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Abstract: The development of Unmanned Aerial Vehicles (UAV) along with the ubiquity of Internet of
Things (IoT) enables the creation of systems that, leveraging 5G enhancements, can provide real-time
multimedia communications and data streaming. However, the usage of the UAVs introduces
new constraints, such as unstable network communications and security pitfalls. In this work, the
experience of implementing a system architecture for data and multimedia transmission using a
multi-UAV system is presented. The system aims at creating an IoT ecosystem to bridge UAVs and
other types of devices, such as smartphones and sensors, while coping with the fallback in an unstable
communication environment. Furthermore, this work proposes a detailed description of a system
architecture designed for remote drone fleet control. The proposed system provides an efficient,
reliable and secure system for multi-UAV remote control that will offer the on-demand usage of
available sensors, smartphones and unmanned vehicle infrastructure.

Keywords: Unmanned Aerial Vehicles; mobile crowdsensing; cyber-physical systems;
disaster management

1. Introduction

Many efforts are being made to recognize and forecast the occurrence of a natural disaster, to
react in an efficient manner to the disaster when they occur, and to quickly and efficiently assess the
damage, fix and restore normal state [1–4].

Large-scale natural disasters test the most fundamental human instinct of survival by inflicting
massive, and often unpredictable, loss to life and property. Various types of natural disasters have
been classified according to the technology that can be used to respond to them [5]: geophysical
(earthquake, tsunami, volcano, landslide, and avalanche), hydrological (flash-floods, debris flow, and
floods), climatological (extreme temperature, drought, and wildfire) and meteorological (tropical storm,
hurricane, sandstorm, and heavy rainfall), among others, have caused the loss of many lives in addition
to increase in material losses in the order of 100–150% over the last 30 years [6]. Acknowledging
the need for bolstering disaster resilience, this paper contributes a vision of leveraging the latest
advances in wireless sensor network (WSN) technology, unmanned aerial vehicles (UAVs) and mobile
crowdsensing to enhance the ability of network-assisted disaster prediction, assessment and response.

Around 47% of the overall losses and 45% of the insured losses derived from inland flooding that
occurred in Europe, Canada, Asia and Australia. Altogether, at around US$ 45bn, losses from natural
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catastrophes were below the average amount for the past ten years (US$ 85bn). Insured losses totaled
approximately US$ 13bn. Thus, in this paper, we focus our attention on inland flooding events.

Some recent works tackle the problem of a system design dedicated to use in natural disasters.
Usually, the device-to-device communication network systems are applicable to many different
wireless technologies, notably using smartphones for relaying emergency messages [7]. In some
cases, the parts of the cellular network infrastructure that survived the natural disaster can play a vital
role in transmitting the information by forming a multi-hop communication link [8]; in other cases,
terrestrial vehicles can support or request UAVs to cooperate to offer connectivity [9].

The novelty of our work in respect to the existing literature is that we provide a novel architecture,
composed of three main elements: sensors, UAVs and crowdsensing devices. Furthermore, we offer an
extensive technical description of the whole system as well as of each of its components, and provide
an in-depth overview of technologies used for data encoding or video-streaming. In previous works
on the subject, Luo et al. presented a similar system architecture which enables data processing in the
cloud [10]. However, the description of the components provides a high-level overview, whereas in our
work the technology stack of the system is completely detailed and makes use of production-approved
open-source technology. Furthermore, in Ref. [10], smartphones are not considered as a part of the
control and monitoring interface for the operators. Smartphone connectivity has been considered
in Ref. [11], where the authors proposes using UAVs to establish a link with the device of a missing
person, after a disaster event happened. In this case, the authors provided some significant insights
into the communication technologies and realized a demo to show the correct functioning of their
architecture. However, no characterization of the real and perceived information flows among the
different components is given, and the smartphone, included in the architecture, only has the function
of sending a help message. In our architecture, smartphones are integrated by following the new
paradigm of crowdsensing communications. The crowdsensing component is also absent from the
Paparazzi system [12], which permits remote control of multiple UAVs by the ground station through
classic communications technologies. Furthermore, the usage of the MAVLink protocol for UAV
communications is considered as a future extension, whereas our architecture is based on MAVLink
protocol, which makes it flexible and easy to manage and extend. None of the mentioned works
present such an extended validation and performance evaluation campaign as our work.

This work describes the communication architecture for a system of systems (SoS) composed of
UAV, smartphones, and sensors to transmit telemetry and data streaming, which we proposed in the
framework of the project IMATISSE (Inundation Monitoring and Alarm Technology In a System of
SystEms). This work extends our previous contribution in Ref. [13], and its main contributions are
the following:

1. the proposal of a SoS architecture for disaster management;
2. the definition of roles and functions for each SoS component of the proposed architecture;
3. the definition and characterization of the real and perceived information flows among the

different components; and
4. the practical implementation and validation of the proposed architecture.

The outline of this paper is the following: components of the proposed architecture are presented
in Section 2, operating modes in Section 3, functional architecture in Section 4, and its implementation
in Section 5. The evaluation of video streaming and data architecture performance is provided in
Section 6. Conclusions are drawn in Section 7.

