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Abstract. Huntingtin is a 3144 amino acid protein defined as a scaffold protein with many intracellular locations that suggest
functions in these compartments. Expansion of the CAG DNA tract in the huntingtin first exon is the cause of Huntington’s
disease. An important tool in understanding the biological functions of huntingtin is molecular imaging at the single-cell
level by microscopy and nanoscopy. The evolution of these technologies has accelerated since the Nobel Prize in Chemistry
was awarded in 2014 for super-resolution nanoscopy. We are in a new era of light imaging at the single-cell level, not just
for protein location, but also for protein conformation and biochemical function. Large-scale microscopy-based screening
is also being accelerated by a coincident development of machine-based learning that offers a framework for truly unbiased
data acquisition and analysis at very large scales. This review will summarize the newest technologies in light, electron, and
atomic force microscopy in the context of unique challenges with huntingtin cell biology and biochemistry.
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FLUORESCENCE-BASED IMAGING TO
VISUALIZE THE TARGET IN
HUNTINGTON’S DISEASE

The full-length huntingtin protein is ubiquitously
expressed in all cell types in vertebrates, suggesting
critical and basic cell functions beyond normal devel-
opment. Huntingtin is a 3144 amino acid, 340kDa
protein, one of the largest non-transmembrane pro-
teins in the human proteome, and has no known
enzymatic activity nor domains that would suggest
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any catalytic activity. With an overall solenoid shape
and over 80 HEAT repeat structures [1], huntingtin is
best defined as a scaffold protein with multiple cellu-
lar locations, dictated by membrane association and
defined localization signals to the endoplasmic retic-
ulum [2], nucleus [3], vesicles [4], and primary cilium
[5-9]. It is challenging to image scaffold proteins by
immunofluorescence, as conformations of the pro-
tein can bury epitopes to antibodies, and antibody
interaction may affect the function and location of
the protein. As such, any interpretation of huntingtin
location with a single antibody has its caveats.

Live cell imaging has been paramount to under-
stand huntingtin functions, as a static snapshot of
a large scaffold protein with many cellular loca-
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tions. Live cell imaging with full-length huntingtin
fluorescent protein fusions have provided mechanis-
tic insights into huntingtin function at fast axonal
trafficking vesicles [4], orientation of the mitotic spin-
dle [10], and the role of huntingtin in primary cilia
[5, 9]. Live cell imaging provided insights into the
stress-dependent movement of huntingtin from endo-
plasmic reticulum to the nucleus upon oxidative stress
[11] which was prescient to the function of huntingtin
in DNA damage repair [12], then subsequent export
from the nucleus via the N17 master regulatory signal
[5].

One solution to this problem is the use of anti-
gen presentation imaging protocols to cause protein
unfolding, typically using alcohols or denaturants
that fix proteins, revealing conformationally hid-
den epitopes. However, this method may not allow
antibody access to regions complexed with tightly
bound proteins. The first stable defined structure of
huntingtin by cryo electron microscopy was with
the protein alone, or apoprotein [13]. Subsequent
analysis of more stable, more highly refined struc-
tures indicates that biologically active huntingtin is
dimerized with HAP40 [14], a small flat protein
sandwiched between the huntingtin amino-terminal
HEAT and carboxy-terminal HEAT domains [15].
Huntingtin is not an abundant protein, and levels of
huntingtin are intimately controlled by HAP40 lev-
els indicating that huntingtin stoichiometry is also
carefully controlled [16]. This is consistent with the
characteristics of a scaffold protein, as the overex-
pression of any scaffold will have deleterious effects
by sequestering factors that should only be interact-
ing at higher local effective concentrations achieved
by regulated localization and conformation.

