
State-of-the-Art Machine Learning Techniques Aiming to Improve
Patient Outcomes Pertaining to the Cardiovascular System
Rahul Kumar Sevakula, PhD;* Wan-Tai M. Au-Yeung, PhD;* Jagmeet P. Singh, MD, PhD; E. Kevin Heist, MD, PhD; Eric M. Isselbacher, MD,
MSc; Antonis A. Armoundas, PhD

W ith the digitization of all records and processes, and
prevalence of cloud-driven services and Internet of

Things, today’s era can truly be considered as an era of data.
Machine learning (ML) and artificial intelligence (AI) skills are
among the most sought-after skills today. McKinsey Global
Institute research suggests that 45% of workplace activities in
corporations could be automated with current technologies;
80% of that is attributable to existing ML capabilities, and
breakthroughs in natural language processing could further
the impact.1 Gartner forecasts that large-scale data-driven
analytics could lead to huge benefits in health care; in the
United States, where healthcare spending is 18% of gross
domestic product, up to US$600 per person could be saved
annually. Gartner also forecasts that data-driven insights for
demand-supply matching could create an economic impact of
$850 billion to $2.5 trillion.2 International Data Corporation
forecasts that spending on AI and ML will grow to $79.2
billion by 2022, with a compound annual growth rate of 38%
between the 2018 and 2022 period.3

Machine Learning
AI is defined as the study of intelligent agents, which can
perceive the environment and intelligently act just as humans
do.4 AI can philosophically be categorized as strong AI or
weak AI.4 Machines that can act in a way as though intelligent

(simulated thinking) are said to possess weak AI, and
machines that are intelligent and can actually think are said
to possess strong AI. In today’s applications, most AI
researchers are engaged in implementing weak AI to
automate specific task(s).4 ML techniques are commonly
used to learn from data and achieve weak AI. ML involves the
scientific study of statistical models and algorithms that can
progressively learn from data and achieve desired perfor-
mance on a specific task. The knowledge/rules/findings
inferred from the data using ML are expected to be nontrivial.
Therefore, ML can be used in many tasks that need
automation, and especially in scenarios where humans cannot
manually develop a set of instructions to automate the
desired tasks. Deep learning (DL) is a subfield of ML, which
focuses on learning data representations with computational
models composed of multiple processing layers.5 Figure 1
shows a commonly used diagram to illustrate the relationship
between AI, ML, and DL.

ML can be broadly categorized into supervised learning,
unsupervised learning, semisupervised learning, reinforce-
ment learning, and active learning tasks.6 Supervised learning
is the task of learning a function that maps input data to
target labels. It is provided with a labeled training data set.
These problems can be further categorized into problems of
regression and classification. When target variables are
continuous real number values, the supervised learning task
(s) are known as regression problems, and when the target
variables are categorical variables, the tasks are known as
classification problems. Common supervised learning algo-
rithms include linear regression,7 logistic regression (LR),8

decision tree,9 random forest (RF),10 support vector machine
(SVM),11 k-nearest neighbors (KNN) and artificial neural
network (ANN). RF and SVM are among the most commonly
used algorithms; they are illustrated and explained in
Figures 2 and 3, respectively.

Unsupervised learning is the task of discovering patterns
from a data set consisting of input data without target
labels. Examples of unsupervised learning tasks are (1)
identifying the underlying distribution of data, (2) discovering
natural grouping/clustering within data, and (3) dimension-
ality reduction and the like. Some commonly used
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unsupervised learning algorithms are k-means clustering,
hierarchical clustering, principal component analysis, auto-
encoders, and Parzen windows for density estimation.

Figure 4 illustrates the use of unsupervised learning with a
k-means algorithm. Both semisupervised learning and active
learning deal with situations in which data are partially
labeled. With semisupervised learning, the objectives remain
the same as those of supervised learning; however, the
techniques in this category also use the unlabeled data, and
they attempt to improve over the supervised learning
performance, which uses only labeled data. Active learning
methods are commonly used in situations where manual
annotation of data is expensive. Active learning focuses on
methods that best suggest which unlabeled data are to be
labeled next, so as to attain the desired supervised learning
task with minimum efforts of labeling. Reinforcement
learning is concerned with how intelligent agents learn
and perform actions to maximize a notion of cumulative
rewards.

Typically, an ML pipeline consists of the following steps:
(1) data acquisition, (2) data preprocessing, (3) feature
extraction, (4) feature selection, and (5) supervised/unsuper-
vised/reinforcement learning task. It is believed that for most
objectives, creating an appropriate feature representation is
among the most important steps in an ML workflow/
pipeline.12 Before the introduction of deep learning tech-
niques, feature representations were almost always hand-
crafted by subject matter experts. DL is useful because it can
learn useful feature representations with multiple levels of
abstraction. Many of the original ideas in DL were discovered

Figure 1. This figure illustrates the relationships between AI,
ML, and DL. DL is a subfield of ML, while ML is a subfield of AI. AI
indicates artificial intelligence; DL, deep learning; ML, machine
learning.

