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Abstract

Optical coherence angiography (OCTA) is a noninvasive technique that has been introduced in recent years
to detect ophthalmological pathology. The growing usage of OCTA to detect retinal abnormalities can be
attributed to its advantages over the reference-standard fluorescein angiography (FA), although both of
these techniques can be used in association. OCTA’s advantages include its dye independency, its ability
to produce depth-resolved images of retinal and choroidal vessels that yield images of different vascular
layers of the retina, and the better delineation of the foveal avascular zone. OCTA’s disadvantages include
the lack of normalized patient data, artefactual projection issues, and its inability to detect low-flow lesions
or pathologic conditions. Different OCTA platforms use unique algorithms to detect microvasculature,
which are implemented in both spectral-domain (SD) and swept-source (SS) OCT machines. Microvascular
changes in retinal vein occlusions (RVOs) are visible in both the superficial and deep capillary networks
of the retina in OCTA. These visualizations include a decrease in foveal and parafoveal vascular densities,
non-perfusion areas, capillary engorgement and telangiectasias, vascular tortuosity, microaneurysms,
disruption of the foveal perivascular plexus, and formation of collateral vessels. The restricted field of view
and inability to show leakage are important limitations associated with the use of OCTA in RVO cases. In
this article, we present a brief overview of OCTA and a review of the changes detectable in different slabs
by OCTA in RVO cases published in PubMed and Embase.
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INTRODUCTION

Optical coherence tomography angiography (OCTA)
has become a valuable imaging tool for the evaluation
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of retinal pathologies such as diabetic retinopathy,
age-related macular degeneration, and retinal artery
and retinal vein occlusions (RVOs). Its ability to
delineate the fine microvascular detail of the retinal
vasculature in the superficial and deep retinal plexus
without dyes is advantageous for diagnosing retinal
diseases, which will most likely lead to its widespread
use in the future.!"
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Angiography has been part of the diagnostic
work-up of RVOs. A major aim of these evaluations is
to delineate the area of the ischemic retina. Fluorescein
angiography (FA), the standard method, can show
ischemic areas in both the central and peripheral
retina, and these images have been used for both
prognostication and treatment decisions in cases of
RVOs. However, FA may not always yield clear images
of the foveal avascular zone (FAZ), whose intactness
has prognostic value.™!

OCTA images are generated by algorithms that detect
either phase and/or amplitude differences of moving
parts (notably red blood cells) of successive OCT B-scans
to construct an image of the vasculature.® As OCTA is
fundamentally different from FA, the changes in RVOs
detectable with this technique do not always mirror those
shown by FA. Some changes are better visualized by
OCTA, such as FAZ irregularities that are not obscured
by leakage.l®”l Some changes in the microvasculature
that can be evaluated by OCTA, while not visible by FA,
include those in the deep capillary plexus.**! However,
with the current technology, there are limitations
to OCTA as well, which include a restricted field of
view and inability to detect leakage. In addition, all
software platforms lack normalized data to determine
if the vascular patterns seen are truly abnormal or
are on the normal spectrum and instead compromise
of patient to patient variation. At present, several
devices are equipped with OCTA functions: RTVue
XR Avanti (Optovue, Inc., Fremont, CA. USA), Triton
and Atlantis (Topcon, Tokyo. Japan), Cirrus HD and
PLEX Elite 9000 (Carl Zeiss Meditec, Inc., Dublin, CA,
USA), Spectralis (Heidelberg Engineering, Heidelberg,
Germany), and RS-3000 (Nidek Co, Gamagori, Japan).
Literature regarding the use of OCTA in cases of RVOs
is vast, and studies have shown that OCTA findings in
cases of RVOs correlate well with the clinical, anatomic,
and fluorescein angiographic (FA) findings of capillary
dropout, retinal atrophy, increased vessel caliber, shunt
vessels (collaterals), and the presence of intraretinal
edema.l'™" In this paper, we present a brief overview
of OCTA and the findings reported in the English
literature.

All papers published from January 2015 to May 2017
describing the use of OCTA in RVO were identified and
reviewed through a PubMed and Embase search. The
keywords “OCTA,” “optical coherence angiography”
or “angiography,” and “retinal vein” or “retinal vein
occlusion” were applied. Relevant papers from the
reference lists of articles were also included [Table 1].
Where duplicate information was present, papers with
more recent publication dates or larger study groups
were referenced.