The stoichiometry of protein biochemistry is not
different from chemistry. In chemistry, the correct
stoichiometry defines a reaction and can affect both
rates and direction of product and substrate for-
mation. This is important to consider when using
overexpression models to define huntingtin protein
biochemistry, and this problem is amplified by orders
of magnitude with the use of small huntingtin frag-
ments. To address this issue, between 2010-2012, the
Truant lab attempted to genetically edit huntingtin in
human cell lines to fuse a fluorescent protein at either
the amino or carboxyl terminus. The editing was suc-
cessfully performed using zinc finger or TALE-N
technology, but the cells quickly arrested in cell cycle
and died, regardless of which terminus was targeted.
While the result is negative and the data unpublished,

it highlighted the critical nature of huntingtin in the
context of cell biology. In the Zeitlin lab, they were
able to tag the amino terminus of huntingtin in a
mouse model without any negative effects by using
small epitope tags as opposed to a 34 kDa fluorescent
protein [17]. This suggests that a large fusion of a
fluorescent protein at either termini of huntingtin can
affect huntingtin function, which is consistent with
the known ability of the huntingtin amino terminus
to fold back to the more distal regions of the protein
[16, 18] and suggests that huntingtin function is likely
allosterically regulated by either termini.

Later in 2017, the Truant and van Roon-Mom
labs collaborated to express a camelid intrabody in
cells fused to GFP to form a huntingtin chromobody
[12]. This reagent labels endogenous huntingtin
in live cells, allowing for the visualization of
huntingtin translocation across the nuclear pore
complex upon stress, as well as localization to
DNA damage. Multiple huntingtin monoclonal
antibodies subsequently validated these results. This
chromobody also has the same turnover rate as
endogenous huntingtin and is quantitative as it binds
huntingtin with exactly one fluorophore. Efforts to
make stable cell lines by selection after stable trans-
fection were unsuccessful, but to date, expression
of this chromobody in transgenic mice has not been
attempted. Such a model could be an intriguing way
to image huntingtin intravitally and could be an
important technology in the context of newer meth-
ods of fluorescently imaging entire animal organs
using the Clear Lipid-exchanged Acrylamide-
hybridized Rigid Imaging/Immunostaining/In situ
hybridization-compatible =~ Tissue-hYdrogel, or
CLARITY protocols [19, 20]. GFP tags avoid many
issues of immunofluorescence by providing a truly
specific signal, not obscured by conformational
changes, and can allow for quantitative imaging as
the protein to fluorophore ratio is 1:1. However,
a single fluorophore means the signal intensity is
low relative to secondary immunofluorescence,
where multiple fluorescent antibodies amplify the
primary antibody recognition through binding to
the Fc fragment of the primary antibody. Addition
of a fusion protein at a protein terminus may affect
biological function.

With CLARITY, an intact mouse brain tissue can
be infused with a hydrogel to preserve its structure
and then stripped of lipids. The resulting brain is opti-
cally transparent and can be penetrated by reagents
for immunofluorescence, permitting striking high-
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Imaging Methodologies and Application to Huntingtin Imaging

Imaging Methodology

Application to Huntingtin

Live Cell Imaging

Fast Axonal Transport [4], mitotic spindle orientation [10], ER-to nuclear

translocation [11], inclusion formation dynamics [41, 62, 63]

Super Resolution Microscopy

Fibril morphology [29], sub-nuclear, sub-speckle localization [41], DNA

damage repair complexes [12, 41]

CLARITY

R6/2 model whole brain imaging [23]

Laser Microirradiation Assays

DNA damage complexes with huntingtin [12]

Forster Resonant Energy Transfer (FRET)

Huntingtin fragment conformational changes [29], HD drug screening [64],

huntingtin effects on actin remodeling [82]

Correlative Light Electron Microscopy (CLEM)

Huntingtin protein inclusions [61]

High Content Analysis (HCA)

HD drug screening [41, 63, 64, 70, 71]

Atomic Force Microscopy (AFM)

Huntingtin protein inclusions [75-78, 80]

resolution 3D imaging of the entire organ. With an
increasing interest in Huntington’s disease (HD) phe-
notypes in peripheral organs, such as the liver or heart,
a future project using CLARITY to image entire
organs [21, 22] of an HD mouse knockin model could
be an important resource for the HD research commu-
nity. Optical clearing protocols similar to CLARITY
have been able to image entire animal embryos in 3D,
thus providing a powerful tool in the emerging inter-
est of huntingtin activity and HD phenotypes during
early development. CLARITY has been recently used
in a mouse gene therapy study in the R6/2 model
[23].