2. Architecture Components

The system of systems we propose for forecasting, assessing and responding to an inland flooding,
comprises three main components, as shown in Figure 1:

• A sensor network, assumed to be composed of cheap and widely available nodes, has three roles
in this context:
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– Monitoring the river/stream by acquiring information, the data are fed to a web
server that stores the data, creates the statistics and triggers the alarms based on the
collected information;

– Monitoring bed and bank of the river, where it acts as a danger trigger; and
– support for communication, as it connects other system components (UAVs and smartphones).

The WSN, in this case, can connect isolated smartphones that cannot access the Radio Access
Network (RAN) and inform the web server about their location and status.

• A UAV network that, through a UAV server, allows a 24/7 vision on distance of the places hit
by the flooding and a virtual UAV service that offers a continuous connection between the users
and the UAVs. The dedicated UAV server should be equipped with a set of UAVs, the power
generator, and an operator that takes care of the drones, stores them in the UAV server and
operates its movement (Figure 2).

• Smartphones that people use on a daily basis constitute the third component of the system.
The idea is to develop a smartphone application that could achieve the following:

– allow people’s crowdsensing to voluntarily trigger the rescue alarm, followed by the creation
of an endangered area map useful to rescue teams (Figure 3);

– communicate with the WSN to get the individual sensor readings; and
– connect directly to the UAV network to transmit its status information (notably position)

towards the rescue teams and get the information regarding the emergency procedure,
escape plans, etc.

Two more components of the proposed architecture, the web server and the UAV server, which,
respectively, link the different components of the system together and manage the UAVs, are not
represented in Figure 1 for sake of simplicity.

Figure 1. Overall IMATISSE architecture.
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Figure 2. UAV network used for surveillance and communication support.

Figure 3. Mobile crowdsensing.

3. Operating Modes

The IMATISSE system works according to two operating modes, normal operating mode and
emergency mode, which reflect the disaster alert/preparedness phase and the first response and
assessment phase, respectively.

3.1. Normal Operating Mode

In the normal operating mode, only the WSN represents the active part of the system. The WSN
executes the task of acquiring the data regarding the river flow and level, forwarding the information
towards the web server. Although smartphones are being used by their owners, the application
dedicated to crowdsensing in the context of this project is launched only in the case of an emergency.
In the case an increase of the water level is detected by the WSN or the emergency application is
launched by a smartphone user, the system goes into emergency mode.

3.2. Emergency Mode

After the WSN or the smartphone application has triggered the alarm, the web server activates
the UAV server. The emergency responders can request the connection to a UAV through the UAV
server that grants the users’ request with the 24/7 available real-time vision-on-distance service.
The emergency responders are referred to as main users in the rest of the paper to distinguish them
from the regular users that are the smartphone owners involved in the disaster management through
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the crowdsensing application. The 24/7 availability of the service is provided by the autonomous
system comprising multiple UAVs that are automatically replaced when the battery level of the active
UAV reaches a critical threshold [14]. The replacement is being done by running the maintenance
algorithm on three sides: active UAV, replacement UAV and the UAV server.

Both WSN and smartphone application can act as triggers, providing the web server (and thus the
main user) with the essential information about the scope and the localization of the emergency. In the
case where WSN could not perform its task of triggering the alarm on time, the smartphone application
triggers the system. Emitting its location and status information, the smartphone application provides
a potential focal point upon which the UAV subsystem should act. Gathering the information from
different points in the network, the web server creates an emergency map, together with automated
escape paths for stranded people. The information is transmitted towards the smartphone owners in
both affected and endangered areas. In this way, smartphone owners can trigger the system, but also
use the same application as a warning and useful information receiver.

The majority of information processing is done within the web server, where all information
regarding the app users, their activity, river level, forecast, etc., is stored as well. Video and image
processing gathered by UAVs could be performed on the actual UAVs, by implementing video
recognition and analysis algorithms.

3.3. Interconnection of System Components

Figure 4 shows the interconnection of the three system components: sensors, UAVs, smartphones
through the UAV server and the web server.

Figure 4. Interconnection among the system components.

The UAVs are gathered by fleets, where each fleet of UAVs sends telemetry data, while each UAV
sends its video. All the data sent by the UAVs are received by the UAV server, which is connected to
the UAVs through a local wireless network. In return, the UAVs receive Mavlink commands from the
UAV server.

The UAV server centralizes all the data sent by the UAVs. Additionally, it also exposes each video
stream for the web clients and also receives the command messages sent by the web server.

The Web server is the central element of the architecture: it stores telemetry and stream processing
data into a database, and also provides an API to the web clients. The core of the web server is a
program written in Golang which is responsible for launching the different modules in several threads.

The web server comprises the following modules:

• API: The API is responsible for exposing a RESTful API to the clients and enables two-way
communication between the clients and the UAVs. On the one hand, the web application can
query the database through the API module to retrieve data such as the last telemetry of a UAV
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or retrieve a snapshot of the video stream. On the other hand, clients, if authorized, can also send
commands to the UAV fleet.

• Processing modules: These modules are responsible for processing data coming from the UAV
fleet. Each type of data is assigned to a specific sub-module:

– Streaming: Manages the websocket stream video servers and synchronizes the different
video inputs (UAV streams) with the outputs (video players which are requesting a
given stream).

– Screenshot: Manages the reception of the snapshot resulting from the video stream and its
analysis by OpenCV (by using face-detection algorithms) as well as allows the recording
of streaming information into the database (addresses where UAVs publish their streams,
and the addresses where the web client can retrieve them).

