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Circadian clocks are the endogenous oscillators that harmonize a variety of physiological processes within the body. Although 
many urinary functions exhibit clear daily or circadian variation in diurnal humans and nocturnal rodents, the precise mecha-
nisms of these variations are as yet unclear. In this review, we briefly introduce circadian clocks and their organization in mam-
mals. We then summarize known daily or circadian variations in urinary function. Importantly, recent findings by others as well 
as results obtained by us suggest an active role of circadian clock genes in various urinary functions. Finally, we discuss possible 
research avenues for the circadian control of urinary function. 
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INTRODUCTION

One of the most predictable environmental changes on this ro-
tating planet is undoubtedly the alternations of day and night, 
which accompany daily variations in environmental illumina-
tion, ambient temperature, humidity, and food and predator 
availability. Organisms that can predict, and prepare themselves 
in advance for, these environmental changes have selective ad-
vantages over those who cannot accommodate themselves until 
the changes of environment have taken place. Indeed, almost 
every life form on Earth displays distinct daily or circadian vari-
ations in biochemistry, physiology, pathology, and behavior [1-4]. 
  The advent of endogenous circadian clocks seems to be a re-
cent innovation in the history of life, because the core molecules 
that derive oscillatory functions within the cell have multiple 
origins among different forms of life [1]. Gehring and Rosbash 
[5] once hypothesized that the origin of circadian clocks in ear-

ly metazoans might be a coupling of blue light receptors to mo-
lecular oscillators to avoid excess oxidative stress induced by 
light [6]. In support of this notion, the phases of DNA replica-
tion, DNA repair, and the cell cycle are found appropriately po-
sitioned in a given day-night cycle to minimize the damage [7,8]. 
Moreover, disturbances to the circadian rhythm and knockouts 
of clock genes lead to various oxidative stress-related patholo-
gies, including mental illnesses, cancer, obesity, type II diabetes, 
cardiovascular diseases, and aging [2,4,9-14]. Thus, it has be-
come increasingly evident that circadian clocks play crucial roles 
in the orchestration of life according to time of day, and most 
physiological functions are tightly locked to an organism’s ac-
tivity and rest phases to ensure optimal performance.
  Like many other physiological processes, fluid intake, urine 
production, and urine storage display distinct daily and circadi-
an variations as discussed below. Yet, the precise mechanism or 
mechanisms underlying these variations remain largely unex-
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plored. In this review, we briefly introduce circadian systems in 
mammals and their physiological significances, keeping uro-
logical researchers in mind. Then, we explore the known daily 
and circadian variations in urinary functions. Finally, we dis-
cuss future areas of research in terms of circadian control of 
urinary functions.

THE CIRCADIAN ORGANIZATION IN 
MAMMALS

Circadian rhythms are defined not by the molecular mecha-
nisms underlying them but by well-established experimental 
criteria. For a process to be defined as a circadian behavior, three 
conditions should be met [15-17]. First, a rhythm must persist 
with a period of approximately 24 hours, even in the absence of 
an environmental cycle. The period length observed under con-
stant environmental conditions constitutes the free-running 
period of a rhythm. Second, the period should vary only slight-
ly at different ambient temperatures within the organism’s phys-
iological range. This criterion underlies the temperature com-
pensation of a rhythm that mainly reflects the ability to main-
tain similar period lengths despite various factors affecting the 
velocity of biochemical and metabolic reactions, such as body 
temperature and nutritional status. Finally, the phasing of peaks 
and troughs relative to a reference point can be reset by envi-
ronmental cues to which the rhythm entrains. This phase-reset-
ting property allows organisms to accommodate themselves, 
for example, to the seasonal variations in environmental illumi-
nation. The environmental factors that can reset the phase of a 
rhythm are known as zeitgebers. Some important zeitgebers in 
mammals include light-dark cycles, temperature cycles, food 
availability, physical activity, and social cues [16-20].
  Conceptually, three basic elements are needed for the proper 
operation of circadian systems in whole animals. First of all, a 
functional oscillator or pacemaker is needed that gives the basic 
drumbeat and sets the period of a rhythm. The suprachiasmatic 
nucleus (SCN) is now well defined as the master oscillator in 
mammals [21,22]. Experimental lesions in the SCN lead to an 
immediate loss of rhythmic behaviors [23], whereas persistence 
of circadian rhythmicity is observed in hypothalamic “islands” 
containing the SCN [24]. Moreover, fetal SCN transplants re-
store circadian rhythmicity in SCN-lesioned animals [25] and 
even determine the period of locomotor activity rhythms of the 
host animals [26]. The mammalian SCN can be divided into 
two parts: ventrolateral vs. dorsomedial. The ventrolateral SCN 