The OCTA algorithm generates three-dimensional, en
face, depth-encoded images of microvascular blood
flow in the retinal and choroidal vasculatures. By using
motion contrast, OCTA can portray differing reflectance
patterns over time due to the phase-shift of RBCs in
retinal vessels without the need for intravenous dye
injection. The device shows the differences between
multiple, sequential B-scans obtained at the same
retinal cross-section. Notably, OCTA systems have a
characteristic threshold for slowest and fastest detectable
flow.B!

OCTA techniques can be classified into three
categories: 1) phase-signal-based OCTA techniques
[optical coherence angiography, phase-variance
OCTA], 2) amplitude/intensity-signal-based OCTA
techniques [speckle-variance OCTA, correlation-mapping
OCTA, split-spectrum amplitude-decorrelation
angiography (SSADA)], and 3) complex-signal-based
OCTA techniques [optical microangiography (OMAG),
Eigen-decomposition-based optical microangiography,
imaginary part-based correlation-mapping OCTA,
split-spectrum phase-gradient OCTA].["! For example,
the AngioVue software of the RTVue XR Avanti
SD-OCT employs an SSADA algorithm, whereas
the Zeiss AngioPlex uses a proprietary Optical
Micro Angiography (OMAGc) algorithm that
combines elements of the SSADA and phase-variance
methodologies to produce images.!’>'! The application
of the SSADA algorithm improves the signal-to-noise
ratio of flow detection while minimizing the scan
acquisition time to optimize visualization of the retinal
vasculature (Optovue, AngioRetina mode, software
AngioAnalytics)."”!

OCTA platforms can be broadly categorized into
SD-OCT and SS-OCT instruments. The SD-OCT
instruments such as Optovue’s AngioVue operate at
a ~840-nm wavelength, while SS-OCT devices such as
Topcon’s Triton use a longer ~ 1050-nm wavelength.!*8!

Swept-source systems have a faster acquisition rate and
are more expensive than spectral-domain systems. SD-OCT
tends to run on a shorter wavelength with better retinal
lateral and axial resolution. The longer wavelength light
source used in SS-OCT devices may be less affected by ocular
opacity and may provide a deeper imaging range through
the retinal pigment epithelium (RPE) and choroid, which
is a significant advantage for managing diseases below
the RPE (age-related macular degeneration or polypoidal
choroidal vasculopathy)."”?? In spectral-domain devices,
software enhancement techniques such as improved
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depth imaging are used to better visualize the choroid and
structures below the RPE. Both modalities have adequate
imaging range for the retina.

Currently, the standard field of view for the best
image quality measures 3 x 3 mm, and enlarging the
field of scanning in OCTA diminishes the details of
flow. However, RVO can occur in an area of the retina
that extends beyond the limited view scanned in
OCTA. Wide-field and montage OCT provide detailed
information of large or oblique lesions away from the
arcade.”” Wide-field OCTA images can be acquired by
several methods: selecting an automated wide-angle
single scan within the OCTA system itself (up to 12 mm)
or by using an automatic stitching software such as
AngioVueHD Montage within the Avanti RTVue
XR (Optovue, Inc., CA, USA) or other semi-automated
or manual methods of creating montages. Use of the
montage technique allows operators to maintain the
microvascular detail that appears at a higher resolution
than that in the currently available FA images.['"*24

A novel method using trial frames fitted with
a +20 D lens has been described as an extended field
imaging (EFI) technique to evaluate RVOs.® In this
technique, researchers captured OCTA images by using
RTVue XR Avanti OCT with AngioVue at a scan size of
8 x 8 mm, with and without EFI, and compared them.
EFI images delineated an area 188.5% larger than those
without EFI on average. The non-perfusion area was
well-defined in the superficial capillary plexus (SCP),
and this technique was useful for evaluating retinal
ischemia in RVO, but the resolution of the image was
not sufficient to study the deep capillary plexus (DCP)
or microvascular changes.®!