Figure 2. This figure illustrates the training on an RF classifier. RF is an ensemble machine learning
algorithm. Let n be the number of trees in the random forest classifier; n different training sets are then
generated using the bootstrapping technique, and for each training set, 1 decision tree is generated. The
ovals in the trees represent the splits, while the rectangles represent the classes. While generating each
tree, the most effective feature out of a random subset of features would be selected to create the splits.
Gini’s diversity index is a commonly used split criterion. During the phase of testing, features of new
samples would be passed along all the trees. Each tree would vote for a decision, and the majority of the
votes would represent the final decision. RF indicates random forest.
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years before they were used for practical applications
because DL tasks can be computationally very expensive.
Availability of cheaper computational resources have played a

significant role in the rise of DL applications. Krizhevsky and
colleagues’13 work stands out in this regard. They were the
first to use graphics processing units for training a DL model,
which in their case was a deep convolutional neural network
(CNN). The significant findings taken from their work were
that (1) graphics processing units can significantly speed up
the learning process; (2) constructing deeper networks can
significantly improve the overall performance; and (3) DL
models are extremely powerful in learning feature represen-
tations, and in many tasks, can provide better performance
than the state-of-the-art custom-built ML models (eg, com-
puter vision,13 natural language processing14). This work
significantly triggered the rise of DL applications and the rise
in development of DL-centric graphics processing units.

To obtain good generalization and desired performance, DL
techniques must preferably be trained on large amounts of
data, which may not always be possible to obtain. Most DL
tasks have 2 steps: (1) pretraining and (2) fine-tuning. In the
pretraining step, DL models attempt to learn the underlying
distribution of data and create feature representations in an
unsupervised manner. In the fine-tuning step, the feature
representations are tuned for the specific task at hand such
that maximum performance is achieved. Since the pretraining
step is an unsupervised step (ie, which does not use
annotations), it provides freedom for DL models to augment
their performance by using data of the same modality but not
pertaining to the relevant data set. The ability to store
knowledge from other problems and apply it to a current
problem is known as transfer learning. DL models are also
notable because they provide convenient methods to perform
transfer learning.

Figure 3. This figure illustrates the SVM binary classification
algorithm, which has been trained over a sample data. Let class 1
refer to the samples belonging to the first class (on the left-hand
side) and class 2 refer to the samples belonging to the other
class. The data points (both class 1 and class 2) which are
encircled/starred, are the support vectors. The support vectors
are those data points that the algorithm identifies to be hardest in
getting correctly classified. The SVM algorithm picks an optimal
hyperplane that maximizes the margins between itself and the
support vectors. SVM indicates support vector machine.

Figure 4. Clustering is a form of unsupervised learning. Clustering is a task of grouping unannotated data into distinct groups, such that
samples of the same group are more similar to each other than those from the other groups. In this figure, unannotated data (data) on the left-
hand side are provided as input to the k-means algorithm with k=3, and the algorithm groups the raw data into 3 distinct clusters, namely cluster
1, cluster 2, and cluster 3, as shown on the right-hand side.
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Deep neural network (DNN), CNN, recurrent neural
network (RNN), and deep belief network are some notable
classes of DL architectures.12 DNN is a feed-forward ANN
with multiple layers. CNN is a variation of DNN, and is
designed to recognize visual patterns directly from pixel
images with minimal preprocessing. CNNs are inspired from
biological processes, such that the organization of neurons
resembles that of the visual cortex of animals. CNNs are
particularly effective in analyzing images as well as sequential
data. RNNs are a class of ANNs in which the network
connections form a directed graph along a temporal
sequence, and the learning algorithm accounts for both the
input data and the past internal states (of hidden nodes).

RNNs work especially well in analyzing sequential data such
as time series or natural text and can capture longer context
(older information) than that of CNNs. Enhanced versions of
RNNs, namely, long short-term memory networks,12 memory
networks,15 attention layers,16 and the like, have been
designed, to enhance the memory retention capability
(retaining older information) of RNNs. CNNs and RNNs are
illustrated and explained in Figures 5 and 6, respectively.
Deep belief network is a probabilistic generative graphical
model, composed of multiple layers of latent variables. Unlike
the other 3 architectures, a deep belief network learns
probabilistic relationships between layers and how these can
reconstruct the input. It should be noted that estimating the

Figure 5. The figure shows a simple CNN meant for classifying images (in this case, images of digits).
Most CNN architectures include (1) convolutional layers, (2) pooling layers, and (3) dense (fully connected)
layers. A convolutional layer typically has multiple filters (similar to the image filters), wherein the filter
weights are allowed to change and learn from the data. Each of these filters is moved across the length and
breadth of the entire image as it is convolved with the image pixel values. It should be noted that these
filters act like feature extractors, and the output (feature maps) obtained after performing the convolution
operation is used as input to the next layer. The pooling layer provides an approach to down sample the
feature maps while summarizing the presence of features, either locally or globally. Also, the pooling layer
acts like a feature detector that helps identify important features and to a certain degree helps in providing
rotational and translational invariance. The dense layer is a fully connected network wherein each neuron
receives input from each neuron of the previous layer. Typically, the dense layer contributes to the greatest
number of learnable parameters (weights and biases) and helps reduce the training error. The sharing of
filters in convolutional layers helps the CNN to avoid overfitting. The network as a whole thus attempts to
achieve low training error and high generalization ability. CNN indicates convolutional neural network.