is composed of sparse spherical neurons with organelle-rich cy-
toplasm that synthesize vasoactive intestinal peptide, peptide 
histidine isoleucine, and gastrin-releasing peptide. The dorso-
medial part of the SCN contains small elongated neurons with 
large nuclei and few cell organelles that mainly express vaso-
pressin [21,22]. 
  The second element of a circadian system is the presence of 
input pathways that can correct the non-24-hour basic period-
icity of the central pacemaker to 24 hours and adjust the phase 
to local time. It is now well established that the SCN can be en-
trained by light-dependent signals via the retinohypothalamic 
tract [27-30]. A recent study demonstrated that the RHT, one 
component of the optic nerve, transmits the environmental 
light signal to four major fields in the hypothalamus: ventrolat-
eral SCN, perisuprachiasmatic region, ventromedial part of the 
anterior hypothalamus, and ventral zone of the anterior group 
of the lateral hypothalamic area [29]. Other input pathways to 
the SCN include neuropeptide Y input from the intergeniculate 
leaflet via the geniculohypothalamic tract and serotonergic in-
put from the Raphe nuclei [22,31-33]. Moreover, humoral feed-
back inputs to the SCN are believed to modulate the SCN clock 
nonphotically. For example, the SCN is one place that contains 
the highest concentration of melatonin receptors within the 
body [22,34]. Thus, the mammalian SCN receives information 
from the environment as well as from within the body and can 
adjust the relevant physiological rhythms accordingly. 
  The final element of a circadian system is the neural/humoral 
output pathways that transfer the rhythmic messages to effector 
organs of the overt rhythms. Major neural output pathways from 
the mammalian SCN include the subparaventricular zone, dor-
somedial nucleus and medial preoptic area of the hypothala-
mus, and paraventricular nucleus of the thalamus [22,33,35-37]. 
In addition, virtually all hormones are secreted rhythmically 
depending on the time of day [20,38]. Indeed, the SCN is be-
lieved to play central roles in the circadian control of neuroen-
docrine functions [39]. In this way, the neural and humoral 
outputs derived from the central pacemaker govern the circadi-
an rhythms of physiology and behavior.

GENETIC BASIS OF CIRCADIAN RHYTHMS: 
THE MOLECULAR OSCILLATOR WITHIN THE 
CELL

In 1971, Konopka and Benzer [40] reported the first clock mu-
tants of Drosophila. The affected gene, named as period, was 



66    www.einj.or.kr

Noh, et al.  •  Circadian Control of Micturition

doi: 10.5213/inj.2011.15.2.64

INJ

subsequently cloned [41]. Likewise, the first clock mutant mouse 
was reported by Vitaterna et al. [42]. Since then, several core 
clock genes that govern circadian rhythmicity in mammals have 
been identified [1-4]. These include circadian locomotor output 
cycle kaput (Clock), neuronal PAS domain protein 2 (Npas2), 
brain and muscle arnt-like 1 (Bmal1), mammalian homologues 
of Drosophila period (Per1 and Per2), and two cryptochromes 
(Cry1 and Cry2). Within the cell, the positive circadian tran-
scription factor complex CLOCK (or NPAS2)/BMAL1 binds to 
the E-box sequences and transactivates the transcription of tar-
get genes, including pers and crys genes (Fig. 1). PERs and CRYs 
accumulate in the cytoplasm, translocate into the nucleus with 
a timed delay, and inhibit their own transcription by interacting 
with the CLOCK/BMAL1 complex [43]. Although this consti-
tutes the primary feedback loop, there exists a second feedback 
loop involving the Rev-erba gene [44]. REV-ERBα, also trans-
activated by CLOCK/BMAL1, acts as a strong repressor of the 
Bmal1 gene, giving robustness to the molecular oscillator. 
  The characterization of the tau mutant hamster, which har-
bors an A178C missense mutation in the casein kinase 1 epsi-
lon (Csnk1e) gene, has emphasized the role of posttranslational 
modifications of circadian clock proteins [45,46]. It has subse-
quently been shown that β-TrCP and FBXL3 E3 ligase com-
plexes target PERs and CRYs for degradation [47-50]. More re-
cently, AMPK was shown to phosphorylate CRY1 and destabi-
lize it in response to nutrient signals in the mouse liver [51]. Also 

notable is the chromatin remodeling and other modifications 
of circadian clock proteins that alter circadian gene expression 
and function [52-55]. 

