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Abstract: The development of automated driving is actively progressing, and connected cars are also
under development. Connected cars are the technology of connecting vehicles to networks so that
connected vehicles can enhance their services. Safety services are among the main services expected
in connected car society. Cooperative perception belongs to safety services and improves safety by
visualizing blind spots. This visualization is achieved by sharing sensor data via wireless communi-
cations. Therefore, the number of visualized blind spots highly depends upon the performance of
wireless communications. In this paper, we analyzed the required sensor data rate to be shared for
the cooperative perception in order to realize safe and reliable automated driving in an intersection
scenario. The required sensor data rate was calculated by the combination of recognition and crossing
decisions of an automated driving vehicle to adopt realistic assumptions. In this calculation, CVFH
was used to derive tight requirements, and the minimum required braking aims to alleviate the traffic
congestion around the intersection. At the end of the paper, we compare the required sensor data
rate with the outage data rate realized by conventional and millimeter-wave communications, and
show that millimeter-wave communications can support safe crossing at a realistic velocity.

Keywords: 5G; automated driving; connected cars; cooperative perception; collective perception;
V2I communication; V2X communication; millimeter-wave communication; extended sensor

1. Introduction

Connecting automated driving vehicles with other devices such as vehicles and
roadside units (RSUs) is a key technology to improve the safety of automated driving. The
importance of this technology is already understood so the development has been started
internationally. In Japan, connected cars that can communicate through a network are
expected to support automated driving and are planned to be fully realized by 2030 [1].
In America, the National Highway Traffic Safety Administration (NHTSA) performed
the evaluation of safety applications for connected vehicles [2]. In Europe, the European
Commission has published the ethics of connected and automated vehicles to tackle
ethical issues [3]. Since the technology of connected vehicles can improve driving quality,
integrating connected vehicles with automated driving is expected to drastically reduce
traffic accidents.

Connected vehicles can expand and develop services for vehicles such as safety
services and infotainment services. Among these services, we focused on the cooperative
or collective perception which is one of the applications of the safety services to improve
the safety of automated driving. Cooperative perception is a technology through which
a vehicle can use sensor data obtained from other vehicles or RSUs through wireless
communications [4]. The effect of cooperative perception comes from obtaining the sensor
data of other perspectives so that the receiving vehicle can see through blind spots. In
other words, since dynamic maps used for navigation and avoiding obstacles of automated
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driving are made from sensor data, cooperative perception can be regarded as integrating
dynamic maps, which will lead to a higher quality of automated driving.

There are two ways to realize cooperative perception, i.e., sharing processed or raw
sensor data. Processed sensor data include information about recognized objects such
as the category and location. The main advantage of sharing processed sensor data is
that complex processes such as object recognition can be performed in application servers
and the high performance of wireless communications is not required, but latency caused
by processes cannot be ignored. On the other hand, when raw sensor data are shared,
the received vehicle performs a recognition process in its system so that recognition results
are free from errors due to the sender. However, in order to support sharing raw sensor
data, large amounts of communication resources must be prepared to deal with the total
sensor bandwidth from 3 to 40 Gbps [5]. In order to guarantee safe automated driving by
cooperative perception, the shared amount of processed or raw sensor data and the rate
of sharing required by safe automated driving must be clarified. For example, in [6], the
authors published the requirements for sharing both processed and raw sensor data. On
the other hand, in [7], sharing raw sensor data was not considered due to the necessity of a
large data rate.

In this paper, sharing raw sensor data is assumed for distributed verification, and the
utilization of millimeter-wave communications is considered to tackle the problem of
communication resources and to benefit from the advantages of sharing raw sensor data.
This paper is the extended work of our previous work and the contribution of this paper
consists of two aspects as follows [8,9]:

• The first aspect is the derivation of the required sensor data rate for passing through
an intersection safely. Although millimeter-wave communications are believed to
play an important role in sharing raw sensor data, the minimum required amount of
raw sensor data that is transmitted for safe automated driving via millimeter-wave
communications is unclear. Therefore, we focused on the derivation of the minimum
required sensor data rate for safe automated driving and included the minimum
required braking to alleviate traffic congestion and a practical recognition process to
derive realistic requirements.

• The second aspect is showing the ability of millimeter-wave communications to sup-
port sharing raw sensor data for safe crossing. Since millimeter-wave communications
are expected to support safe automated driving, we will show how safe the automated
driving millimeter-wave communications can be.

By comparison with previous works [8,9], we extended the driving scenario from
overtaking to crossing an intersection, and adopted a more practical recognition process
than using edge points.

The rest of this paper is organized as follows. Section 2 introduces related works
about the requirements of cooperative perception and the relation between cooperative
perception and communication systems. Section 3 shows the assumed intersection sce-
nario and derives the required sensor data rate to pass through the intersection safely.
Section 4 discusses the required sensor data rate with the outage capacity of conventional
and millimeter-wave communications. Section 5 concludes this paper.

2. Related Works

Since dynamic maps are made from sensor data, receiving sensor data from an RSU
can be regarded as receiving local dynamic maps that contain information around the
RSU. Local dynamic maps are planned for the safe and successful operation of intelligent
transport systems (ITS) applications in European Telecommunications Standards Institute
(ETSI) [10]. Local dynamic maps handle location information and four types of information
classified by the frequency of change. In this case, local dynamic maps are assumed
to be stored in ITS stations so that processed sensor data are used for applications in
ITS. For example, the intersection collision risk warning is one of ITS applications [11].
When a roadside ITS detects the collision risk at an intersection, this application sends a
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decentralized environmental notification message (DENM) to approaching vehicles. On the
other hand, in [7], ETSI has studied the collective perception services that can be regarded
as sharing local dynamic maps. In this analysis, the transmission of raw sensor data is
not considered due to high requirements so that processed data based on radar sensors
are assumed in the simulation. The results discuss the relation between the generated
channel load resulting from transmitting the information of perceived objects and the
awareness generated by sensors. The key point of compatibility between high resolution
in terms of object information and reduction in channel load is to include the minimum
required information about perceived objects. In [12,13], the authors also studied message
generation rules for collective perception services and analyzed the trade-off between
channel load and service quality and between performance and efficiency.

