 (1.443–35.20) 0.029 0.336 (0.050–3.315) 0.292

Type 4 7.150 (1.932–46.41) 0.011 1.344 (0.243–12.98) 0.745

Pauwells angle 0.992 (0.974–1.009) 0.355 – –

Garden index Not selected –

1 Reference – –

2 1.645 (0.736–3.774) 0.231 – –

3 1.956 (0.896–4.400) 0.097 – –

4 0.942 (0.412–2.181) 0.887 – –

Interval to part weightbearing – –

<1m Reference – –

1–3m 0.891 (0.301–2.831) 0.837 – –

3–6m 1.368 (0.477–4.241) 0.567 – –

>6m 0.625 (0.105–3.207) 0.581 – –

Interval to full weightbearing – –

<3m Reference – –

3–6m 1.098 (0.469–2.662) 0.833 – –

>6m 0.728 (0.271–1.987) 0.529 – –

AI index (per 0.25 increase) 4.594 (3.365–6.572) <0.001 6.043 (4.071–9.717) <0.001

Clinical Use
The DCA for the hybrid nomogram and for the clinical
nomogram are presented in Figure 5C. The DCA indicated that
when the threshold probability for a doctor or a patient was
within the range of 0–0.98, the hybrid nomogram added more
net benefits than “treat all” or “treat none” strategies. The range
for the clinical nomogram was from 0.2 to 0.7, revealing that
use of the hybrid nomogram to predict postoperative ONFH was
more beneficial.

DISCUSSION

Early detection and identification of ONFH after femoral neck
fracture fixation has been a long-term concern in clinical practice.
In this study, we developed and trained aDLmodel that could use
postoperative pelvic radiographs to predict ONFH. The output
values of the CNNmodel successfully stratified patients based on
their risk of developing postoperative ONFH, which was referred
to as AI index classification for prediction. The predictive
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FIGURE 4 | The nomogram for the operative prediction of ONFH. (A) Hybrid AI-based nomogram incorporated hybrid independent radiograph and patient variables.

(B) Clinical-based nomogram constructed based on independent predictors excluded AI index.

FIGURE 5 | Performance of the hybrid predictive model. (A) Calibration plots for AI index, AI-based nomogram and Clinical nomogram. (B) ROC curves for prediction

of AI index, AI-based nomogram and Clinical nomogram. (C) DCA analysis curves for AI radiodiagnosis, AI-based nomogram and Clinical nomogram. The y-axis

measures the net benefit. The blue line represents the hybrid AI-based nomogram. The green line represents the clinical nomogram. The gray line represents the

assumption that all patients have postoperative ONFH. Thin black line represents the assumption that no patients have postoperative ONFH. The x-axis represents

the threshold probability. The threshold probability is where the expected benefit of treatment is equal to the expected benefit of avoiding treatment. It showed that if

the threshold probability is between 0 and 0.98, then using the AI-based nomogram adds more benefit in predicting ONFH than testing either all or no patients.

performance of the AI index was significantly superior to the
predictive performance of a less experienced orthopedic doctor
and non-inferior to that of an experienced orthopedic doctor.
A combination of patient and radiograph variables were used
to construct an AI-based nomogram for postoperative ONFH
prediction. The hybrid nomogram showed better performance
for the postoperative prediction of ONFH than a single clinical
nomogram, indicating its potential in predicting and targeting
ONFH during clinical follow-up to provide a decision base for
orthopedic doctors.