TISSUE-SPECIFIC FUNCTIONS DRIVEN BY 
PERIPHERAL CLOCKS

Since the discovery of the circadian clock genes, one of the most 
striking findings was that circadian gene expression is not con-
fined to the central oscillator in the SCN: circadian genes are 
expressed in almost every tissue within the body. Even cultured 
cells in vitro exhibit a robust oscillation of circadian genes in a 
self-sustained and cell-autonomous manner [56,57], thus al-
lowing the characterization of the regulation and function of 
circadian genes in vitro [58-60]. 
  Although almost every cell and tissue expresses circadian 
genes, cycling transcripts are not the same among the tissues or 
cells. For example, the SCN and the liver have only small por-
tions of cycling transcripts in common [61]. Almost ubiquitous 
expression of clock genes and cell- and tissue-specificity in the 
cycling transcripts lead to the concept of peripheral clocks, which 
is believed to derive tissue-specific functions according to time 
of day [62-67]. Thus, the hierarchical organization of the central 
clock in the SCN and local peripheral oscillators in the periph-
eral tissues seem to generate the harmony of various physiolog-
ical rhythms in the mammalian circadian timing system. 
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Fig. 1. A current working model of the molecular oscillator in mammals. RORs, RAR-related orphan receptors; RORE, ROR re-
sponse element; bmal1, brain and muscle arnt-like 1; clock, circadian locomotor output cycle kaput; npas2, neuronal PAS domain 
protein 2; CCG, clock-controlled gene; CSNK1E/D, casein kinase 1 epsilon/delta; β-TrCP, β-transducin repeat-containing protein; 
FBXL3, F-box and leucine-rich repeat protein 3.
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DAILY/CIRCADIAN RHYTHMS IN URINARY 
FUNCTION

With the effective circadian timing system, most physiological 
functions in mammals are tightly locked to their activity and 
rest phases to ensure optimal performance. For example, diur-
nal animals consume most of their food and water during the 
day, whereas nocturnal animals do so during the night [20,68]. 
Accordingly, water intake, urine production, and urine storage 
also display distinct daily or circadian variations in diurnal hu-
mans and nocturnal rodents (Table 1). As discussed briefly in 
the previous issue [69], urine production and voiding must pre-
dominate during the active phase, whereas increased storage of 
urine in the bladder and reduced frequency in urination must 
be ensured to promote better rest and sleep. Consequently, dis-
ruption of this homeostatic regulation is predicted to decrease 
an organism’s well-being. For example, nocturia, the complaint 
that an individual has to wake at night one or more times to void 
[70], decreases quality of life and negatively affects morbidity 
and mortality, especially in the elderly [71-74]. 

  Diurnal or circadian variations in urine volume, electrolyte 
excretion, uroflow, micturition frequency, volume per void, and 
urine and osmole output rates have been extensively studied 
[75-82]. For example, water and electrolyte excretion is signifi-
cantly low during the sleep phase compared with active day-
time in healthy control subjects but not in patients with conges-
tive heart failure or cirrhosis of the liver [75]. Moreover, these 
variations in urinary excretion are observed not only in nych-
themeral conditions but also in constant-routine protocols [77], 
indicating that these rhythms are generated endogenously. In-
creased urine volume, urine production rate, and frequency 
during the day along with increased bladder capacity during 
the night [79,80] substantiates the dominance of voiding during 
the day with the dominance of urine storage during the night. 
Interestingly, maximum voided volume in school-aged children 
with monosymptomatic nocturnal enuresis was shown to be 
smaller than that in age-matched controls, but the maximum 
volume obtained after a standard holding exercise was not sig-
nificantly different from that in the control group, which raises 
the possibility that there could be a defect in circadian rhythm 

Table 1. Known and possible daily and circadian variations in urinary function in humans: day vs. night

Day (activity/awake) Night (rest/sleep) Reference No.

Dominance Voiding Storage 79, 80

Urine production High Low 75-77, 80, 81

Voiding frequency High Null (very low) 79, 80

pAVP (ADH) Low High 85-93

pANP Low High 95, 96

PRA/PA (activity) High Low 94, 95

PRA/PA (recumbency) Low High 94, 95

GFR High Low 83, 84

Electrolyte excretion High Low 75, 77

FENa% High Low 84

UK/(UNa+K)% High Low 84

Urine osmolality Low High 76, 84

Detrusor contractility High (?) Low (?) 82

Functional bladder capacity Low (?) High (?) 79-82

Sympathetic tone High (?) Low (?) 98

Parasympathetic tone Low (?) High (?) 98

Pressure-sensing in the bladder ?? ??

Activity of PMC ?? ??