As with any immunofluorescence-based imaging,
the most critical criterion is the validity of the
primary antibody. Several antibodies are used to
study huntingtin, but very few were fully validated
for specificity and accuracy. Recent comprehensive
studies have identified several valid anti-huntingtin
antibodies [24]. When in question, simple validation
for imaging involves signal competition with the
antigenic peptide and loss of signal with huntingtin
mRNA silencing, making sure to allow enough time
to account for the long>?24-hour half-life of hunt-
ingtin to reduce levels, which is typically 72 hours
or more of repeated siRNA or branaplam treatment
[16]. While the comparison to a GFP fusion protein
is often used for signal validation, the concern with
huntingtin is that any GFP fusion must be expressed
at endogenous levels, or overexpression-induced
artifactual localization will occur, and transient
plasmid expression of a 380-kDa huntingtin-GFP
fusion is technically difficult due to the large plasmid
size.

With the considerations of the target huntingtin
protein in place, the next consideration is the recent

advances in imaging modalities and how they can
be exploited for imaging the huntingtin protein and
automated for use in drug discovery.

SUPER-RESOLUTION FLUORESCENCE
MICROSCOPY

To extend resolution, the diffraction-limit can be
reduced by increasing the numerical aperture of the
objective, as outlined in Abbe’s law. Traditionally,
microscopes collect light from only one side of the
sample, leaving much of the spherical emitted light
wasted. This reduces sensitivity and distorts the shape
of the light path in the axial direction, leading to poor
z-resolution. A second objective can be used to collect
light from the opposite side of the sample, symmetri-
cally focusing light from nearly all directions as done
in 4Pi and ISM microscopy, which can reach lateral
and axial resolutions of 140 and 100 nm, respectively
[25]. However, the modest improvement in lateral
resolution, the complex optics needed for the coher-
ent alignment of two light paths, cost, and the severe
restrictions on sample thickness and mounting must
be considered, and have limited the use of 4Pi and
ISM microscopy.

PATTERNED SUPER-RESOLUTION
TECHNIQUES

The second class of super-resolution techniques
are considered to be “functional”, as they intermix
sub-diffraction-limited information in the illumina-
tion pattern and/or extract those features by exploiting
the different photophysical states of fluorescent dyes.
These techniques fall under the general category
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of Reversible Saturable Optical Linear Fluorescence
Transitions (RESOLFT), which in one way or another
cause the selective suppression and detection of flu-
orescent molecules within a sub-diffraction-limited
space to achieve super-resolution.

In principle, the simplest implementation of
RESOLFT involves the overlay of along-wavelength,
doughnut-shaped illumination pattern over a focused,
short-wavelength excitation beam. Thus, if molecules
are excited by the lower-wavelength focused light
beam, then the molecules that reside within the
doughnut-shaped light will undergo stimulated emis-
sion at a wavelength longer than that of the
conventional fluorescence process. With sufficient
light intensity, the fluorescence emission of all the
molecules within the doughnut will be suppressed
due to saturated stimulated emission. This limits
fluorescence to molecules that only reside within
the center of the doughnut, effectively reducing
the size of fluorescence emission to below the
diffraction-limit. This is the working principle of
Stimulated Emission Depletion (STED) Microscopy,
which raster scans the illumination pattern over the
sample to yield images with a lateral resolution of
30 nm [26]. If a pinhole is inserted, out-of-focus light
can be blocked to achieve confocality and an axial
resolution of 400 nm. Alternatively, STED can be
combined with a 4Pi setup to reach a z-resolution as
low as 30 nm [27]. Again, limitations of this system
include very high cost and a high level of technical
expertise to maintain alignment.