Cooperative perception or collective perception itself has also been studied by many
researchers. In [14], Shan et al. performed cooperative perception with an intelligent
RSU in the real urban traffic environment that has an intersection. The intelligent RSU is
equipped with a camera and a LiDAR sensor and the detection result is sent to vehicles
in a ETSI collective perception message (CPM) format. The receiving vehicle not only
receives the location of the shared perceived objects but also the uncertainty bounds of the
objects. In [15], Tsukada et al. developed and conducted a roadside perception unit for
automated driving. The developed cooperative perception sends cooperative awareness
messages (CAMs) encoded into CPMs to vehicles and the receiving vehicles know the
location of the shared perceived objects. In [16], Dhawankar et al. proposed a framework
for a cooperative platoon of autonomous vehicles. The cooperative platoon is controlled by
sharing periodic safety information such as traffic information under a channel estimation
model for V2I communication using IEEE 802.11p. The numerical results show that the
purposed framework improves cooperative platoon driving.

Realizing cooperative perception by sending raw sensor data has also been studied.
In [17], raw LiDAR sensor data were exchanged through 60 GHz wireless communication,
that was one of the millimeter-wave communications. The main characteristics of this
work are that only point cloud data representing dynamic objects are shared in order
to reduce redundant information sharing and the system is implemented. In the end,
the authors compared transmitting full point cloud data and only dynamic objects from
the viewpoint of throughput and latency. The results of experiments show that sharing
full point cloud data is not realistic under IEEE 802.11ad communications. However,
700–900 Mbps was measured in the lab, which shows the potential of millimeter-wave
communications. In [18,19], a proof-of-concept of cooperative perception using millimeter-
wave communications was shown by sharing raw LiDAR sensor data. At the measurement
part, the authors showed that approximately 900 Mbps was achieved.

The requirements for cooperative perception are actively studied by many groups.
The 3rd Generation Partnership Project (3GPP) has published V2X (vehicle-to-everything)
service requirements which include use cases for low-level to high-level automated driv-
ing [6]. In the case of an extended sensor service that is similar to cooperative perception
service, 1 Gbps is required for high-level automated driving to prevent imminent collisions.
Moreover, in the case of collective perception under raw sensor data transmission, 1 Gbps
is required to visualize an all-around view [20]. On the other hand, 5G Automotive Associ-
ation (5GAA), that develops end-to-end solutions for future mobility and transportation
services, defines multiple groups based on 3GPP works, and presents requirements in
multiple use case scenarios for C-V2X (cellular-V2X) [21–23]. For example, cooperative
perception corresponds to a use case of high-definition sensor data sharing that belongs to
the group of autonomous driving. However, in high-definition sensor sharing, a specific
data rate is not required.

In this paper, we focus on realizing cooperative perception by sharing raw sensor data
and utilizing cooperative perception for safe automated driving. Although sharing raw
sensor data indeed gives a heavy channel load, it is necessary to guarantee distributed
verification, which will be useful in emergency cases such as an infrastructure system
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error. Moreover, sharing raw sensor data can contribute to liability problems in the case of
accidents and improving the accuracy of object localization [20]. In [24], it discusses sharing
raw and processed sensor data from the viewpoint of sensor fusion. High-level fusion,
which shares the results of detection and tracking algorithm carried out by each sensor, can
be realized under lower complexity and requires few communication resources. However,
the process will cut off a part of the information in the raw sensor data. On the other hand,
low-level fusion, which shares raw sensor data, can retain sensor information so that it
has the potential to improve localization. Moreover, it can reduce the latency caused by
the process and helps to improve the performance of time-critical applications. However,
it requires large amounts of computational resources and communication resources and
needs precise calibration among sensors to fuse their data.

By using millimeter-wave communications for sharing raw sensor data that provide
large amounts of communication resources, one of the challenges in sharing raw sensor data
can be solved. Therefore, the combination of sharing raw sensor data and millimeter-wave
communications has a great synergy that can share raw sensor data without information
loss and waiting time for the process.

In order to derive how much data rate is required to realize safe automated driving by
sharing raw sensor data, we analyzed the minimum required data rate for safe automated
driving. In [8], the overtaking scenario at a two-lane road is assumed and the required data
rate is derived by considering the driving path of overtaking and the recognition process
based on using feature points. In [9], a safe crossing scenario at an intersection is assumed.
However, using edge points for recognition is too primitive so that it is not used in practical
recognition processes.

In order to support sharing raw sensor data, we focus on millimeter-wave communi-
cations. As shown in the above works, by comparing the theoretical maximum throughput,
6.75 Gbps of IEEE 802.11ad, there is room for improving this throughput in off-the-shelf
devices of IEEE 802.11ad. Firstly, we will derive the requirements for safe crossing by ana-
lyzing the relation between the sensor data rate and recognition range. In this derivation,
we used more practical feature points than edge points. Then, expecting the potential of
millimeter-wave communications, we will compare and discuss the realized safe crossing,
which shows the power of millimeter-wave communication to support safe crossing.

3. Required Data Rate on V2I for Safe Crossing
3.1. Cooperative Perception and Intersection Scenario Description

Firstly, we introduce current traffic accidents and show the motivation of analyzing
an intersection scenario for deriving the required wireless communication performance
for cooperative perception. In Japanese statistics, traffic accidents are classified by road
shape and type of accident [25]. Classifying by road shape, a two-lane roads are where
the most traffic accidents take place in Japan. Therefore, in the previous work, this type
of traffic accident is analyzed for safe automated driving [8]. Unsignalized intersections
are where the second-largest amount of accidents occurs in Japan—accounting for 25%. In
America, traffic fatalities involving unsignalized intersection account for 18% [26]. From
these statistics, we focused on traffic accidents occurring at an unsignalized intersection.
Moreover, it is shown in Japanese statistics that traffic accidents between vehicles account
for 90% at an unsignalized intersection. Therefore, we focused on traffic accidents between
vehicles that occurred at an unsignalized intersection.