Several studies have qualitatively compared OCTA
with FA .21 The features of disrupted flow in vascular
occlusions can be well imaged on OCTA and correlate
well with the area seen on FA.[%]

In comparison to FA, OCTA is fast, noninvasive,
and allows improved and accurate visualization of
microvascular changes. Due to the absence of leakage
and tissue staining, and the better penetration of the
longer wavelengths used in OCTA through intraretinal
hemorrhage, OCTA allows better visualization of
the microvascular abnormalities in RVO, including
neovascular fronds, FAZ, and other microvascular
abnormalities.[3172751]

The limited time frame in which optimal images
of the capillary net can be captured under FA and the

difficulty in focusing images in the presence of macular
edema can complicate the use of FA to obtain quality
images of the perifoveal capillaries and visualize RVOs.
With OCTA, however, images can be captured rapidly,
and when images are of insufficient quality, the process
can be repeated immediately until good-quality images
are obtained.

Depth-resolved studies of microcirculation are
another big advantage of OCTA over FA. The ability
of OCTA to delineate the microvascular changes and
ischemia in both the SCP and DCP is a major advantage
because many of the vascular changes in RVO occur
in the DCP, which cannot be visualized by FA.[#*
Additionally, the reconstructed C scan of OCTA has a
better rate of detection of macular edema than FA or
SD-OCT alone.?

In comparison with FA, OCTA shows a superior
ability to precisely delineate the vessels surrounding the
FAZ in eyes with RVO compared with the fellow eyes
and with healthy eyes.[*”! However, OCTA imaging of
the perifoveal region in the normal retinal vasculature
was equivalent to that of FA."! Both the retinal and the
choroidal microvasculature can be visualized using
OCTA while FA is used for observing the retinal vessels.
Ultimately, angiography images come cross-registered
with structural OCT B-scans. This process allows for
precise correlation of the vasculature to the structural
scans. 3%

The limitations of OCTA include the small scanning
areas, segmentation errors related to variations in
macular anatomy, inability to determine the presence
of leakage, proclivity for image artifacts caused by
patient motion and shadowing from retinal pathologies
such as cystoid macular edema, and a limited ability to
visualize blood movement out of the detectable flow
limit.®* Microaneurysms imaged with FA may not
always be apparent on OCTA because they might have
flow rates below the detection threshold of OCTA. There
are still some challenges for its use as OCTA requires
the patient to precisely fixate on a light during image
acquisition (approximately 3 seconds), which may be
difficult to achieve for patients with low visual acuity.!

OCTA'’s inability to visualize leakage may be both
an advantage and a disadvantage, because it means
that leakage does not obscure the vascular structures
observed by OCTA. The co-registered structural OCT
scans can provide indirect information about leakage,
such as the presence of macular edema.!™!

OCTA is subject to various artifacts such as shadowing
artifacts associated with intraretinal/subretinal
hemorrhage, projection artifacts of the superficial retinal
vessels over the deeper retinal layers, and motion
artifacts. However, these errors are becoming less
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frequent because of the artifact correction strategies that
are being currently implemented.l*¢%!

OCTA is dependent on accurate retinal segmentation
to delineate retinal vessels at different levels. However,
the circumstances in which the retina is sufficiently
disrupted to make precise segmentation difficult may
lead to inaccurate depth localization of the vessels. ™ This
mistake can be easily identified by scrolling through the
entire three-dimensional dataset, instead of looking at
individual en face printouts. Imprecise segmentation can
be adjusted by manually altering the segmentation lines.

In the presence of cystoid edema, besides problems
with accurate segmentation, shadowing artifacts of the
fluid in the cystoid spaces may hamper detection of
capillaries and result in overestimation of the degree of
non-perfusion.®

Changes in OCTA of Eyes with RVO

The changes visible in OCTA can be described as
qualitative and quantitative

Qualitative changes

a. Non-perfusion areas (NPAs; Figures 1 to 4):°? These are
also called grayish areas’®! and areas with decreased
vascular perfusion.l*! These areas are regions
without visible perfused capillaries. In RVOs, they are
more extensive in the DCP than in the SCP.[61032333940]
These areas are more readily visible with OCTA than
with FA.l There may be a decrease in the vascular

perfusion in both the SCP and DCP of the fellow eye
of RVO patients relative to normal controls, which
may be a sign of previous silent RVOs in these eyes.!*!
It should be noted that the absence of visible vessels
in areas of non-perfusion may not be due to a total
absence of flow, but may represent areas in which the
blood flow has decreased below the device’s detection
threshold™!!