– Telemetry: Processes telemetry data received and stores them in a database.

4. Functional Architecture

4.1. Overview

This section describes the function planes and the hardware needed to implement them (Figure 5).
The central component of the system is the web server, which receives, sends and stores all the sensed
data, user commands, acquired video stream from the UAVs and alerts generated by the mobile devices
through the crowd sensing paradigm.

Figure 5. Functional description of the proposed architecture.

Sensing plane. The overall system of systems developed in this project relies on the readings
from the WSN that focuses on river monitoring. The WSN monitors the water level near the river banks
as well as around important infrastructure, thus performing the basic infrastructural monitoring as
well. If the water level exceeds a certain predefined threshold, an alarm signal is transmitted towards
the web server that can analyze and forward the alarm to other components of the system.

Sensor nodes that are used in the project are Digi XBee enabled ready-to-use sensors, which
come in plastic casings, are battery powered and integrate acceleration, temperature, luminosity and
humidity sensors. The communication modules integrated in these sensors is the Digi 868 RF protocol
that operates on 868 MHz and that is characterized by 1–4 km of communication range with up to
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80 kbps data rate. Data emitted by the sensors are collected at the sensor gateway (Digi ConnectPort
X2) and transmitted, in normal operating mode, towards the web server through a 5G dedicated link.

The second part of the sensing plane comprises the smartphones used by the people that happen
to be around the disaster area. By using the pre-installed mobile emergency application, they have
the possibility to participate in disaster alarm and sensing by sharing their view on the disaster.
The application installed on the smartphones allows regular users to report the incident, and send the
incident report together with its exact location to the web server.

Control plane. The control plane represents the part of the system that is dedicated to the main
users of the system: the emergency responders, who can use fixed or portable computer as well as
mobile phones to connect to the central component of the system, the web server. The web server
should have the capabilities of storing and analyzing the data that are fed by the WSN and displaying
this information in human readable form. Besides the information sent by the sensor network, it
should also integrate the information acquired by the crowdsensing platform. Mobile devices provide
the platform with the location and information on events happening around the places of interest
that the emergency responder should be able to consult and extract. If the need for the actuation is
recognized, the responder sends a request for a UAV to move to the hit area. The available UAV then
establishes the connection and video stream towards the emergency responder, who should have the
complete control over it.

Actuation plane. After the responder’s request has been received, the UAV server activates the
UAVs, and establishes the video stream towards the user via the web server. All video, video analysis
and control messages are transferred by the UAV server. The goal of the UAV server is to overview
the set of available drones and to observe the state of the active drones, besides transmitting all the
information to and from the web server. The replacement drones are also under control of the UAV
server in order to provide the uninterrupted service offered to the user. In the moment of replacement,
the most important point is the handoff of the control signals and the video stream from the active to
the replacement drone. After the handoff has been done, the replacement drone becomes the active
one and the previously active drone returns back to the charging station to recharge its battery.

4.2. Sensor Integration and Visualization

The WSN is implemented using the available battery-powered wireless sensors with integrated
capability of acceleration, temperature, humidity and light sensing. All the individual sensors in the
network are programmed to periodically transmit their sensor readings and forward them towards the
collection point—a WSN gateway that is connected to the dedicated web server for information storage.

Sensors that are used for this particular application are Digi XBee LHT sensors with integrated
XBee 868 MHz communication modules. Their sampling frequency and message routing are easily
configured using the dedicated GUI. Additional water presence/level sensor should be added on one
of the available analog pins on the sensor board. The acquired data are transmitted towards the WSN
gateway Digi ConnectPort X2. The setup of the gateway is done in a Python script, with the goal to
assemble all the sensor readings, format them and transfer them towards the web server through the
Ethernet port.

The main goal of the implemented WSN visualization application is to show the measurements
provided by the WSN. The Digi XBee LHT sensors are equipped with a temperature, humidity and
ambient light sensor modules, which are configured to measure these values periodically and send
them towards the collection point (Digi XBee sensor gateway). When the application is launched,
it retrieves all the sensors readings from the web server. The map integration allows the user to see the
geographical distribution of the measurements. Three buttons, T, H, and L, represent the particular
physical value that is being displayed (temperature, humidity, and ambient light; Figure 6).
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Figure 6. WSN visualization application.

Therefore, when a user presses the T button, the application would display the geographical
distribution of temperature readings (Screen 1), or the humidity readings when the button H is pressed
(Screen 2). The simple web server implementation includes the verification of measure values to attach
the warning field to the retrieved measurement. This warning field is used by the application in
order to display a warning message and the value of the measurement that surpassed the predefined
threshold. Values that are out of the normal value range are displayed together with other values, but
in a different color or shape (Screen 3).

4.3. UAV Network Integration

The architecture of a mobile UAV server with the goal of controlling the UAV network is presented
in Figure 7. In conjunction to the server, a specialized application dedicated to the control of a fleet of
Unmanned Aerial Vehicles (UAVs) is developed as well.