In the case of automated driving vehicles, intersection managers are planned to pre-
vent traffic accidents. The intersection manager can be separated into several factors such
as V2X interfaces, conflict detection, and vehicle dynamics [27]. There two architectures
for V2X interfaces, i.e., centralized and decentralized approaches. The main advantage of
decentralized approaches is that infrastructures are not required, so they can thus be easily
scaled and used in uncrowded intersections. On the other hand, centralized approaches
follow a server–client scheme. Although the reliability of centralized approaches deeply
depends on infrastructures, these approaches can reduce network overheads due to their
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centralized information. In this analysis, an intersection manager is not explicitly consid-
ered, but a simple intersection manager based on the geographical location of the vehicle is
assumed to establish a connection of V2I communications, which can be implemented by
centralized or decentralized approaches. Therefore, the control of the vehicle’s behavior
such as velocity is performed by the vehicle itself. For example, in the proof-of-concept,
we adopted dynamic network management based on the geographical location of a vehi-
cle [18]. Since this analysis focuses on the relation between the performance of wireless
communications and safe automated driving, we assumed the same simple communication
rule as in the aforementioned work.

For vehicle movements, vehicle dynamics and conflict detection are related to inter-
section management. Models of vehicle dynamics can be classified into three models. The
difference among these models is the dimension of vehicle movement and whether the
surrounding environment such as road slope is considered. To detect a conflict or collision,
grid maps or predefined paths are used. In grid maps, the location of a vehicle in each time
step is expressed as a grid, and a conflict or collision occurs when two vehicles occupy the
same grid at the same time. On the other hand, the expected paths are used to check conflict
in predefined paths. In this analysis, the conflict decision was based upon comparing the
predefined paths and the vehicle dynamics on the path is described as a one-dimension
model as follows:

ẋ = v

v̇ = a

where x and v are the longitudinal position and velocity of the vehicle and a is the ac-
celeration input to the vehicle. Considering the fact that there are works about speed
estimation based on only LiDAR sensors, we assume that LiDAR sensors can obtain vehicle
velocity [28].

The traffic environment at the intersection is also an important factor. This is because
it takes a long time to change all driving vehicles to automated driving vehicles. Therefore,
a mixture environment in which both human and automated driving vehicles exist at the
intersection should be considered. Related works about managing intersections under the
mixture traffic environment can be classified into signalized and unsignalized intersection
models. In the case of signalized intersections, basically traffic lights and the intersection
manager cooperate on preventing collision at the intersection. In [29], the management of
a signalized intersection was analyzed and traffic lights at the intersection are controlled
by a connected vehicle center. The control was based on the information obtained from
traffic detection devices such as radar or LiDAR sensors on roadside units.

On the other hand, in [30,31], decision making for automated driving at an unsignal-
ized intersection was analyzed by processing sensor data and the decision making ex-
periment was performed. In [31], the authors analyzed safe merging at an unsignalized
intersection by using probabilistic functions. Both works considered not only the mixture
traffic environment but also the incomplete installation of V2X communications, i.e., all
vehicles cannot necessarily use V2X communications.

Since our analysis focuses on the contribution of vehicle-to-infrastructure (V2I) com-
munications to safe automated driving, we assumed that an RSU is set at the intersection
and can always send sensor data to the ego vehicle. Namely, the ego vehicle that starts to
enter the intersection can always receive the cooperative perception service. Cooperative
perception shares sensor data obtained from different locations and perspectives in the
driving environment so that blind spots can be visualized. Using the received sensor data,
the ego vehicle tries to pass through an unsignalized intersection under the mixture traffic
environment. However, there are no managers that send control messages to automated
driving vehicles.

From the above discussion, we focus on safe passing through an unsignalized intersec-
tion in the presence of a human driving vehicle. Figure 1 shows the assumed intersection
scenario. The green ego vehicle is an automated driving vehicle and the red vehicle is a
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human driving vehicle. The goal of the ego vehicle is to pass safely through the intersec-
tion. However, the red vehicle also tries to pass through the intersection at the same time,
which will lead to a collision at the intersection. From this assumption, the red vehicle
becomes an important recognition target so that we call the red vehicle a target vehicle. For
simplicity, the velocity of both vehicles is assumed to be constant. Since the target vehicle
is a human-driven vehicle and there are no intersection managers, the ego vehicle has to
recognize the target vehicle and decide whether a safely crossing is possible by itself. In
order to accomplish this goal, an RSU is located at the intersection and can be used for
cooperative perception. Namely, the ego vehicle receives LiDAR sensor data from the
RSU that it can use for the recognition process with the sensor data obtained from the ego
vehicle. Since the ego vehicle can know the location of the RSU by dynamic maps, we
assume that the sensor data received from the RSU is automatically transformed into the
ego vehicle coordinate. When the ego vehicle successfully recognizes the target vehicle,
one of the simplest responses is always applying the brakes even if the collision does not
occur at the intersection. However, this simple response will lead to traffic congestion at
the intersection. Therefore, the ego vehicle should identify whether the collision will occur
and apply the brakes in the case of collision, which can alleviate traffic congestion.

Ego
Vehicle

Target
Vehicle

C

(a)

R

(b)
Figure 1. Overview of LiDAR sensors and the driving pattern at the unsignalized intersection: (a) The
location and the range of LiDAR sensors. (b) The driving pattern of both ego and target vehicles.