Hip pain is the most common postoperative symptom after
FNF surgery. It may be associated with fractures, surgery, implant
irritation, and early ONFH that should be identified during
follow-up. Postoperative X-rays are the most common and
readily available imaging examination used for routine clinical
follow-up after internal fixation. The detection of sclerotic
abnormalities and trabecular interruptions of the femoral head

for the diagnosis of postoperative ONFH are subjective and
depend on the level of experience and diagnostic criteria used
by each doctor. Only radiologists who are rich in experience,
may be able to accurately predict ONFH using postoperative X-
rays. Even then, objectivity and consistency may be difficult to be
achieved. The increased workload of radiologists worldwide has
already had a significant impact on the diagnostic performance
of radiologists (29, 30). Therefore, DL can be used as a
potential auxiliary diagnostic tool for orthopedic diagnoses to
obtain stable and accurate diagnoses (16, 31). In this study,
we trained a DL model to read postoperative X-rays to predict
ONFH. The accuracy and consistency of the DL model was
significantly better than that of an orthopedic doctor with less
experience. The DL model was similar in accuracy but better in
consistency, compared with the experienced orthopedic doctor.
This indicated the potential of the use of the DL model for
the diagnosis and prediction of postoperative ONFH. Previous
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studies have indicated that an important feature of the DL
model is its ability to detect key features of images through
cyclic learning undergone by neural networks, which may be
different from the existing understanding and research on
image features in black box models. This makes it possible for
the diagnostic path of the DL model to differ from existing
known diagnostic and prediction criteria, resulting in a positive
difference in the diagnostic accuracy of the DL model, compared
with that of orthopedic doctors. The DL model created in
Chee’s study showed a high level of sensitivity and accuracy
for the diagnosis of pre-collapse ONFH (22). When we applied
the CNN network obtained from this non-traumatic ONFH
predictionmodel to our postoperativeONFHprediction, internal
fixation of the postoperative X-ray was found to be one of the
major differences between the two models. Recent studies have
suggested that different fixation constructs, such as cannulated
screws or dynamic hip screws, produce different fracture fixation
outcomes. The location differences under the implemented
operations standard for the same fixation construct do not
significantly affect outcomes (32). During training, we found that
the output of the DLmodel could still reflect prediction efficiency
and showed good calibration, even though the positions of the
metal internal fixations were not exactly the same and occupied
the recognition area in the finite image pixel.

Existing studies using clinical risk factors, such as
demographic data, fracture classification, and preoperative
interval, to make preoperative predictions for surgical decisions
(33–35). Due to the lack of the incorporation of all perioperative
variables, especially the intraoperative and postoperative
radiograph variables, the preoperative prediction models in these
studies have shown difficulties in achieving an ideal predictive
ability. For example, the clinical nomogram constructed in
our study achieved an AUC of 0.696 (95% CI, 0.629–0.763),
which is similar to the AUC of 0.746 obtain by the Naive Bayes
Classifier constructed by Cui et al. (36). The predictive ability of
a preoperative model is limited for patients who have received
certain internal fixation, for example dynamic hip screws and
cannulated compression screws (34, 36). The hybrid nomogram
showed better prediction performance after the incorporation of
patient and radiograph variables, compared with conventional
clinical nomograms and the simple radiographic-based DL
model for postoperative ONFH prediction. In this study, the
hybrid classifier achieved an AUC of 0.948 (95% CI, 0.920–
0.976). The variables we included after multivariate regression
analysis of all risk factors were similar to that of conventional
preoperative clinical prediction models. High-risk factors
generally include fracture patterns, preoperative interval, and
BMI. Inclusion of the DL model-based imaging prediction
significantly improved the ONFH predictive ability of the
traditional prediction models, indicating the value of using a
combination of variables. The predictive model using hybrid
variables more closely mimicked the diagnostic and predictive
processes of orthopedic doctors, who are better at interpreting
images based on the clinical status of patients (37). The addition
of a combination of patient and hospital process variables
associated with routine clinical care improved the ability of a
DL model trained by Badgeley et al. to predict hip fractures

(38). One explanation for this improvement was the presence
of non-biological signals on radiographs that are predictive
of diseases (39). Although multiple regression analyses were
performed for risk factors, including intraoperative reduction,
and postoperative weight bearing, the variables included in
the single clinical nomogram were all preoperative variables.
Among them, Garden classification showed the most assigned
value, which was similar to the results of previous studies that
found that fracture patterns are crucial for the prediction of
postoperative ONFH (7, 40). When the postoperative AI index
was included, the attribution of Garden classification decreased
significantly, which may be because the AI index already
included certain manually incorporated graded variables from
the images. The information was considered as a non-biological
signal and contributed to the classification. The DL-based
prediction model that incorporated a combination of patient
and radiograph variables showed a significantly higher ability
of prediction postoperative ONFH, and can be used to provide
second opinions and a base for doctors to make decisions during
clinical follow-up.