. Vascular tortuosity [Figures 1-3]: This is similar to

what is visible in larger vessels in OCTA, and may
also include kinking, angulation, and/or spiral
twisting of vessels. Tortuosity is seen in both central
RVOs (CRVOs) and branch RVOs (BRVOs) and in
some fellow eyes!”!

Collateral vessel formation [Figure 4]: This phenomenon
manifests as a long vessel traversing the area with
blocked perfusion, or as a bunch of tortuous vessels in
the vicinity of the area with blocked perfusion. These
vessels are visible in both CRVO and BRVO eyes.!!
In some cases, they could be traced to the DCP./! The
term venous-venous anastomosis by Kashani et al
appears to refer to the same finding!'!

. Disruption of the perifoveal capillary plexus

[Figures 1-4]:%941 The perifoveal capillary net is
distorted in ischemic maculopathies including RVOs.
Disruption of the FAZ is more common in the DCP
than in the SCP.! Coscas et al found that the degree
of disruption of the perifoveal capillary network is
correlated with the presence of peripheral ischemia
in FA and the degree of non-perfusion in the DCP

OCT Thickness ILM-RPE & Vessel Density

Density (%) | Section Thickness (um)
3778  Whole Image N/A
2595 Fovea 678
3963 Parafovea 540
4108 - Superior-Hemi 563
3819 - Inferior-Hemi 518
3898 - Tempo 499
4198 - Superior 530
3778 - Nasal 662
3977 - Inferior 470

Grid-based Vessel Density (%)

4039 3859 43.00
3417 2798 37.22
36.85 40.93 40.23

Figure 1. OCTA (3 x 3 mm) in a case of CRVO. (a) OCTA at the level of the superficial capillary plexus (SCP) showing vascular
tortuosity, dilation and telangiectasia (arrow) along with decreased vascular density and non-perfusion areas. Also note the
irregular and enlarged foveal avascular zone. (b) En face OCT at the level of the SCP shows the presence of cystoid edema, which
corresponds to dark circular areas without vessel signals in OCTA (arrowhead in A). (c) B-scan OCT with perfusion overlay and
segmentation lines. (d) Color-coded vascular density map. (e) Numerical report of the vascular density.
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OCT Thickness ILM-RPE & Vessel Density

Density (%) |Section Thickness (um)

4724 Whole Image N/A

3052 Fovea 678

5029 Parafovea 540

5276 - Superior-Hemi 563

4783 - Inferior-Hemi 518

""" 4917  -Tempo 499
5081 - Superior 530

5164 - Nasal 662

49.53 - Inferior 470

Grid-based Vessel Density (%)

4830 51.25 47.83

46.11 33.00 54.73

48.06 49.23 4593

0

Figure 2. OCTA (3 x 3mm) in a case of CRVO. (a) OCTA at the level of the deep capillary plexus (DCP) showing vascular tortuosity,
dilation, and telangiectasia (arrow) along with decreased vascular density and non-perfusion areas. Also note the irregular and
enlarged foveal avascular zone. (b) En face OCT at the level of the DCP. Note the presence of cystoid edema corresponding to
dark circular areas without vessel signals in OCTA (arrowheads in a). (c) B-scan OCT with perfusion overlay and segmentation
lines. (d) Color-coded vascular density map. (e) Numerical report of the vascular density.

OCT Thickness ILM-RPE & Vessel Density

Density (%) | Section Thickness (um)
4141 Whole Image N/A
2400 Fovea 224
4373  Parafovea 295
4154 - Superior-Hemi 276
4589 - Inferior-Hemi 315
4254 -Tempo 288
39.78 - Superior 262
4692 - Nasal 315
4574 - Inferior 317

Grid-based Vessel Density (%)

4095 3019 3973
40.07 40.02 42.89
4039 44.86 45.08

0

Figure 3. OCTA (6 x 6 mm) of a case of BRVO. (a) OCTA at the level of the superficial capillary plexus (SCP) showing vascular
tortuosity, dilation and telangiectasia (arrow) along with decreased vascular density and non-perfusion areas in the superotemporal
region (a). (b) En face OCT at the level of the SCP. Note the presence of cystoid edema corresponding to dark circular areas
without vessel signals in OCTA (arrowhead in a). (c) B-scan OCT with perfusion overlay and segmentation lines showing the
level of OCTA in (a). (d) Color-coded vascular density map. (e) Numerical report of the vascular density.