3.2. Vehicle Movement on Intersection

In order to realize a safe and efficient crossing, the emergency cases where braking
is necessary to prevent the collision should be specified in advance [32]. Moreover, this
analysis helps to determine a required recognition range to prevent a traffic accident. Since
driving at constant velocity is assumed, we can specify the collision cases by considering
an arrival time and a leaving time at the intersection that depend on the initial positions of
the vehicles. Therefore, we classified the collision cases and the other cases by these time
parameters as Figure 2. Figure 2a (Figure 2c) is the driving pattern that the ego (target)
vehicle first passes through the intersection. Te0 (Tt0) is the time for the ego (target) vehicle
to arrive at the intersection. Te1 (Tt1) is the time for the ego (target) vehicle to leave the
intersection. In the case of Figure 2a (Figure 2c), the relation of the time parameters is
Te1 ≤ Tt0 (Tt1 ≤ Te0). On the other hand, Figure 2b represents the driving pattern through
which the collision occurs and the relations of time parameters are Tt0 ≤ Te1 ∧ Te0 ≤ Tt1.
From the above classification, braking is only needed in the Figure 2b case.
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R

(a)

R

(b)

R

(c)
Figure 2. The three classified driving patterns: (a) The driving pattern in which the ego vehicle crosses first. (b) The driving
pattern in which both vehicles are about pass through the intersection. and (c) The driving pattern in which the target
vehicle crosses first.

From the assumption of constant velocity driving, these time parameters can be
described by Ve, Vt, De, Dt and the relations of the time parameters in the collision cases
can be described as follows:

Dt

Vt
≤

De

Ve
+

2W
Ve

(1)

De

Ve
≤

Dt

Vt
+

2W
Vt

(2)

where W is the width of the road as shown in Figure 1. Adopting comfortable brak-
ing to stop in front of the intersection, the following relation is used for simplifying
Equations (1) and (2) [33,34]:

Dbrake
e = 0.039×

V2
e

3.4
(3)

Using the simplified inequalities, the three driving patterns with comfortable braking
under Vt = 80 km/h can be visualized, as shown in Figure 3. Notice that De and Ve
have the relation of Equation (3), which are shown by the Dbrake

e axis and Ve axis in the
figure. Since De is related to both the braking distance and the performance of wireless
communications, we use superscript to show the main role of De in each analysis. Figure 3
shows the relation between the driving patterns and the initial locations of the ego vehicle
and the target vehicle under the fixed velocity of the target vehicle. Namely, when the ego
vehicle placed at Dbrake

e starts to drive at the corresponding Ve, the decision making of the
ego vehicle depends on the location and velocity of the target vehicle. When the initial
location Dt obtains very small (large) under fixed Vt, the target vehicle (the ego vehicle)
passes through the intersection first so that it does not have to apply the brakes, which
corresponds to the blue (red) area. On the other hand, when the distance and the velocity
parameters of the ego and the target vehicle meet Equations (1) and (2), the collision occurs
at the intersection, which corresponds to the white area. Therefore, when the parameters
of the ego and the target vehicle belong to the white area, the ego vehicle has to perform
comfortable braking to prevent the collision and stop in front of the intersection.
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Figure 3. The visualized three driving patterns at Vt = 80 km/h with comfortable braking.

In order to perform the braking only at the collision cases, the ego vehicle has to
recognize the target vehicle not in all cases but in the collision cases. This means that at
least the ego vehicle has to recognize the target vehicle that is on the upper boundary
of the white area. Therefore, the required recognition range Dreq

t becomes the upper
boundary of the white area and depends on De, Vt, as shown in the figure. From the
above discussion, substituting Equation (3) for Equation (1), Dreq

t for comfortable braking
is obtained as follows:

Dreq
t = Vt

√
0.039De

3.4
+ 2W ·Vt

√
0.039
3.4De

(4)

As introduced before, a constant velocity is assumed in this scenario, but there are
many types of velocity scenarios of the ego vehicle such as driving with acceleration
or deceleration. In this paragraph, we will discuss this topic. When Ve, De, and Vt are
given, driving with acceleration (deceleration) makes Te0 in Figure 2b small (large) so
that the required recognition range becomes short (long). Although a short recognition
range requires a smaller sensor data rate than a long recognition range, entering into the
intersection with acceleration is dangerous. On the other hand, driving with deceleration
is safer than acceleration, but the required recognition range becomes large, which will
become further away from tight requirements. Since we focus on not only safe automated
driving but also tight requirements, we chose driving at a constant velocity which can be
regarded as the average performance of driving with acceleration and deceleration.

3.3. Object Recognition Using CVFH

Since the ego vehicle has to recognize the target vehicle to decide whether comfortable
braking is needed, a recognition process in the ego vehicle is necessary. In general, there
are two ways to recognize an object, i.e., specific object recognition and general object
recognition. In [8], specific object recognition using edge points was performed to recognize
a vehicle. Since the recognition target is only a vehicle in this analysis, which is the same as
in the above works, a specific object recognition was adopted. However, a more practical
feature point than an edge point was used for recognition, and this improvement will
provide a tight data rate requirement. In this recognition process, the clustered viewpoint
feature histogram (CVFH), which is one of the global feature descriptors, is adopted and
we use CVFH functions implemented in the Point Cloud Library (PCL) [35]. The reason



Sensors 2021, 21, 5854 9 of 21

for this adoption is that CVFH is robust to occlusions that often occur due to vehicles or
buildings [36].

A process flow of vehicle recognition is shown in Figure 4. This object recognition
process consists of four processes and these processes are performed to both model and
scene point cloud data. Since we adopt model base recognition, the model point cloud
data are prepared for the object recognition process. In this recognition, the ego vehicle
does not only recognize whether the obtained point cloud data are from a vehicle but also
recognize the direction of the vehicle. The driving direction is specified for how the vehicle
drives on a road and this check helps to guarantee that the traffic environment matches
one of the classified driving patterns. The model point cloud data are generated by sensing
a 3D vehicle model and a rectangular model under no obstacles in the assumed traffic
environment. This data generation provides the maximum information for each model
from the ego vehicle under the fixed locations of the vehicles. The rectangular model was
prepared to check whether the ego vehicle has enough point cloud data to recognize the
object and prevent fortunate recognition. On the other hand, the scene point cloud data are
obtained by LiDAR sensors in the assumed traffic environment.

model scene

point
cloud

normal
vectors

extracting
keypoints

calculating
descriptor

comparing
histograms

Figure 4. The process flow of object recognition.