Figure 7. Architecture of the UAV server.
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Usually, the control of a fleet heavily relies on controlling individual UAVs, where each UAV
has its own dedicated operator. That solution introduces an important scalability issue in the case
where a network of UAVs needs to be used. The approach described in this article relies on the
implementation of advanced UAV deployment algorithms based on real-time neighborhood discovery
and virtual force deployment. In this case, a fleet of autonomous UAVs needs only a common target
to optimally deploy, without the need for individual operators. When the target has been defined
and transmitted to the fleet, UAVs autonomously deploy and cover the target, while offering their
video streams to the fleet controller (the user of the application). The controller can then connect to
any of the individual video streams, while dynamically changing the position and viewpoint of the
target. The application provides the simultaneous snapshot ability, i.e., provides the possibility to
gather the camera snapshots from all the UAVs in the fleet in the same moment. These instantaneous
snapshots from different angles are then uploaded to the web server, and used for the 3D point cloud
construction. The application sends its requests towards the dedicated UAV server, and therefore does
not directly control the individual UAVs but only provides the common target to the fleet as a whole.

The application comprises two visual segments (Figure 8):

• Control/streaming area (upper part of the screen): The controls and the video streaming are
displayed in this segment.

• Map area (lower part): This segment is used for the graphical representation of the real-time fleet
deployment.

The fleet control application is related to the crowdsensing application (Section 4.4) with the
same capability of connecting to the web server in the initialization phase, and displays the reported
accident map in the map area of the application (Figure 8, mockup of Screen 1).

Figure 8. Fleet control application.

After analyzing the accident map displayed in the map segment of the main screen, the operator
should proceed by setting up the fleet target by pressing the TARGET button. Without the target
being initially set up, all other command buttons should be disabled by default. By pressing the
TARGET button, the main user proceeds to setting up the target position, viewpoint and the coverage
perimeter (mockup of Screens 2 and 3). Target setup is essential for the control of a fleet as a whole,
since the deployment algorithm installed in each individual UAV relies on the common target position,
the desired viewpoint and the coverage perimeter (distance from each individual UAV towards and
the common target). The formation around the target position is inspired by the work in Ref. [15].
The meaning of each of these terms is illustrated in Figure 9.
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Figure 9. Fleet control illustration.

The target setup (including the target position, viewpoint and perimeter) is easily executed by
changing the position of the two position markers representing the target position and the viewpoint
(Figure 10). Their mutual distance represents the coverage radius that defines the coverage perimeter.
Map zoom is provided by default after the maps integration. When the operator is satisfied with the
target placement, all information regarding the target is sent towards the UAV server after the button
SET is pressed (Figure 8, mockups of Screens 2 and 3).

Figure 10. Fleet target setup.

After the target has been set following the previous steps, the user has the option to start the
mission by pressing the button START MISSION. The default fleet of UAVs assumes the use of
six autonomous UAVs, however their number can be changed by pressing the buttons + and −,
which informs the UAV server about the desired number of UAVs in the fleet, and displays the current
number of UAVs on the screen (Figure 11, mockup of Screen 4). After the mission has started and
the UAVs in the fleet have been deployed to their desired positions (defined by the target, viewpoint
and coverage perimeter), their received individual geolocations are displayed in the map segment.
Besides reporting its real-time geolocation, each individual UAV opens a video streaming channel, that
a responder can connect to. Each individual streaming ID is directly related to the UAV IDs displayed
in the map segment during the fleet deployment (Figure 11 mockup of Screen 5). A responder can
visualize a video streaming both by clicking to a video stream channel offered in the control/streaming
segment of the application, or by pressing any of the UAV markers in the map segment. After the video
stream is chosen either by clicking on one of the stream buttons or on an individual UAV marker, the
chosen video stream is displayed in the control/streaming segment of the application (Figure 8 mockup
of Screen 6). By pressing the button in the upper left corner of the streaming segment, responders can
close the video streaming and get back to the application main screen.
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Figure 11. Fleet control application.

While the video stream is being displayed, the responder can change the position of the target
by clicking on the target marker. A press on the target marker hides the UAV markers and displays
the viewpoint market, thus allowing the change of target parameters even when the fleet is airborne.
After the responder is satisfied with the target change, another press on the target marker hides the
viewpoint marker and displays back the UAV markers (and their ID numbers). In both the control and
streaming segments of the application screen, the responder has the option of synchronized camera
snapshot (by pressing the SNAPSHOT button on the control, or the camera button on the streaming
screen). Synchronized snapshot ability allows the responder to gather instantaneous photo collection
from all the UAVs in the fleet. This set of snapshots is transmitted and stored on the web server,
for the later use in order to generate a 3D point cloud of the covered target. The mission can be ended
by clicking on the END MISSION button in the control segment. After the button has been clicked,
a request for mission termination is sent towards the UAV server, which guides the fleet towards their
collection point.

4.4. Crowdsensing Integration

The crowdsensing application allows smartphone owners to easily report the accident
(via appropriate user interface) to the dedicated web server, so that the map of the accident can
be created and shared with other users. This application also supports the visualization of the accident
and flood occurrence distribution, as well as the alarm in the case the user happens to be in close
proximity to the previously reported accident or a flood occurrence. The application allows the user to
send a urgent help request that dispatches UAVs to its geographical location.