They did not find any peripheral ischemia in FA  e. Dilation of the capillary plexus and venous

in cases with an intact perifoveal capillary network dilation [Figures 1-3]: These phenomena are more
and suggested that OCTA may be a screening tool to commonly seen in the DCP1032371 and better
decide whether to perform FAP delineated by OCTA than FA.['>#2I This manifestation
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OCT Thickness ILM-RPE & Vessel Density

Density (%) | Section Thickness (um)
49.73  Whole Image N/A
2558 Fovea 224
5438 Parafovea 295
5112 - Superior-Hemi 276
5760 - Inferior-Hemi 315
4968 -Tempo 288
5354 - Superior 262
5514 - Nasal 315
5920 - Inferior 317

Grid-based Vessel Density (%) ,
4443 4493 4612

49.69 4813 5144
54.84 56.31 5149

0

Figure 4. OCTA (6 x 6 mm) of a case of BRVO. (a) OCTA at the level of the deep capillary plexus (DCP). Shunt vessels (arrow) and
microaneurysms (arrowheads) are visible in the superotemporal area along with decreased vascular density and non-perfusion
areas (a). (b) En face OCT at the level of the DCP. (c) B-scan OCT with perfusion overlay and segmentation lines showing the
level of OCTA in (a). (d) Color-coded vascular density map. (e) Numerical report of the vascular density.

is probably caused by two mechanisms: 1) an increase
in the intravascular resistance, and 2) the effect of
the different cytokines and growth factors produced
during the disease process.*l In the acute phase of
BRVO, capillary congestion is mostly present in the
DCP at the boundary of the normal retina and will
partially resolve with timel”!

Microaneurysms [Figure 4]: These are detected by
OCTA in BRVO, and they are more common in
the DCP than in the SCP.[*! They usually form at
the border of NPAs, and in collateral vessels.[*?! The
microaneurysms within collateral vessels are a source
of persistent leakage and recurrence of edema after
resolution of elevated venous pressure’

. Cystoid spaces [Figures 1-4]: Cystoid spaces in
the SCP are more commonly seen in CRVO, and
those in the DCP are more common in BRVO
than in CRVO. It is easier to find macular cystoid
spaces in OCTA than in OCT and FA.? Cystoid
spaces have no signal and coincide with areas of
perfusion abnormalities."” This is not a universal
phenomenon and there are areas with impaired
perfusion without development of edema.!"” There
are two explanations for the absence of OCTA
signals in the area of cystoid spaces.* The first
is the displacement of capillaries by cysts, which
is favored by the observation of an increase in
vascular perfusion indices after treatment in some
studies.® The second is the development of cysts
in non-perfused areas.!'” The previously described
“hyper-reflective” cystoid spaces appear as “diffuse

and splotchy” OCTA signals.!*"! Kashani et al named
these pockets as “edema with hard exudates” and
proposed that these areas contain intraretinal fluid
with high concentrations of lipids (a stage before
complete absorption of the intraretinal fluid and
formation of hard exudates).l'”! The Brownian
movement of the lipid particulate matter is the
source of the OCTA signals. Because formation of
hard exudates is a harbinger of a reduction in vision,
this finding may have prognostic value

. Intraretinal hemorrhages: The shadowing effect of

intraretinal hemorrhages may obscure images of one
or both intraretinal vascular plexuses, and the level of
the hemorrhage can be determined from the degree
to which the images are obscured: if images of both
plexuses are obscured, then the hemorrhage is above
both; if neither image is obscured, it is beneath both;
and if only the image of the DCP is obscured, then it
lies between the two vascular plexuses!”!
Non-perfused ghost vessels: These can be diagnosed
when a vessel is visible on the en face OCT image, but
is not detectable in OCTA. These vessels also cannot
be seen in FA*!