Structured Illumination Microscopy (SIM) is
another patterned-illumination technique using two
interfering, phase-shifted light sources to create a
sinusoidal illumination pattern. Exciting a fluores-
cent structure with this pattern results in a moiré
effect, bringing the high-frequency spatial informa-
tion present in the sample to the low-frequency range
that can be detected by the microscope [28]. Acquir-
ing a set of images where the pattern is shifted in one
direction by changing the phase of the light source,
and in another direction by a rotating mask, allows
the reconstruction of images with 100-nm resolu-
tion. This technique can also utilize the principles
of RESOLFT, where high-intensity lasers can close
the diffraction-limited gap between the illumination
bands by saturating the emission of dyes in areas
where there is constructive interference. This method,
known as Saturated SIM (SSIM), can produce images
with a resolution of 50 nm [28]. Unlike most super-
resolution techniques, SIM has the advantage that it
can use all of the classic fluorophores or fluorescent

proteins without special imaging buffers, but requires
additional components to be added to a widefield
microscope and offers a modest two- to four-fold
improvement in resolution.

The first use of SIM to image a fragment of
huntingtin was in 2014, followed by endogenous
full huntingtin in 2017 [12, 29]. This level of
resolution allowed for the definition of huntingtin
fragment aggregate morphology not possible by clas-
sic microscopy resolutions, as well as resolution
of endogenous huntingtin within nuclear speckles.
Nuclear speckles, or interchromatin granule clusters,
are nuclear domains enriched in pre-mRNA splic-
ing factors located in the interchromatin regions of
the nucleoplasm, and can change morphology and
composition upon stress. These sub-nuclear struc-
tures are not membrane-bound but use liquid-liquid
phase separation to maintain a highly effective local
concentration adjacent to chromatin [30]. By clas-
sic microscopy, they appear as singular puncta in
the nucleus, but SIM reveals these structures to
be heterogeneous protein droplets, with sub-speckle
localization of proteins like huntingtin.

Recent advances in SIM devices have made
them more affordable, paired with faster computer
algorithms and hardware that allows for image recon-
struction in real time.

WIDEFIELD FUNCTIONAL
SUPER-RESOLUTION TECHNIQUES

The RESOLFT imaging techniques mentioned
so far require advanced modifications to the opti-
cal setup of a conventional fluorescence microscope
to produce the illumination patterns needed for
achieving super-resolution. These patterns suppress
fluorescence in a sub-diffraction-limited manner
through fluorescence saturation or stimulated emis-
sion. However, fluorescence molecules can reside
in other “dark”, or non-emissive states even when
illuminated. RESOLFT techniques that exploit these
photophysical properties of dyes fall within the cate-
gory of Ground State Depletion (GSD) microscopy.
The working principle of GSD microscopy ulti-
mately relies on achieving a sparse population of
emitting fluorophores such that each emission is iso-
lated within a diffraction-limited area. Recording
single-molecule emission events on a sensitive cam-
era, often an electron multiplying charge coupled
device (EMCCD), would allow for the localization
of each emitting molecule in a wide-field setup with
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nanometer precision. If the emitting molecules can
enter a dark state, and a different subset of fluo-
rophores is activated, then repeating the process of
activation, localization, and deactivation for random
fluorophore populations (blinking) over thousands of
recorded frames allows the localization of the flu-
orescent molecules comprising the labeled structure.
Thus, combining all the single-molecule localizations
allows the reconstruction of an image with a lateral
resolution of 20-50 nm [31]. This technique can be
expanded to the axial dimension if the point spread
function (PSF) is deformed in a z-dependent man-
ner. The point spread function is simply understood
as the way light paths are defined in a sample when
light is focused on a single plane. In the most simple
form, a PSF is two cones of light with tips touching
at the focal point but the geometry in real terms can
vary due to many parameters of the imaging modal-
ity and sample preparation. An astigmatic lens can
elongate the PSF in the horizontal and vertical direc-
tion depending on whether the molecule lies below or
above the focal plane. By calculating the extent and
direction of the PSF ellipticity, the z-position of each
molecule can be determined to a resolution of approx-
imately 50nm if it is within 1000 nm of the focal
plane [32]. This method was used to reveal a funda-
mentally new structure of actin rings within neuronal
processes, which were not observed in over 100 years
of classic microscopy [32].