The mockup of the application screens is presented in Figure 12. The main screen (Figure 12,
Screen 1) allows the user to easily report the accident by pressing the ACCIDENT_REPORT button.
After the button is pressed, the application gathers the device’s localization information and shows
Screen 2. By pressing the button SEND_REPORT, the application sends the accident report message
to the web server. The accident report message sent to the server includes a set of basic predefined
accident properties (e.g., perimeter, duration, etc). Optionally, a short text message and/or a photo of
the accident can be added and sent together with the accident report. Running a background process,
the application should periodically poll the server for changes in the list of accidents, which is used for
the accident alarm and the accident map. After checking the device’s location, if the device is located
within the perimeter of any of the accidents, the application launches the alarm, as shown in Screen 3.
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The alarm screen offers the VIDEO_STREAM and HELP buttons, with the same functionality of the
buttons from the main screen.

Figure 12. Crowdsensing application.

During the application initialization, it connects to the main server to retrieve the list of previously
registered accidents.

Clicking on the button ACCIDENT_MAP launches application Screen 4 (Figure 13), where the
geographical distribution of reported accidents is presented with the maps integration.

Figure 13. Crowd sensing application.

Button HELP gets the device’s location and sends two messages to the server: (1) accident report
with current location; and (2) the drone request with its current location. It is intended to be used in
the emergency situations where an application user needs help and requests a drone to be dispatched
to its location. The button SEND_HELP makes use of the same maps integration screen developed
for the ACCIDENT_MAP functionality, but extends it with a possibility to pin a location on the map.
It launches Screen 5, where a user can pin the desired location, which allows him to report an accident
on a different location than its own, and to dispatch a drone on the desired location. The button
SEND_HELP on Screen 5 sends the same two messages as by pressing the HELP button on the main
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screen, the difference is in the geographical location sent to the web server. Advanced functionality
of the application represents the possibility of a real-time video streaming. By clicking on the button
VIDEO_STREAM, the phones camera is activated, the application shows Screen 6, it establishes a
video streaming channel and it registers it on the web server.

4.5. Web Server

The web server contains a database with all the information about users, their activity logs,
the information about available and replacement drones, as well as the information provided by the
WSN. Furthermore, the server keeps all the information about the availability of UAV servers and
active UAVs (available UAVs on each server). The server script allows the transmission of control
messages from the responders and transmission of video stream from the active drone back towards the
responder. The exchange of the web server with the different components of the proposed architecture
is illustrated in Figure 14.

Figure 14. Web server structure.

5. Architecture Implementation

This section first introduces the technologies chosen for implementing the software of IMATISSE
into a proof of concept system. Then, it presents the role they have into the proposed architecture.
Finally, it introduces the encoding/decoding algorithms that play an important role in providing low
latency and high quality multimedia transmission.

5.1. Chosen Technologies

It is worth noting that the technologies chosen to implement the proof of concept system have
been selected after an accurate study of the existing technologies to use those that would allow a
smooth integration in a larger 5G IoT ecosystem. The technologies chosen for the proof of concept
system are the following:
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• Communication library: ZeroMQ (http://zeromq.org);
• Data transmission format: Flatbuffers (https://google.github.io/flatbuffers/);
• Database and data visualization: ElasticSearch (http://elasticsearch.org) and Kibana (https:

//www.elastic.co/products/kibana);
• Programming languages: NodeJS (https://nodejs.org) and Golang (https://golang.org);
• Image processing library: OpenCV (https://opencv.org); and
• Video encoding/decoding library: FFmpeg (https://www.ffmpeg.org) and JSMpeg (http://

jsmpeg.com).

ZeroMQ is a high-performance asynchronous messaging library, aimed at use in distributed
or concurrent applications. It provides a message queue, but, unlike message-oriented middleware,
a ZeroMQ system can run without a dedicated message broker.

FlatBuffers is an efficient cross platform serialization library and it was originally created by
Google for performing critical applications. What makes FlatBuffers special is that it represents
hierarchical data in a flat binary buffer, in such a way that it can still be accessed directly without
parsing and unpacking, while supporting data structure evolution. FlatBuffers require only small
amounts of generated code, and just a single small header as the minimum dependency, which is very
easy to integrate. According to benchmarks, it is lighter than JSON.

ElasticSearch is a distributed search engine based on Apache Lucene. It has become one of the
most popular search engines, and is commonly used for log analytics, full-text search, and operational
intelligence cases. When coupled with Kibana, a visualization tool, ElasticSearch can be used to provide
real time analytics using large volumes of log data. ElasticSearch offers REST API, a simple HTTP
interface, and uses schema-free JSON documents making it easy to index, search, and query data.

FFmpeg is a multimedia framework, able to decode, encode, transcode, multiplex and stream
multimedia flows. It supports the most obscure ancient formats up to the cutting edge. It is also
highly portable—FFmpeg compiles and runs under a wide variety of build environments, machine
architectures, and configurations.

JSMpeg is a video player written in JavaScript that consists of MPEG-TS demuxer, MPEG1 video
and MP2 audio decoders, WebGL and Canvas2D renderers and WebAudio sound output. JSMpeg
can load static videos via Ajax and allows low latency streaming via web sockets. It can work in any
modern browser (Chrome, Firefox, Safari, and Edge). JSMpeg can connect to a web socket server that
sends out binary MPEG-TS data. When streaming, JSMpeg tries keeping latency as low as possible—it
immediately decodes everything it has, ignoring video and audio timestamps altogether.