The object recognition starts from preparing a clustered point cloud. In this analysis,
all points obtained by ray-trace simulation have a tag that tells which objects each point
is on. By collecting points on the target vehicle, ideal clustering can be performed. The
next process is the calculation of a normal vector for each point to calculate the CVFH.
After preparing the clustered point cloud with normal vectors, keypoints are extracted
from the clustered point cloud. In PCL, keypoints are explained as points that are stable,
distinctive, and can be identified by using a well-defined detection criterion. The main
advantage of using keypoints is that selecting points from the clustered points reduces the
calculation time. Actually, instead of using keypoints modules, a voxel grid filter is often
used to just reduce the number of points for convenience. The extracted keypoints were
used to calculate CVFH and the calculation output histogram data. Finally, histograms
calculated from the scene and the model point cloud are compared and the object and
direction recognition is performed by choosing the nearest histogram. Since a large part of
sensor data are obtained from the RSU, the histograms are made from the viewpoint of
the RSU.
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In order to choose the nearest histogram, the quantity that describes the similarity
among histograms must be defined. There are several ways to compare histograms such as
using correlation, chi-square distance, and intersection. Since chi-square distance is used to
compare histograms generated by feature descriptors in the examples of PCL, chi-square
distance is adopted as shown in the following equation:

dchi(H1, H2) = ∑
i

(H1(i)− H2(i))
2

H1(i) + H2(i)
(5)

The idea of a chi-square distance comes from regarding the difference between small
bins as important.

There are six models which were prepared for recognizing the object and the direction
by comparing the histograms. The visualized parts of the target vehicle are defined from
the viewpoint of the ego vehicle. Figure 5 shows examples of compared point cloud data.
As shown in the figures, there are two models of the rectangular model and four models
of the vehicle model. The ego vehicle decides whether the object is the vehicle model or
the rectangular model. When the ego vehicle does not have enough data, it recognizes the
point cloud as the rectangular model. Moreover, the ego vehicle determines which direction
the object faces among the four directions. Since the rectangular model has symmetries,
there are only two models for the rectangular model.

(a) (b) (c)

(d) (e) (f)

Figure 5. Examples of model point cloud data: (a) Model data of the front of the rectangular model. (b) Model data of the
front of the vehicle. (c) Model data of the left of the vehicle. (d) Model data of the side of the rectangular model. (e) Model
data of the rear of the vehicle. (f) Model data of the right of the vehicle.

Figure 6 shows examples of the transition of chi-square distance between the model
histogram and the obtained histogram. The transition of chi-square distance without
cooperative perception is omitted because the buildings block almost all lasers from the
LiDAR sensor on the ego vehicle to the target vehicle. In this scenario, when the ego vehicle
recognizes the obtained point cloud as the left side of the vehicle shown in Figure 5c,
the ego vehicle recognizes the correct traffic environment, which will lead to the correct
braking decision. This is because all LiDAR sensor data are transformed into the ego
vehicle coordinate as introduced in Section 3.1 and the left side of the target vehicle can be
visualized from the ego vehicle under the intersection with no obstacles. From the figure,
when the ego vehicle uses cooperative perception, it correctly recognizes the target vehicle
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in the range from Dt = 5 to 32 m. Since the LiDAR sensor on the RSU does not see directly
below the RSU, the recognition range does not start from 0 m.

wrong recog.correct recog.

Figure 6. Transition of chi-square distance calculated by comparing CVFH histograms.

One way to define the recognition range drecog is choosing the maximum Dt where
the ego vehicle can correctly recognize the target vehicle. From Figure 6, when the wrong
recognition range approximately 0 m is regarded as negligible, the maximum value is read
as 32 m and the recognition range becomes 32 m. Although the maximum Dt becomes
the recognition range drecog in this case, there are no guarantees that the ego vehicle can
continuously recognize the target vehicle in general under this drecog definition. Since the
recognition range should guarantee the correct result within the range, the recognition
range drecog is defined as follows:

drecog(rφ, rθ) = max d0(rφ, rθ) (6)

s.t. ∀d < d0, arg min
m∈M

dchi

(
Hscene(rφ, rθ), Hm | dmin

recog + d
)
= ml (7)

where ml describes the left side of the vehicle model which is the correct model—as
explained previously—rφ, rθ are the LiDAR sensor resolutions of the azimuth and elevation
angle that are used to calculate point cloud and histograms.

3.4. Derivation of Required Data Rate

In order to derive the required sensor data rate Rreq, it is important to know how
LiDAR sensors output sensor data. In this simulation, assumed LiDAR sensors scan the
surrounding environment by spinning lasers at a certain frequency. Therefore, the scanning
frequency, the number of points per scan, and the data size of one point give the sensor
data rate of the LiDAR sensor. Considering the mechanism of the assumed LiDAR sensor,
the required sensor data rate Rreq to prevent the collision is formulated as follows:

Rreq =

(⌊
Aθ

r̂θ

⌋
+ 1

)
×
(⌊

Aφ

r̂φ

⌋
+ 1

)
× Fscan × Dsymbol (8)

where {r̂φ, r̂θ} = arg min
{rφ , rθ}

drecog(rφ, rθ) > Dt (9)
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where Aφ and Aθ are the scanning range in the azimuth and elevation angle, Fscan is the
scan frequency (Hz) of the LiDAR sensor, and Dsymbol is the amount of information per
one laser point (bits).