Photoblinking, where fluorophores undergo rapid
fluctuation between their emissive and dark states,
can be accomplished in various ways. A popu-
lation inversion from the “on” to the “off” state
can be achieved by combining high-intensity illu-
mination with imaging buffers containing reducing
agents and an oxygen-scavenging system. The
most popular super-resolution technique, STochas-
tic Optical Reconstruction Microscopy (STORM),
utilizes these principles to yield stochastically
blinking fluorophores that allow the localization
of isolated, single-molecule emissions [9]. In the
original implementation of STORM, photoblinking
was achieved through the stochastic interaction of
activator-reporter dye pairs. Other GSD techniques
achieve photoblinking through different pathways,
such as photoactive dyes and proteins that can be
activated or deactivated by specific wavelengths
of light, as done in Photoactivated Localization
Microscopy (PALM or fPALM), or binding-activated
fluorescence, as done in Points Accumulation for
Imaging in Nanoscale Topography (PAINT), orig-
inally known as Binding-Activated Localization

Microscopy (BALM) [33-36]. One way or another,
these techniques all exploit the dark and emis-
sive states of fluorophores to achieve photoblinking
and utilize single-molecule localization algorithms
to reconstruct super-resolution images with a 10-
fold enhancement in resolution compared to the
starting diffraction-limited image. The difficulties
with STORM are the stringent requirements of flu-
orophores and imaging buffers, but hardware costs
are relatively low due to the use of a conventional
widefield microscope.

SUPRAMOLECULAR STRUCTURE AND
GROWTH KINETICS OF AMYLOID
AGGREGATES

The growth of fibrillar systems is highly relevant
in the field of neurodegenerative diseases to observe
protein inclusions within the brain. The aggregation
and eventual fibrillar growth of disordered proteins,
such as a-synuclein, Tau and amyloid-beta (AR),
and huntingtin fragments, have been intensively stud-
ied in Parkinson’s disease, Alzheimer’s disease, and
HD for over 25 years. Due to the diffraction-limited
sizes of the highly-toxic protein oligomers and the
relatively short length of their fibrillar aggregates,
these structures are usually visualized by electron
microscopy. However, their growth has been mon-
itored using ensemble-averaged methods such as
surface plasmon resonance, quartz crystal microbal-
ance, and bulk fluorescence assays [37-39]. With
the recent development of super-resolution fluores-
cence microscopy, these structures and their kinetic
assembly can now be resolved and examined on a
single-fibril basis with minimal perturbation from
sample preparation. This allowed the evaluation of
true population heterogeneity, an important aspect of
amyloid fibrils, as they exhibit polymorphic character
with manifold growth processes [40]. Identification
and characterization of subpopulations are important
for the observation of intermediate states or anoma-
lies that can act as a seed during the emergence of
pathological behavior.

Super-resolution fluorescence microscopy allowed
the in vitro visualization of individual 90-nm
huntingtin fragment globular species and their time-
dependent aggregation to form 100-nm wide fibrils
with near I-pm lengths that grew longer with
increased incubation times [40]. These globular and
fibrillar species of over-expressed huntingtin frag-
ments were previously defined, with respect to
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protein phosphorylation, using SIM [29]. SIM also
allowed the observation of full endogenous hunt-
ingtin within the nucleus under stress conditions
and resolution of huntingtin at nuclear speckles and
sub-speckle regions and as validation of the entire
signaling and salvaging pathway of CK2 -mediated
signaling of huntingtin in DNA damage repair which
would not be possible at classic resolution [41].
Topographical studies by near-field scanning opti-
cal microscopy [42], which uses the properties of
evanescent waves to overcome the resolution limit,
displayed high structural heterogeneity across [2-
microglobulin fibrils, an observation consistent with
the polymorphic nature of amyloids [43]. Super-
resolution imaging of amyloids has also been carried
out in vivo, where intracellular uptake of both A
oligomers and fibrils was seen using STORM with
structural lengths ranging from 0.3 to 2 um [44].
Using STED, 3D images of tau aggregates acquired
from 50-pm brain sections were resolved to 70- to
80-nm wide puncta [45].