OpenCV (Open Source Computer Vision) is a library of programming functions mainly aimed at
real-time computer vision for all operations related to image processing. The library is composed of
around 3000 algorithms, including sets of both classic and cutting edge computer vision and machine
learning algorithms. These algorithms can be used to detect and recognize faces, identify objects,
classify human actions in videos, track camera movements, track moving objects, and extract 3D
models of objects. The architecture proposed in this paper relies on this technology due to its richness
in the algorithms it offers.

As described in Ref. [16], there are three ways of communicating between software blocks, using
a database, services, or messages.

In our architecture, we use the following three methods:

• Communication through a service is used between the API module and the clients.
• Communication through a database is used between the API module and the

Processing submodules.
• All other communication uses messages with ZeroMQ.

Encoding protocols is also described in depth in Ref. [16]. In this part, we explain which data
encoding technologies we chose for each block, by describing their general usage and their use in
our implementation.

http://zeromq.org
https://google.github.io/flatbuffers/
http://elasticsearch.org
https://www.elastic.co/products/kibana
https://www.elastic.co/products/kibana
https://nodejs.org
https://golang.org
https://opencv.org
https://www.ffmpeg.org
http://jsmpeg.com
http://jsmpeg.com


Sensors 2018, 18, 3814 15 of 27

The system implements a multimedia server in NodeJS that offers an access point available to
UAVs allowing them to send their video streams, and an access point to allow web clients to retrieve
the stream. With this method using the publisher/subscriber pattern, the server automatically manages
the different UAVs in a completely independent and transparent way (Figure 15).

Figure 15. Multimedia transmission architecture.

5.2. Comments on Fault Tolerance

The autonomy of UAVs in the system facilitates two aspects of fault tolerance:

• Error confinement with the isolation of the suspected faulty node preserves the system reliability.
• System readjustment gives nodes adaptability capacities that ensure the continuation of the

service in the case of loss of some nodes.

As the components of the system must operate autonomously, the software architecture must
show a high level of decomposition for the nodes to have well identified services. For example, the
UAV emitter only takes care of sending information and video streams while the screenshot unit deals
only with snapshot and image processing.

Security-wise, the Mavlink protocol offers a 12-round RC5-based message encryption. Such encryption
is considered efficient for text up to 244-bit length. Mavlink security issues are tackled extensively
in Refs. [17,18]. FlatBuffers messages are binary-encoded but not encrypted by default. Thus, we
need to encrypt messages with a symmetric key, which can encrypt itself with an asymmetric key.
RSA encryption is recommended for its reliability.

5.3. Comments on the UAV Usage

Several practical implementation issues arise in the case of the combined usage of UAVs with
sensor and smartphone network. One of the most evident issues is the energy consumption and
the autonomy of a UAV. Average commercial UAVs achieve the autonomy of about 10–20 min of
airborne operation, depending on the computational load and the weight of the payload a UAV carries.
Taking into account the energy consumption issues, we propose the implementation of the automatic
handover algorithm for continuous operation of UAVs [14].

Another important issue is the possible UAV collisions or failures during the operation in a
fleet. This issue is usually resolved by implementing a fleet formation algorithm that includes the
repulsive virtual forces among the neighboring UAVs. Taking into account that each UAV executes
a periodic broadcast of its location and status in the network, all the neighboring UAVs that receive
the information can calculate the repulsive movement forces that would avoid the collision with each
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other. Furthermore, a minimal safety distance among the UAVs needs to be defined prior to the UAV
fleet deployment. To address the failure issues and keep the fleet functional, we advocate the usage of
distributed multi-robot deployment algorithms [19] that can automatically reconfigure the fleet even
with multiple simultaneous UAV failures.

6. Performance Evaluation

In this section, we perform video streaming and telemetry data transmission performance
evaluation, for the cases with and without simulated network disruptions.

6.1. Video Streaming Performance

This section provides measurements of the streaming quality of our prototype in its conditions of
use. As far as the streaming latency is concerned, these tests can help determine the difference of clock
with respect to the display produced by video streaming.

For video player management, we tested two configurations: (1) video players are in separate
web clients; and (2) video players are inside the same web page. Each configuration is tested with {1, 2,
3, 4, 5, 10} clients. Table 1 shows the results for Configuration 1, while Table 2 shows the results for
Configuration 2. The latencies in both tables are expressed in seconds.

Table 1. Test results for Configuration 1: Video players in separate web clients.

Number of Clients 1 2 3 4 5 10

Latency (s) 0.27 0.28 0.25 0.26 0.42 1.41

Table 2. Test results for Configuration 2: Video players in the same web client.

Number of Clients 1 2 3 4 5 10

Latency (s) 0.24 0.28 0.27 0.39 0.53 2.3

We observe fairly similar results for both configurations. Indeed, for both, the latency is not
perceptible until the first five viewers. However, for many video players, the latency is much more
noticeable in Configuration 2. We are convinced this is due to the JavaScript nature of the video player
and the web page obviously has more work in its background process. Note that these tests were made
with a video resolution of 640 × 480 px but some tests with video resolution of 1280 × 960 px showed
similar results.

Furthermore, a disadvantage of JSMpeg comes from its use of canvas element. While the web
page is not displayed by the browser, the page content is not rendered (even though background tasks
such as video retrieving continue to progress). It is only when we come back to the web page that the
content of the canvas is changed, which produces an extra latency by displaying in canvas all previous
stored data.