By summarizing the analysis performed thus far, two relations are obtained. The first
relation is between De and Dt, which tells the recognition range drecog required for the
ego vehicle placed at De to prevent the collision with the target vehicle driving at Vt. The
second relation is between drecog and the required sensor data rate Rreq, which tells the
required sensor data rate Rreq to realize the required recognition range drecog. Therefore,
the sensor data rate required for the ego vehicle placed at De can be obtained from the
above two relations. However, in order to obtain the required sensor data rate for each De,
many resolution sets of LiDAR sensors must be calculated. Therefore, a fitting curve is
used to calculate the required sensor data rate for each De.

Figure 7 shows the required sensor data rate to prevent a collision with the target
vehicle driving at Vt from the ego vehicle driving from De. From the figure, as the target
vehicle velocity Vt becomes high under a fixed De, the required sensor data rate becomes
rapidly high. This is because the collision with the high-velocity target vehicle occurs in
the case where the target vehicle drives from a distant place, i.e., a large Dt, which requires
high-resolution LiDAR sensors to realize a long recognition range.
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Figure 7. The sensor data rate required for the ego vehicle placed at De to prevent a collision with
the target vehicle driving at Vt.

4. Performance Evaluation of Millimeter-Wave V2I
4.1. Millimeter-Wave V2I Communications

Since this analysis focuses on the relation between the performance of wireless com-
munication and safe crossing, first of all, the current status of V2X communications is
introduced in this section. As expected, wireless technology is a core factor of cooperative
perception and the current candidates of wireless technology for cooperative perception
are dedicated short-range communications (DSRC) and C-V2X. DSRC is natively designed
to support vehicular networks so that it can communicate with high-mobility devices.
However, the performance of DSRC rapidly degrades with high-density traffic. C-V2X
makes a new channel that is called a sidelink channel for the absence of cellular infras-
tructure [37]. Sidelink channels enable vehicles to directly communicate through the PC5
interface and there are two modes that are called mode 3 and mode 4 in the sidelink
channels. Mode 3 can be used in eNodeB (evolved node base station) coverage and eN-
odeB reserves resources. Mode 4 is made for the outside of eNodeB coverage and user
equipment (UE) autonomously reserves resources. However, when traffic density increases,
the performance of C-V2X degrades as that of DSRC [38]. In [39], the authors performed
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the experiment and compared the communication performance of IEEE 802.11p, which is
one of DSRC and LTE-V, and showed that an RSU that transfers V2V messages improves
the communication performance.

In order to meet the severe requirements of safe applications such as cooperative
perception, evolved standards such as IEEE 802.11bd and NR-V2X are expected [40]. Since
advanced PHY and MAC techniques are developed after the publication of IEEE 802.11p,
the new evolved standard of IEEE 802.11p is expected for vehicular technology, which is
called 802.11bd. On the other hand, NR-V2X is developed for severe requirements that are
hard for C-V2X to fulfill. In [41], the PHY performance of IEEE 802.11bd and NR-V2X was
evaluated, especially in terms of reliability. The results show that NR-V2X is superior to
IEEE 802.11bd in terms of transmission reliability and mid-ambles significantly improve the
performance of IEEE 802.11bd. The frequency bands for millimeter-wave communications
are also actively discussed. Bands of 27, 37, 39, 60, 70, 80, and 90 GHz are all candidates
for millimeter-wave communications. Although the 60 GHz band has oxygen absorption
that severely limits its communication range, the 60 GHz band is attractive in terms of
a global unlicensed band among these bands [42]. Therefore, we also assume using the
60 GHz band.

From the above introduction, we can see that there are many candidates for wireless
communication systems. Therefore, we compared the cooperative perception for safe cross-
ing realized by the candidates. The analysis was performed by comparing the sensor data
rate and outage capacity calculated by the assumed channel model. In general, there are
deterministic path loss models, statistical models, tapped delay line models, and geometry-
based stochastic models to describe channel models for the 5.9 GHz frequency band [43].
In [44], the authors used a two-ray ground reflection model to compare V2I measurements
in the 5.9 GHz frequency band. The results show that the model can properly represent the
received power in LOS and NLOS environments. In [45], the authors analyzed millimeter-
wave V2I communications and showed that a two-ray channel model well represents
millimeter-wave communications with highly directional antennas. Considering the above
works, we also assumed the V2I propagation model as a two-ray ground reflection model
that is one of the deterministic path loss models, which will reduce calculation time.

Figure 8 shows the assumed V2I propagation model. In this model, the receiver on
the vehicle is vibrating due to a driving motor while the transmitter on the RSU is not
vibrating [46]. Moreover, since automated driving vehicles can know the locations of RSUs
by dynamic maps, the ideal beam alignment is assumed.

TxRSU

R

Figure 8. The two-ray ground reflection model with the receiver vibrating.
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The received power is formulated as follows:

Pr =
Pt

L(rd)

∣∣∣∣√Gd

(
c

4π fcrd

)
+
√

Gr

(
c

4π fcrr

)
Γe−j{k(rd−rr)}

∣∣∣∣2 (10)

where Pt is the transmission power, Gd and Gr are the antenna gains for the direct and
reflected wave, rd and rr are the optical path length for direct and reflected waves, L(rd) is
the absorption factor at 60 GHz by oxygen as 15 dB/km, c is the speed of light, fc is a carrier
frequency, k is 2π/λ, and Γ is the complex reflection coefficient. A basic analysis of the effect
of vibration on fading and height diversity has already been performed in a previous work [8].
Therefore, we focus on the effect of height diversity in the case of V2I communications.

Figure 9 shows 0.01% outage capacities using height diversity as well as not using
height diversity and the average of channel capacity. Since the same parameters are
used in the simulation, the parameters used in this calculation are summarized in the
simulation section in Table 1. Here, 0.01% was based on the requirements for the reliability
of transmitting raw sensor data published by 3GPP [20]. The 0.01% outage capacity was
calculated by the following formula:

P(C(hr | De, fc) < Cout(hr | De, fc)) = 0.01% (11)

where the function P is the probability function about the capacity C of the V2I communi-
cation, and the capacity C and the outage capacity Cout stochastically change due to the
vibrating receiver hr under the fixed De and the carrier frequency fc. From the figure, it
was shown that height diversity certainly improves the outage capacity, but the increased
amount of outage capacity is not drastically large.