Super-resolution imaging of amyloid fibrils has
also been demonstrated with BALM using fluores-
cent probes that are activated upon their specific
binding to the surface of amyloids. This can be
advantageous due to reduced background signal from
freely-diffusing labeled monomers, the elimination
of possible interferences from labeled monomers, and
the flexibility in avoiding the use of reducing buffers
that may interfere with fibrillar growth. BALM imag-
ing of a-synuclein fibrils was accomplished using
the polyelectrolyte probe pentamer-formyl thiophene
acetic acid and NIAD-4 [46, 47]. The latter study
achieved impressive cross-sectional measurements of
14.3nm due to the high photon count of the fluo-
rophore and the effective labeling density achieved
by BALM. This enabled the observation of a 44-nm
periodic labeling pattern, which was indicative of a
twisted ribbon-like structure previously observed by
atomic force nanoscopy.

SUPER-RESOLUTION IMAGING OF
CHROMATIN AND DNA FIBRILS

The role of DNA repair factors as modifiers of
HD [37-39, 48-50] incites the use of microscopy
techniques to study chromatin and DNA. Inves-
tigations of ultrastructural organizations through
super-resolution fluorescence microscopy have also
been done on DNA fibrils both in vivo and in vitro.

Typically, this involved DNA labeling with inter-
calating dye YOYO-1, or the less cytotoxic and
weaker-interacting YO-PRO and PicoGreen dyes.
Super-resolution through STORM using these dyes
has been demonstrated in a few in vitro stud-
ies that achieved labeling densities every 15nm
with resolutions of ~30nm. Using the same dyes,
BALM achieved 1-nm labeling efficiencies and a
remarkable resolution of 14 nm [51-53]. These
studies were expanded to in vivo environments,
enabling the observation of nanoscale ischemic-
induced changes in chromatin condensation within
the whole mouse and human nuclei [54]. Function-
specific labeling allowed for mapping the distribution
of centromere-associated histone proteins, along with
the visualization of 70-nm filament-like structures
composed of 35-nm sub-filaments, empty cavities,
and unstructured chromatin [54].

MICROSCOPY AND DNA DAMAGE
ASSAYS

Microscopy has evolved from the use of imaging
to the development of functional assays exploiting
the fine focus and micrometer level of mechani-
cal control now typical on modern microscopes.
The DNA damage laser irradiation assay focuses
a 405-nm laser on a stripe or point across chro-
matin to broadly induce DNA damage by severing
DNA or increasing local reactive oxygen radicals
[55]. While historically, the lasers and optics required
for this assay were highly specialized and costly,
modern 405-nm light emitting diode pumped LED
laser sources have reduced these costs by orders of
magnitude. This assay has been shown effective in
imaging endogenous full-length huntingtin recruit-
ment to sites of DNA damage, even in live cells using
a huntingtin chromobody [12]. It was further used to
locate huntingtin, the nucleotide salvager APRT, and
CK2 kinase to DNA damage stripes to understand
the mechanism of the N6-furfuryladenine cytokine,
which could signal the restoration of mutant hunt-
ingtin hypo-phosphorylation [41].

Below 50-nm resolution, the use of biophoton-
ics and biophysics has exploited the phenomenon
of Forster Resonance Energy Transfer (FRET) as a
molecular ruler to measure spatial relations within
10nm. By fusing fluorophores on amino- and
carboxyl- termini of huntingtin exon1 fragments and
measuring FRET levels with different CAG lengths,
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the reduced flexibility of mutant huntingtin could be
seen at an inflection point of 37 CAG repeats [18]. A
derivative of this assay was recently used to screen for
compounds that could restore the flexibility of mutant
polyglutamine expanded huntingtin by researchers at
Sanofi [56].

EXPANSION MICROSCOPY

Most of the methods highlighted here require con-
siderable equipment investments and higher-level
technical support. These might be fundamental lim-
itations at some institutions. A newer method flips
the imaging problem around 180 degrees: instead
of using technology to see small things with higher
resolution, make the small things bigger for use
with standard microscopes. The Boyden Lab at MIT
first defined expansion microscopy as a method in
which chemical groups are added to all proteins
and nucleic acids in cells, then expanded using a
polymer reaction [57]. Cells are fixed and stained
by classic immunofluorescence, then linked to a gel
matrix polymer. The cell contents are digested, and
finally, the gel matrix is polymerized to expand in
three dimensions equally. The net result is the expan-
sion of the target cell or tissue, essentially providing
super-resolution data using a standard microscope.
This method has been used successfully in neuronal
imaging [58]. Super-resolution imaging of expanded
samples can produce images with enough resolution
to resolve the nuclear pore complex in yeast [59].