6.2. Data Architecture Performance

As we are bound by resource constraints and our intent is to smoothly integrate our architecture
in a 5G IoT context, which will make massive use of virtualization techniques, we started virtualizing
the software architecture. Indeed, we used a virtual test environment to assert the proper functioning
of the architecture. The first thing we had to do is to virtualize each part of the architecture into a
virtual machine. Instead of using virtual machines, we used containers with Docker (https://www.
docker.com).

In place of virtualizing the entire OS, the kernel is shared across containers, thus reducing the
load on the host machine. This enables us to start a high number of containers with a reduced resource
consumption compared to an equivalent number of virtual machines.

https://www.docker.com
https://www.docker.com
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The following step is to setup a virtual network for the containers. We create and manage
the network between containers also with Docker. Moreover, Docker also associates a container
name to a DNS name into the virtual network, thus allowing for an easy network communication
between containers.

As we wanted to test the architecture in an unstable networking context, we needed a tool to
simulate errors on the virtual network. We chose Pumba (https://github.com/alexei-led/pumba),
a network emulation tool for Docker. This open-source tool helps us simulate an unreliable network
by letting us introduce lag, packet loss, or rate limitation into a virtual network between containers.
Usage and setup of this tool are further described in Section 6.3.1.

Through the mentioned setup, we measured the performance of the following output parameters:
network latency, bandwidth, CPU and RAM usage. The main focus of this architecture validation is
the telemetry streaming from the drones to the server.

To measure latency, we use a timestamp contained in telemetries sent by the drones containers.
Then, the telemetry is received by the server, which will log every telemetry received into a log file.
This log contains the following information per telemetry received: drone ID, router ID, timestamp of
the telemetry’s creation, timestamp of the telemetry’s reception by the server. Thus, we can measure
the latency l as l = Treceived − Tsent.

To measure bandwidth usage, we quantify the network transmission (Tx) and network reception
(Rx) of each container composing the architecture.

In theory, we can calculate the following values, with n equal to the number of drones for one
router, and m equal to the number of routers for a server:

Txrouter j = Rxrouter j

Rxrouter j =
n

∑
i=1

Txdrone i

Rxserver =
m

∑
j=1

Txrouter j

We use random generated telemetry messages with an identical size to the “real” telemetries.
Thus, we have an idea of the network consumption of the architecture.

While results may be biased by the multiple debug settings enabled on each program, they still
give us a rough idea of the CPU/RAM usage of the architecture. These results will be particularly
interesting for the drones and the server program. The former has to run on computers with a
low energy consumption, thus a low CPU/RAM usage is mandatory for an effective usage on
drones. Hence, we provide CPU/RAM usage for each component of the system—drone, router
and server—when running the scenario with the highest load—namely, when drones are sending data
at a 24 Hz update rate.

6.3. Configuration Settings

In the previous subsection, we described how we measure each performance parameter. In this
subsection, we describe the different configuration settings we can make use of. We can modify the
following settings:

• The data rate sent by drones
• The amount of drones
• The network’s quality

According to Calhoun et al. [20], the update should be the highest possible. More precisely, the
following values should be used:

• 4 Hz as a minimum;
• 6 Hz or 10 Hz if resources are limited; and

https://github.com/alexei-led/pumba
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• 24 Hz as an optimal value;

Therefore, we conducted our test with the following update rate values: 4 Hz, 10 Hz and 24 Hz.
As stated by Erdelj et al. [5], in an ideal case of continuous coverage of a Point of Interest, a user

would need four drones running a scheduling algorithm. Thus, we simulated two fleets composed of
four drones, i.e. four drones for one router, and two routers for one server.

6.3.1. Configuration for Network Disruption Tests

As explained before, we can simulate a degraded network, which permits us to test situations
closer to reality. The goal is not to realize a resilience test. Rather, we want to quantify how the
architecture behaves in presence of an erratic network. Hence, we use the minimal configuration for
testing, with a 4 Hz update rate.

We present the test configurations in Table 3.

Table 3. Test configurations.

Configuration Data Rate Drones per Router Routers Notes

1 4 Hz 4 2 Minimal fleet
2 10 Hz 4 2 Medium rate fleet
3 24 Hz 4 2 High rate fleet

1b 4 Hz 4 2 Minimal unstable network
3b 24 Hz 4 2 High unstable network

Figure 16 presents the test architecture for all tests.

Drone 1

Drone 2

Drone 3

Drone 4

Drone 5

Drone 6

Drone 7

Drone 8

Router 1

Router 2

Server

Telemetry @ {4, 15, 24} Hz

T
elem

etry

Telemetry @ {4, 15, 24} Hz

T
el

em
et

ry

Architecture for test
configurations 2, 3 and 4

Figure 16. Test architecture for configurations.
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6.4. Results with No Network Disruption

In this section, we focus our attention on tests with no network disruption. The latter case is
addressed in the next subsection.

Table 4 shows the results for each configuration. Latency is expressed in milliseconds.

Table 4. Bandwidth usage.