50 100 150

10
-1

10
0

10
1

Figure 9. The 0.01% outage capacity with and without height diversity and the average capacity
without height diversity.

This height diversity performance difference can be discussed from two aspects. The
first aspect is the antenna vibration that causes a dynamic change in phase difference. Since
no vibration at the receiver is assumed, a large phase difference between the direct path
and the reflected path rarely occurs so that the improvement becomes smaller. The second
aspect is the beamwidth of the antenna. Since millimeter-wave communications have a
large path loss, its antenna needs strong directivity to realize long-range communications.
In [46,47], a narrow beamwidth such as 10 degrees is used for the outdoor measurement
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of millimeter-wave communications. On the other hand, the narrow beamwidth was also
adopted in our analysis to not only realize long-range communication but also utilize
spatial diversity, or spatial channel reuse, in dense traffic. Using such a narrow beamwidth
in V2I communication, the difference in the angle of departure between the direct path
and the reflected path becomes large so that the reflected path does not depart from the
high gain of the main lobe. Therefore, the effect of the destructive interference becomes
small due to the small power of the reflected wave. However, the effect of the constructive
interference also becomes small so that the outage capacity does not rapidly decrease.

Table 1. Simulation parameters.

LiDAR Parameters

Parameter Value

Location Vehicle’s roof +20 cm
Range 200 m

Elevation Angle Range −25◦ +15◦

Elevation Angle Resolution (rφ)
[0.2◦, 0.1◦, 0.09◦,
0.08◦, 0.07◦, 0.06◦,
0.05◦, 0.04◦, 0.03◦, 0.02◦]

Azimuth Angle Range 360◦

Azimuth Angle Resolution (rθ)
[0.2◦, 0.1◦, 0.09◦,
0.08◦, 0.07◦, 0.06◦,
0.05◦, 0.04◦, 0.03◦, 0.02◦]

Return Mode Strongest
Scan Period 20 Hz

Data Size of One Point 16 bit (coordinate)
+ 12 bit (power)

V2I System Parameters in [5, 30, 60] GHz Bands

Parameter Value

Height of Tx(ht) 5.0 m
Height of Rx(hr) 1.8 m

Transmitted Power 10 dBm
Boresight Gain [4.3, 20, 26] dB

Antenna Aperture Size 2.6 cm × 2.6 cm
Polarization vertical

Vertical Antenna Vibration Model Gaussian (σ = 3.2 cm)
Bandwidth [10, 500, 1000] MHz

Noise Figure 10 dB

4.2. Theoretical Speed Limitation

From the above discussion, the safe crossing can be formulated as follows:

safe passing: Vt ≤ Vmax
t (Vsafe

e , fc)

where Vmax
t = max Vsafe

t (Vsafe
e , fc)

dangerous passing: otherwise

where a pair of {Vsafe
e , Vsafe

t } is the velocity that ensures no collision at the intersection,
and Vmax

t is the maximum velocity of Vsafe
t under the given Vsafe

e . The carrier frequency fc
also relates to Vmax

t because it relates to the recognition range that becomes the basis of the
safe crossing. The details of {Vsafe

e , Vsafe
t } is shown as follows:

{Vsafe
e , Vsafe

t } s.t. Cout( fc, De(Vsafe
e )) > Rreq(De(Vsafe

e ), Vsafe
t , Dt)
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From the assumption, {Vsafe
e , Vsafe

t } has to meet the relation that the outage capacity
Cout is higher than the required sensor data rate Rreq to prevent the collision by coopera-
tive perception.

In our scenario, a single target vehicle was assumed thus far, but multiple target
vehicles on the left and right lanes should also be discussed. Therefore, in this paragraph,
we expanded to multiple target vehicles and discussed this scenario. When there are
oncoming vehicles on the lane of the ego vehicle and an oncoming vehicle tries to turn
right, the ego vehicle has to recognize it to prevent a collision, which means that the
oncoming vehicle becomes a new target vehicle. However, for simplicity, we will focus on
the case where target vehicles drive on the right and left lane. This is because oncoming
vehicles are line-of-sight from the ego vehicle and recognition can be easier than this
scenario. Firstly, the criterion for safe crossing should be formulated. The key factor is
that the two inequalities for passing through the intersection in Equations (1) and (2) only
depend on the distance and velocity. Therefore, the superposition of this criterion to all
target vehicles ensures the safe crossing with no collision, and it is formulated as follows:

safe passing: ∀Vi
t ∈ Vt, s.t. Vi

t ≤ Vmax
t (Vsafe

e , fc)

dangerous passing: otherwise

where Vt is the set of the velocity of all target vehicles, and Vi
t is the velocity of the ith

target. From this formula, we can use Vmax
t the same way we used a single vehicle scenario.

We regarded Vmax
t as the speed limitation for the safe crossing.