Opticdiscvenous collaterals (OVCs) and neovascularization
of disc (NVD):®1 OCTA shows optic disc collaterals
at the level of the superficial peripapillary plexus
whereas neovascular vessels are visible above the
retina at the level of the vitreous. OVCs are loopy
vessels whereas new vessels are a mesh of fine vessels.
OCTA delineates OVCs better than both fundus
photographs and FA®")
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k. Neovascularization elsewhere (NVE): This phenomenon
can be detected using OCTA, and the visibility of
new vessels with OCTA is greater than that with
FA because of the absence of leakage in OCTA.8I
This modality may enable physicians to perform
quantitative follow-up of new vessels and evaluate
the response to treatment.

a. Foveal and perifoveal vascular density: Vascular density
both in the foveal and parafoveal areas and all over the
scanned area have been reported to be lower in RVO
eyes relative to those in control eyes. However, there are
different results regarding the layers that are affected
in each type of RVO."4#1 Due to the wide variations in
foveal vascular density (FVD) in normal individuals, this
measure may not always be affected in RVOs."!
Vascular perfusion density is another significant
factor associated with photoreceptor integrity and
visual acuity.’**"! Changes in vascular density in the
presence of macular edema have also been reported,
but the results of different studies differ. Mastropasqua
et al reported significant positive correlations between
macular thickness and the vascular density in superficial,
deep, and choriocapillaris plexuses, and this correlation
has been ascribed to the high levels of VEGF, which
increases both the macular thickness and the vascular
diameter, thereby increasing the percentage of reported
flow pixels by the instrument.*”) Meanwhile, Koulisis
et al described decreased SCP vascular density in the
presence of macular edema due to RVO compared to that
in eyes without edema, while DCP and non-segmented
vascular densities were not affected.”” This discrepancy
may be due to the different inclusion criteria for macular
edema or different OCTA platforms used. Seknazi et al,
in a retrospective study, found that a vascular density
of less than 46% in the DCP in eyes with CRVO is the
limit below which peripheral retinal non-perfusion
becomes probable and suggested the use of this limit as
an indication for performing FA in CRVO patients.>"
a. Measurement of NPA: In a study involving manual
measurement of NPA in the parafoveal area, this
parameter was found to be the most significant
factor associated with VA and macular sensitivity in
microperimetry in eyes with RVO, and was even more
significant than the ellipsoid zone (EZ) continuity.’*?
Qualitative grading of non-perfusion in both plexuses
was also reported to be significantly correlated with
peripheral non-perfusion®
b. Measurement of FAZ: Despite the variability of
FAZ size in normal individuals,®®*¥ the FAZ
is enlarged in the DCP of RVO eyes relative to
those in normal controls and fellow eyes, and
relative to the FAZ of the SCP."#*% FAZ findings

of the SCP may vary. While Rispoli et al and
Casselholmde Salles et al found an enlargement of
the SCP ischemic area,”* Suzuki et al reported no
significant alterations.*”! Casselholmde Salles et al
also reported an association between EZ disruption
and the superficial FAZ area.®

To reduce the artifacts from segmentation
errors in eyes with macular edema, Adhi et al used
non-segmented OCTA images for calculation of the FAZ.
FAZ enlargement was reported in comparison to both
fellow eyes and normal controls.[!

Suzuki et al reported that the FAZ was larger in
eyes with CRVO than in eyes with BRVO. The authors
proposed that FAZ size may be related to the intraocular
VEGF levels, as they found larger FAZs in both plexuses
in eyes receiving fewer intraocular injections.™*!

The FAZ area in the SCP,***FAZ maximum diameter, %>
NPA and the PFVD in the DCP,2%! and the DCP vascular
perfusion are the factors found to be associated with
BCVA. ¥ Even though Mastropasqua et al did not find
any correlations between vascular perfusion in the SCP,
DCP, VA, and microperimetric indices,*” Manabe et al
reported decreased retinal sensitivity over areas with
vascular non-perfusion in both the SCP and DCP, with
a stronger correlation with non-perfusion in the SCP.">’!