Configuration Data Rate Median Latency Max Latency Min Latency Notes

1 4 Hz 3 ms 460 ms 0 ms Delayed start
2 10 Hz 3 ms 6152 ms 0 ms Delayed start
3 24 Hz 4 ms 1016 ms 0 ms No delayed start

The results with the Delayed start comment denotes that the high value of the max latency is due
to a delayed start between the router and the drones. More precisely, if a router is down, the data
sent by a drone are cached while the router is down, hence the high latency. A unusual high value
of latency means that the telemetry was sent before the router was ready to operate. We can see that
increasing the data rate to 24 Hz does not worsen significantly the latency. However, we ran these tests
using a perfect virtual network, that is a network with no disruption; we compare these results with
those obtained with an unstable network.

We compared the configuration with the lightest load (Configuration 1) with the configuration
with the heaviest load (Configuration 3). Figures 17–19 show the results for each component for
Configuration 1.

Figure 17. Bandwidth usage for a drone with Configuration 1.

The approximative value of bytes emitted by a drone is 1200 with an update rate of 4 Hz.

Figure 18. Bandwidth usage for a router with Configuration 1.

The approximate value of bytes received and transmitted by a router with four drones is 7250
with an update rate of 4 Hz.
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Figure 19. Bandwidth usage for a server with Configuration 1.

The approximate value of bytes received by a server with two routers is 10,000 with an update
rate of 4 Hz.

Results for Configuration 1 are summarized in Table 5.

Table 5. Bandwidth usage for Configuration 1.

Component Usage Notes

Drone 1200 bytes TX Only
Router 7250 bytes TX & RX
Server 10,000 bytes RX Only

Figures 20–22 show the results for each component in Configuration 3:

Figure 20. Bandwidth usage for a drone with Configuration 3.

The approximate value of bytes emitted by a drone is 7000 with an update rate of 24 Hz.

Figure 21. Bandwidth usage for a router with Configuration 3.

The approximate value of bytes received and transmitted by a router with four drones is 43,000
with an update rate of 24 Hz.
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Figure 22. Bandwidth usage for a server with Configuration 3.

The approximate value of bytes received by a server with two routers is 60,000 with an update
rate of 24 Hz.

Results for Configuration 3 are summarized in Table 6.

Table 6. Bandwidth usage for Configuration 3.

Component Usage Notes

Drone 7000 bytes TX Only
Router 43,000 bytes TX & RX
Server 60,000 bytes RX Only

We can note that the total number of data received by the server are multiplied by 6, which is
equal to the amount we multiplied the data rate update by (from 4 Hz to 24 Hz).

The whole virtualized architecture was run on a MacBook Pro 13” late 2013 with the following
technical specifications:

• CPU: 2.4 GHz i5-4258u
• RAM: 8 GB 1600 MHz DDR3
• HDD: 256 GB Solid State Drive

Figures 23 and 24 show the RAM and CPU usage for a drone, with an update rate of 24 Hz.

Figure 23. RAM usage for a drone.

The average RAM usage is around 6.5 MB.
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Figure 24. CPU usage for a drone.

The average CPU usage is around 140 MHz.
Figures 25 and 26 present the RAM and CPU usage for a router, with an update rate of 24 Hz.

Figure 25. RAM usage for a router.

The average RAM usage is around 5 MB.
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Figure 26. CPU usage for a router.

The average CPU usage is around 30 MHz.

Figures 27 and 28 show the CPU and RAM usage for a server, with an update rate of 24 Hz.

Figure 27. RAM usage for a server.

The average RAM usage is around 11 MB. The constantly growing memory usage may be due to
debug logging.
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Figure 28. CPU usage for a server.

The average CPU usage is around 1.430 GHz.

6.5. Results with Network Disruption

Using Configuration 1, where the drones send data at a 4 Hz rate, we tried to simulate a unreliable
network with the following flaws:

• an added delay of 500 ± 200 ms randomly distributed over the routers; and
• a 10% packet loss based on a Bernoulli independent model on the routers.

Figure 29 shows the packet loss simulated on a router.

Figure 29. TX/RX difference with packet loss.

We also calculated the median latency: from 3 ms, we now have 616 ms. While this is mainly due
to the hard 500 ms of latency added, it is still interesting to see how the architecture behaves when
the network conditions are not stable. Figure 30 shows the latency for each received telemetry on a
unstable network.
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Figure 30. Latency when using an unstable network.

6.6. Drawbacks and Directions for Improvement

The main drawback of our software architecture lies into the server and its database, as there is
only one server for n drones. A way to improve this is to transform the server and the database into a
scalable Docker service, enabling multiple instances of the server to run. However, such scaling also
gives rise to other issues, such as replication and inconsistency.

These issues are out of scope of this paper, but are tackled in the literature [16]. The other main
drawback is represented by the quality of the network. Indeed, the latency mainly depends on the
quality of the network rather than the number of data transmitted. Thus, to ensure the practical usage
of the architecture, we first have to ensure a good quality of the network.

7. Conclusions

This paper introduces a novel architecture for disaster management, composed, for the first time,
of: sensors, UAVs, and crowdsensing devices. The paper presents a detailed characterization of each
component as well as an overview of the technologies useful for building a system architecture for
data and video streaming with UAVs. It also details the design and implementation of such a system
by properly selecting the right technology and characterizing the perceived and real information flows.
The proposed architecture has been implemented in a first testbed as an output of two research projects,
and has been validated and assessed for proper functioning and performance evaluation. The paper
determines the main weak points of the architecture, and considers the possibility to implement it in a
larger 5G IoT ecosystem by using virtualization.
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