CORRELATIVE LIGHT-ELECTRON
MICROSCOPY (CLEM)

One way to exceed the resolution limits of light
microscopy is to use electron microscopy. How-
ever, restrictions of specific and multicomponent
labeling in electron microscopy limits the visual-
ization of specific proteins and their interactions
within the cell matrix. To combine the best of
both worlds, microscopy manufacturers have devel-
oped systems to transfer samples between fluorescent
and electron microscopes, using embedded fidu-
ciaries to register the images [60]. This directly
combines the specificity of fluorescence microscopy
with the ultrastructural information offered by elec-
tron microscopy on a single-particle basis. CLEM
has been recently successfully applied to imaging
huntingtin exonl protein inclusions triggered by
overexpression [61].

MICROSCOPY AND DRUG SCREENING

The advances in computer technology, high sen-
sitivity cameras, and robotics have been synergized
with advances in automated image analysis algo-
rithms. This was first accomplished in HD by the
Finkbeiner lab, using automated microscopy to watch
huntingtin exonl aggregation and correlate aggre-
gation dynamics with neuronal survival [62, 63].
This has progressed the use of microscopy for
qualitative observations to those that can be quan-
tified, essentially using the pixel array of a digital
image as a data set of points with location, pat-
tern, and intensity, which can be multiplexed across
multiple fluorophores. Robotic microscopes using
near-infrared lasers can now perform precise autofo-
cusing and micrometer-level stage control in XYZ on
stages holding 96- or 384-well plates compatible with
automated liquid handlers. Methods like FRET can
now be automated for high content analysis and have
been successful at finding small molecule inhibitors
of huntingtin exonl aggregation, by assaying at the
nanometer scale [64]. This has allowed the develop-
ment of high-throughput screening platforms capable
of screening thousands to millions of compounds, and
the potential generation of petabytes of data. This
leads to a scoring or quantification problem, which is
impossible to solve by human observation. Solutions
to large-scale data analysis also solve other problems
associated with human observation.

One classic limitation of microscopy has been the
introduction of investigator bias. This is an uncon-
scious bias to acquire images perceived to depict the
desired effect. Another problem with using humans
to obtain images is that human eyes vary greatly
in their ability to distinguish signal intensity across
the light spectrum, with no ability in the ultravi-
olet and infrared light ranges. Human observation
is notoriously inconsistent and biased, which has
been a chronic problem in pathology assays by
microscopy. This also leads to a problem of repro-
ducibility, because no two investigators see images
in the same way. Indeed, pigeons have been observed
to have more accurate image identification abilities
than humans [65].

Pioneers like Robert F. Murphy at Carnegie Mellon
has been developing methods and algorithms towards
a goal of computer or machine-based sorting [66]. By
scoring images using algorithms, we now can use the
full range of pixel data in 16-bit images of 65,536
levels, equally across all light wavelengths, and in a
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multiplex manner. On spectral imaging devices, this
can mean up to 32 different channels and is far beyond
the dynamic range of human eyes. Using algorithms,
we can develop scripts to sort images based on the
desired outcomes by training software to make step-
wise quantification to define images as either positive
or negative control. This is referred to as supervised
machine learning. A powerful open-source exam-
ple of supervised machine learning was developed
at MIT Broad Institute as CellProfiler [67] (Cell-
Profiler.org) and is highly supported by the imaging
community. Using CellProfiler, scripts can be gener-
ated to sort and quantify images, allowing for large
numbers of observations for high statistical power.
One of the first applications of CellProfiler in HD
was to quantify a huntingtin mediated stress response
involving actin dynamics [68]. Typically any quantifi-
cation studies include the scripts developed, so that
any other lab can reproduce observations in the same
manner.