In the DCA curves analysis, prediction and diagnosis based
on the DL model were found to be non-inferior to that of the
two orthopedic doctors, while that of the AI-based nomogram
using hybrid variables was superior to imaging prediction alone,
allowing for more accurate diagnosis and prediction during
clinical follow-up. There is no doubt that the gold standard
imaging modality for the preliminary stages of ONFH is MRI
(41, 42). However, MRI is not the most common test used to
evaluate treatment options and ONFH during postoperative FNF
follow-up. MRIs are affected by metal implants, which may cause
potential internal fixation losses and thermal effect (43). MRI
tests are more expensive, take longer, and require the radiologist
to have a higher level of diagnostic experience. Nomograms
based on the DL model and clinical variables can improve the
ability of positive diagnostic screening and provide doctors the
opportunity of obtaining a second opinion.

The AI-based nomogram using hybrid variables may
potentially assist in decision making during clinical follow-
up as patients with early-stage ONFH may benefit from
timely interventions (44). Although the definitive method of
treatment for traumatic ONFH remains controversial, certain
early interventions have been widely used during post-operative
clinical follow-up. For patients with a high probability of
developing ONFH, interventions for hip preservation or
delayed joint replacement, including platelet-rich plasma (PRP)-
incorporated autologous granular and free vascularized fibular,
have been proven to be safe and effective procedures for
postoperative ONFH (45, 46). Extracorporeal shock wave
therapy and alendronate administration can also be potentially
performed on patients with a moderate probability of a risk
of developing ONFH (47–49). We assessed whether the AI-
based nomogram assisted decisions that would improve patient
outcomes to justify its clinical usefulness. Our study showed that
if the threshold probability was between 0.06 and 0.96, as shown
by the constructed decision curves, the AI-based nomogram
could predict postoperative ONFH compared with treating
either all or no patients. This indicated that early postoperative
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prediction using this hybrid of patient and radiograph variables
can be useful for the application of early interventions that may
even allow for a reasonable delay of the onset of arthroplasty (50).
Substantial positive rehabilitation can be applied after accurate
predictions are obtained after the operation for patients with
a lower prediction probability, which will also relieve patient
anxiety (51).

This study has some limitations. First, it was conducted
on a retrospective cohort study, and is therefore likely to
have been affected by selection bias. Second, due to the rarity
of the disease, our study included only 238 images in the
CNN model. The performance of the CNN model can be
improved by using a larger multicenter sample size. Third,
our diagnostic criteria for postoperative ONFH was based on
follow-up MRIs and typical pelvic radiographs without the
use of histopathological confirmation. Therefore, false-negative
and false-positive values would not have been avoided due
to the subjectivity of the imaging diagnosis method. At the
same time, transverse comparison was not conducted with
gold standard MRI when postoperative X-rays were included 6
months after surgery. The reason was that, as a retrospective
study, MRIs had been performed on only 197 patients, probably
due to their high cost. In the future, prospective clinical
studies using larger cohorts should be preplanned to investigate
strategies that can be used for ONFH prediction of patients after
internal fixation.

CONCLUSION

In conclusion, this study presents a DL facilitated nomogram
that incorporates hybrid radiograph and patient variables, shows
favorable predictive accuracy for preoperative osteonecrosis of

femoral head in patients with femoral neck fractures after
internal fixation.
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