4.3. Performance of Millimeter-Wave V2I Communications to Support Safe Crossing

To estimate the safe crossing realized by conventional V2I communications and
millimeter-wave communications, we performed the simulation. Figure 10a,b show the
process flow of the simulation. This algorithm consists of a sharing sensor data part and
recognition part. The sharing sensor data part is based on the previous work [8] and we
checked that it works in the real environment in [18]. The recognition part is based on
the typical model base recognition process of CVFH, which was also released in the robot
operating system and used for object recognition in practice. Firstly, the parameters such
as the resolution of the LiDAR sensors, the distance, and the velocity were set. Then,
the LiDAR sensor data obtained from the ego vehicle and the RSU were simulated. Since
this LiDAR sensor simulation is the same as the previous work, we omit this part and leave
the explanation to the reference [8]. The LiDAR sensor model used in this simulation was
based on Velodyne VLS-128, which can look downward deeper than upward. Since the
RSU has to mainly sense downward, this model is appropriate for the intersection scenario.
Under the assumed scenario and settings, a large part of lasers from the LiDAR sensor
on the ego vehicle is blocked by buildings in many cases so that it does not provide more
information than the LiDAR sensor on the RSU. Therefore, sensor data obtained from the
ego vehicle were omitted to shorten the calculation time and sensor data obtained from the
RSU which is mainly used. As previously assumed, the point cloud received from the RSU
is transformed into the ego vehicle coordinate. Moreover, considering that LiDAR sensors
can estimate the velocity of a vehicle, the ego vehicle can know the velocity of the target
vehicle. After the LiDAR sensor simulation, the outage capacity between the RSU and the
ego vehicle is calculated under De to check whether the ego vehicle can use cooperative
perception. To simplify the system, the ego vehicle can use cooperative perception when
the outage capacity is more than the LiDAR sensor data rate. When the ego vehicle uses
cooperative perception, it can only use its sensor data but also the sensor data of the RSU
for the recognition process. Then, the recognition process based on CVFH was performed.
When the recognition result corresponds to the target vehicle, the ego vehicle can decide
whether comfortable braking is necessary to prevent the collision. Otherwise, the ego
vehicle believes that no vehicles are entering the intersection, which will lead to a collision.
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Figure 10. Description of the whole process in the simulation: (a) Block diagram of a safe crossing.
(b) Algorithm of a safe crossing.

Figure 11 shows the result of the simulation and Table 1 shows the parameters used
in this simulation. The x axis describes De which relates to the braking distance and the
outage capacity of the V2I communication. The contour plot shows the required sensor
data rate as same as the plot in Figure 7. The red, blue, and green lines show the realized
outage capacity using 60, 30, and 5 GHz V2I communication.

Figure 11. The contour plot shows the required sensor data rate at each Vt that adopts comfortable
braking and the color lines show the outage capacity realized by each carrier frequency.

The safe velocity pair {Vsafe
e , Vsafe

t } realized by each carrier frequency is described by
the area below each red, blue, and green line. The velocity values are obtained by reading
the contour plot and De. As De becomes large, the decrease in the outage capacity and the
increase in the required sensor data rate for each Vt are read from the figure. The decrease
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in the outage capacity is expected to become far from the RSU, and the increase in the
required sensor data rate is due to the necessity of a long recognition range.

In order to estimate the ability of cooperative perception at each carrier frequency,
we focused upon the maximum velocity pair that both Vsafe

e and Vmax
t obtain the same

velocity and obtain maximum the carrier frequency, which we will call the maximum safe
velocity set. This estimation comes from reflecting two aspects. The first aspect is that the
ego vehicle should pass through the intersection as quickly as possible to alleviate traffic
congestion. The second aspect is that the ego vehicle also wants to prevent collision with
the high-velocity target vehicle. By this estimation, it is shown that passing through the
intersection with comfortable braking at 62 (55) km/h requires 11 (5) Gbps which can be
supported by 60 (30) GHz. On the other hand, 5 GHz does not have the ability to send raw
sensor data. From this result, we conclude that millimeter-wave V2I communications are
needed to ensure safety at a realistic velocity and have better potential for safe driving than
conventional V2I.

We will also discuss the recognition performance difference between edge point recog-
nition used in the previous work and CVFH [9]. In the case of edge point recognition, since
extracting edge points is performed by principal component analysis for each keypoint,
the complexity becomes O(nk), where n is the number of keypoints and k is the number of
neighbor points for each keypoint [48]. On the other hand, CVFH is the combination of
Euclidean clustering and VFH calculation so that its complexity is near to O(nk). However,
CVFH has to calculate Euclidean clustering additionally, and the preparation of the model
data is more complex than that of edge points. Therefore, it is convenient to enable edge
point recognition to realize the same recognition ability as CVFH by tuning the thresh-
old from the viewpoint of reducing the calculation time. When the threshold is changed
from 0.9 to 0.8 (0.77), the maximum safe velocity at 60 (30) GHz becomes the same result
as CVFH.

5. Conclusions

In this paper, cooperative perception with raw sensor data is used to safely pass through
the intersection and the required sensor data rate for the safe crossing is derived. Firstly,
in order to reduce excessive braking, we specified the case where braking is required in the
intersection scenario. Moreover, CVFH, which is a practical descriptor, was used to derive
a more realistic required sensor data. From the result, it is shown that, as the velocity Vt
becomes higher, the required sensor generated data rate drastically increases. In the discussion
part, it was shown that realizing cooperative perception by 30 and 60 GHz millimeter-wave
communication has the ability to support safe crossing, while it is difficult for the conventional
5 GHz communications to support sharing raw sensor data to realize safe crossing. Since we
want to estimate the ability of supporting the safe crossing, we focus on the maximum safe
velocity set. The maximum safe velocity set shows that 30 and 60 GHz communications can
prevent a collision with the target vehicle driving at approximately 60 km/h, which is a speed
limit on a normal road in Japan. Finally, we compared CVFH recognition and edge point
recognition. We found the appropriate threshold in the edge point recognition that realizes
the same recognition ability as CVFH. This tuning will prevent excessively tight or loose
recognition and edge point recognition can be used instead of CVFH so that the calculation
time becomes short.
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The following abbreviations are used in this manuscript:

RSU Roadside Unit
NHTSA National Highway Traffic Safety Administration
CVFH Clustered Viewpoint Feature Histogram
V2X Vehicle-to-Everything
C-V2X Cellular-V2X
3GPP 3rd Generation Partnership Project
5GAA 5G Automotive Association
ETSI European Telecommunications Standards Institute
ITS Intelligent Transport Systems Station
DENM Decentralized Environmental Notification Message
CAM Cooperative Awareness Message
CPM Collective Perception Message
V2I Vehicle-to-Infrastructure
PCL Point Cloud Library
DSRC Dedicated Short-Range Communications
UE User Equipment
eNodeB Evolved Node Base Station
V2V Vehicle-to-Vehicle
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