The qualitative changes of vascular telangiectasia
and dilation, and perifoveal vascular disruption have
been reported to improve after treatment with both
anti-VEGFs and steroid implants.4¢ However, the
vascular density (VD) of both the SCP and DCP either
remained unchanged or reduced after treatment.
This may be due to either the continued expansion of
vascular non-perfusion over time, as is observed during
conversion from non-ischemic to ischemic CRVO,
or the nonreversible ischemic damage of the retinal
vessels.[394040]

Suzuki et al reported on FAZ alterations after
anti-VEGF treatment in both SCP and DCP, with a
greater increase in the SCP despite the concomitant
improvement in vision. It is interesting that the degree
of FAZ enlargement was bigger in eyes that received
fewer anti-VEGEF injections.®

Reduction of the NPA area in both the SCP and
DCP, with a greater decrease in the DCP, has also been
reported after anti-VEGF treatment. This effect was
more pronounced in eyes receiving more injections. The
authors attributed this to reperfusion of temporarily
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closed vessels by leukostasis.?! In the same study, the
vascular perfusion area (the flow area as stated in the
paper) was smaller in RVO eyes than in fellow eyes,
and improved in eyes that received frequent anti-VEGF
injections, with a greater improvement noted in the DCP.
Vascular densities do not show any changes after a single
anti-VEGF injection.*!

Spaide et al studied OCTA images of RVO eyes after
volume rendering and found that cystoid spaces are
formed at locations of disturbed vascular flow in the
SCP, and absent or severely disturbed vascular flow in
the DCP. There were no changes in the pattern of the SCP
or DCP after resolution of cystoid spaces with treatment,
and in cases of recurrence, cystoid spaces reformed in
the same areas as previously affected.l*”

Tsuboi et al found that the presence of isolated
preserved vessels in the SCP over areas of NPA in the
DCP (the prefusion gap between the two layers) showed
the best correlation with persistent edema.?!

There are multiple sources of artifacts in OCTA images
of RVO eyes. The first is the attenuation of signals due
to shadowing artifacts of edema or hemorrhage, which
results in overestimation of the reduction in vascular
perfusion. This may be the cause of the reported
rarefaction of the choriocapillaris vascular perfusion
in the affected sector of BRVO and under the fovea in
CRVO, which improved after treatment with steroid.*’!
Difficulty and inaccuracy in segmentation of slabs in
OCTA, may lead to difficulty in finding the SCP and
DCP in addition to under-sampling the deep vascular
plexus.[®? Excessive movement due to poor vision causes
significant motion artifacts in OCTA. In a study, 18% of
3 x 3 OCTA images in RVO cases were unreadable, and
the strongest predictor for a poor-quality OCTA image
was low vision.!

OCTA is a relatively new noninvasive modality for
imaging retinal blood flow. It is based on detection of
the motion of blood constituents in OCT images and
provides better visualization of the macular capillaries
and FAZ relative to FA.

The microvascular changes associated with RVOs in
the posterior pole, including NPAs, vascular tortuosity
and telangiectasia, disruption of the perifoveal capillary
net, and formation of microaneurysms and collaterals,
are all readily visible in OCTA images. OCTA is of great
help in differentiating between optic disc collateral
vessels and neovascular fronds. This technique is better
than both FA and OCT in visualizing the microvascular
changes and even the cystoid spaces. Currently the most
notable limitation of OCTA in RVO cases seems to be the

inability to view peripheral vascular perfusion, whichisa
significant factor in management of these eyes. Montage
images, wide-field OCT imaging, and extended field
techniques are some solutions that have thus far been
proposed, but none of them is still optimal enough for
routine clinical use.

The microvascular changes in RVO are more
prominent in the DCP than the SCP, which can be
described by the architectural organization of vessels in
these two plexuses.***I DCP is composed of capillaries
with a vortex configuration, the center of which is aligned
with the course of venules in the SCP.[%! Thus, it seems
that the DCP drains into the larger superficial veins.
This vessel configuration has previously been reported
in animals.!* Thus, the increase in intravenous pressure
in RVO is directly transmitted to the DCP.[*! Besides
the direct connection of the superficial capillaries to
the retinal arterioles, this provides the capillaries with
higher perfusion pressure and oxygenation, which may
somewhat protect them from the ischemic changes of
increased venous pressure. Quantitative measurements
of the FAZ and NPA areas, vascular density, perfusion
in SCP and DCP, their correlation with function of the
macula, and their changes after treatment are areas of
active research in RVO. OCTA will not only help us
understand changes in the complex microvasculature
of macula after vein occlusion, but will certainly have
an undeniable role in the management of RVO patients
in the future.
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