Cortical control of micturition ?? ??

pAVP, plasma arginine vasopressin; ADH, antidiuretic hormone; PRA/PA, plasma renin activity or plasma aldosterone; GFR, glomerular filtration 
rate; FENa%, fractional sodium excretion; UK/(UNa+K)%, fractional distal sodium-potassium exchange; PMC, pontine micturition center.
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for detrusor inhibition [81,82]. 
  One of the well-known circadian rhythms in humans is the 
rhythm of glomerular and tubular function. Independent of 
circulating hormones, the glomerular filtration rate decreases 
by 15 to 30% overnight [83,84]. Nonetheless, many circulating 
hormones greatly affect urine production and storage. Of these, 
arginine vasopressin (AVP) displays a distinct diurnal/circadian 
variation and has been implicated in many urological problems, 
and its synthetic analog desmopressin has been widely used as 
a therapeutic agent [85-93]. Importantly, alterations or damp-
ening of diurnal rhythms in the plasma AVP level have been 
linked to many urological problems including urological aging 
[86,87,90,91,93], further emphasizing the importance of proper 
circadian control in hormone secretion. Other urinary func-
tion-related hormones that exhibit diurnal or circadian fluctua-
tions include plasma renin, aldosterone, atrial natriuretic pep-
tide, cortisol, and prostaglandins [94-97] (Table 1). Thus, the 
harmonious secretion of these hormones may contribute to the 
distinct circadian variation in urinary functions.
  Also notable is the daily variation in sympathetic/parasym-
pathetic tone [98], considering the importance of the autonom-
ic nervous system in bladder function. However, increased 
sympathetic tone during the active phase is quite contradictory 
to the notion that urine storage must predominate during the 
rest period. Yet, local bladder control of the autonomic nervous 
system still remains an intriguing possibility. Finally, the circa-
dian control of blood pressure needs to be considered when ex-
amining urinary rhythms, because electrolyte excretion plays 
crucial roles in the control of blood pressure, and the dysregula-
tion of blood pressure has wide significance for many human 
pathologies [99-101]. 

ROLES OF CIRCADIAN CLOCKS IN URINARY 
FUNCTION?

Despite the ample evidence supporting clear circadian and di-
urnal variations in urine production and storage, the mecha-
nism or mechanisms underlying this variation are largely un-
known. Do circadian clocks, especially the local clocks in the 
kidney and bladder if they exist, have any significant roles? Two 
recent studies support this possibility. Zuber et al. [102] dem-
onstrated a local renal clock that may derive time-of-day-de-
pendent renal functions. In their study, clock-/- mice exhibited a 
complex phenotype with partial diabetes insipidus, dysregula-
tion of sodium excretion rhythms, and a significant decrease in 

blood pressure [102]. A urodynamic study by Herrera and 
Meredith [103] demonstrated day/night differences in bladder 
capacity and micturition frequency in rats, raising the possibili-
ty that the bladder itself can be a direct target for circadian reg-
ulation. Although more research is needed to clarify the role of 
clock genes in urinary functions, recent observations obtained 
in our own research group support this (Fig. 2). We investigated 
the daily and circadian patterns of urine volume in wild-type 
(WT) and per1-/-per2-/- (PDK) mice under the light-dark (LD) 
and constant darkness (dark-dark cycle, DD) conditions. Al-
though both WT and PDK mice exhibited clear daily variations 
of urine volume in the LD condition, PDK mice lost this rhyth-
micity just 2 days after being released to DD. Moreover, urinary 
volume in PDK mice was significantly higher than in WT mice. 

RESEARCH DIRECTIONS

As discussed so far, the circadian control of voiding function is 
undoubtedly an intriguing possibility and needs the immediate 
attention of researchers in the field. With several clock mutant 
animals available, novel approaches are needed to delineate 
whether urinary functions are under the direct control of the 
mammalian time-keeping system. First of all, the possible exis-
tence of a local bladder clock and its functional significance 
needs to be addressed. Clock genes oscillating and cycling tran-
scriptome/proteome profiling in the detrusor, urothelium, and 
sphincter remain unexplored. A second path of research is 
whether there exist circadian variations in the neural control of 
the bladder. Because various anatomical locations including the 
bladder itself, spinal cord, pontine micturition center, and corti-
cal sites contribute to the neural control of bladder function 
[104-106], possible circadian control in these sites needs to be 
addressed. Other paths of research include consequences of cir-
cadian rhythm disruption in terms of urinary functions and 
vice versa. Indeed, some research has shown that nocturia and 
polyuria disrupt sleep architecture and may predict obstructive 
sleep apnea, whereas acute sleep deprivation results in excess 
diuresis and natriuresis [107-109]. Also interesting will be the 
causal relationships between circadian and urological aging 
[71-74, 110-112]. 
  In modern society, more and more workers are engaged in 
various shift work and trans-meridian travel, thus repetitively 
disturbing their circadian rhythms. Moreover, urological prob-
lems, such as nocturia, polyuria, and nocturnal enuresis, are the 
major complaints of the elderly in this aged society. Therefore, 
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the possible circadian control of urinary function is a sure road 
that needs to be trodden by researchers in the field. 
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