For compound screening or high content analy-
sis, sometimes the experiment can benefit from no
investigator bias at all, by simply asking which com-
pounds perturb a system in any way possible. For
this approach, machine supervision would introduce
bias, so optional methods of unsupervised sorting can
be utilized. This typically involves sorting the digi-
tal data by Principal Component Analysis (PCA) in
3D space, where various measures, or “textures”, are
applied to the entire dataset, only measuring which
textures give the most variance. The top three texture
variances are then plotted in 3D PCA space, where
the data points farthest from the central mass of data
points have the strongest effect, yet not knowing what
that effect is. An open-sourced software resource to
do this is Phenoripper [69] (Phenoripper.org).

In 2018, we published a study that mated robotic
microscopy for unsupervised data acquisition to
unsupervised machine sorting for a protocol with
no possible investigator bias [41]. We asked what
compounds from a natural products library could
affect the phosphorylation of huntingtin in any way
at serines 13 and 16. By secondary assays, tertiary
assays, and animal model dosing, we defined N6-
furfuryladenine (N6FFA) as a signaling cytokine that
could restore mutant huntingtin phosphorylation and
correct phenotypes in the YAC128 mouse. Upon
human observation of the images from the primary
screening data, we could not detect any differences in
cells treated with NO6FFA, yet the algorithms detected
the effect and subsequent assays confirmed the effect.
Similarly, high throughput screening of neurons is

difficult, because of the complex morphologies, but
can be applied if using more complex neural net medi-
ated sorting [70], and even without labeling using in
silico labeling [71].

Open-source software like CellProfiler and
Imagel/Fiji is now being incorporated into complex
logistics strings to execute multi-platform analyses
ranging from image correction to quantification to
spreadsheet annotation to statistical analysis. This
can all be automated in an object-oriented manner
using KNIME software [72]. KNIME is an Open
Source platform for data mining developed at the Uni-
versity of Konstanz (https://www.knime.org). The
software can be applied for many different types
of analysis, including image analysis. KNIME pro-
vides a wide set of functionalities for tasks such as
input/output, data processing, statistics, data mining,
and visualization. KNIME is an application based on
the Eclipse platform, thus utilizing the Eclipse plug-
in concept. This automates the process of taking raw
data from the microscope, completing statistical anal-
yses, and providing interactive Java-based graphs,
which saves weeks of time for investigators perform-
ing tedious tasks between software. Practically, this
allows phenotypic quantification of HD cell lines
like TruHD [73], or iPSC-derived HD neurons [74]
with millions of observations, thus providing massive
statistical power and inherent reproducibility due to
automation.

ATOMIC FORCE MICROSCOPY

The final modality discussed is Atomic Force
Microscopy (AFM), which is a misnomer, as it isn’t
optical or microscopy as observations are on the
nanometer scale. AFM involves the dragging of a
nanoprobe “needle” across a surface of a flat sub-
strate, such as mica. As the probe moves across the
surface, it will deflect based on the topology of the
sample, and this deflection in the order of nanome-
ters is measured by a laser line reflected off the back
of the probe. This results in resolutions of a few
nanometers.

There is a history of the use of AFM in HD but
limited to the study of small polyglutamine expanded
protein fragment aggregates starting in 2005 [75] and
later [76—78]. However, with the recent availability of
recombinant human huntingtin/HAP40 at purity lev-
els high enough for cryo electron microscopy [79],
the use of AFM to study full huntingtin could be
revisited, especially in the context of DNA repair,
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for which AFM has been a powerful and successful
tool [80].

CONCLUSIONS

While the technology development in microscopy
(or more accurately, nanoscopy), and imaging hard-
ware and software is rapidly evolving, the model
system must be considered, and the system must be
as accurate as possible to human disease. HD has a
mean allele size of 43 CAG in heterozygotes and is
caused by a mutation within the full 350 kDa pro-
tein, expressed at low levels in all cells. However,
few models acknowledge these aspects of HD. Imag-
ing technology will not make systems more accurate
to human disease. Thus, a holistic approach needs to
be considered to respect the accuracy of single-cell
observations when attempting to advance studies of
HD. We now see mutant huntingtin effects in the very
early stages of differentiation [81] and development
in humans [21], with effects at fundamental aspects
of cell biology [10]. As we focus on the prodromal
stage of HD to prevent disease onset, this accuracy
is paramount to both understanding huntingtin func-
tions and which of these functions can be targeted for
disease therapies.
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