Figure 6. Illustration of an RNN. xi and yi are the input and output at the ith time step, respectively. In
RNN, the output is dependent on (1) the current input, (2) the output from the previous time step, and (3)
the network weights and biases. In other words, the RNN’s output is dependent on the current and previous
inputs together. This makes RNN suitable for analyzing sequential data. NN indicates neural network; RNN,
recurrent neural network.
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probabilities in a deep belief network is often not an easy task
and can be computationally very expensive.12

As will become apparent below, most studies employ
supervised ML models. An important aspect to be consid-
ered in all supervised ML models is how well they generalize
to the unseen data. It is therefore expected that studies
have clear demarcations on what are the training data and
what are the unseen test data, while the final ML models are
assessed and compared only on the unseen test data. Some
studies may have a third distinct group of data, known as
the validation data. Validation data are generally used for
tuning the hyperparameters of the ML model, before finally
assessing it on the test data. When demarcations on the
training, validation, and test data are missing (completely or
in part), model validation techniques such as cross-validation
techniques are employed. In k-fold cross validation, the
entire data are sampled into k mutually exclusive groups.
From the k groups, k�1 groups are selected for training the
ML model, and the model’s performance is assessed on data
from the remaining 1 group; this procedure is repeated k
times until each of the k groups is used at least once for
model assessment. Leave-one-out cross validation is a
special case, where the value of k equals the number of
data samples; that is, only one sample is used for testing,
and all other samples are used for training. Once the
performances across the k test groups are found, their mean
and standard deviation are commonly reported for model
assessment and comparisons.

AI/ML/DL in Medicine
AI has been around since the 1950s, and it has already
revolutionized industries such as finance,17 transportation,18

and advertising.19 Accordingly, many believe that AI can
significantly and positively support the healthcare industry.20

AI can make health care more accessible and affordable for
the general public, especially in the third-world countries
where there is shortage of physicians.21 With the ever-
increasing accumulation of multimodal and multidimensional
data, the use of AI systems can help draw meaningful insights
and ease the workloads of physicians.22 AI can also be used
to provide second opinions and reduce human errors, as
physicians can suffer from fatigue, inattention, or inexperi-
ence and thus provide wrong diagnoses.23,24

AI has been used for diagnosing cancer25,26 and for mining
patient data such as electronic health records, vital signs, and
genetics,27–35 with the intent to establish new patient
stratification principles, reveal unknown disease correlations,
and provide personalized medicine. The area of drug devel-
opment has also benefited from the use of AI, as AI can help
identify factors that are most predictive of the effectiveness of
a drug.36–39

Weber and Toyama have suggested that AI should develop
intelligence into the existing systems/institutions, rather than
starting from scratch, or hoping to replace the existing
systems.40 Furthermore, AI/ML has many hopes in contribut-
ing to health care in resource-poor settings.41 Gartner et al42

used ML techniques, namely, SVM and Bayesian models, for
predicting diagnosis-related groups and then used the
predictions to allocate scarce hospital resources. Use of
these methods led to improved use of operating rooms and
beds. ML and natural language processing techniques have
been used for surveillance and outbreak predictions using
data from electronic health records and online/social
media.41 AI-based planning is also expected to help improve
scheduling the travel of community health workers across
multiple homes and communities.41

The main body of this article focuses on the state-of-the-art
ML methods used for improving cardiovascular outcomes in
patients with cardiac disorders.

ML in the Cardiovascular System
There has been considerable research in using ML to improve
cardiovascular outcomes in patients. We have reviewed and
categorized the research into 5 application areas, namely, (1)
imaging43–50 (8 studies), (2) electrocardiography51–68 (18
studies), (3) in-hospital monitoring69–78 (10 studies), (4)
mobile and wearable technology79–89 (11 studies), and (5)
precision medicine90–99 (10 studies). Each of these categories
has been further divided into 2 subsections, namely, (1)
diagnosis and disease classification, and (2) risk prediction
and patient management.

Imaging
Diagnosis and disease classification

Narula et al43 developed an ensemble ML model of 3
classifiers (SVM, RF, ANN) to automate the discrimination
of hypertrophic cardiomyopathy from physiological hypertro-
phy in athletes, using speckle-tracking echocardiography
data. The authors worked on a cohort of 139 male subjects
with 77 verified athlete cases and 62 verified hypertrophic
cardiomyopathy cases. Information gain was used for feature
selection, and the volume, mid–left ventricular (LV) segmental
longitudinal strain, average longitudinal strain, and mid-LV
segmental radial strain, were identified as the best predic-
tors. The authors claimed that the ML model with speckle-
tracking echocardiography–based parameters demonstrated
a diagnostic ability comparable to that of the conventional 2-
dimensional echocardiographic and Doppler-derived parame-
ters used in clinical practice.

Sengupta et al44 developed a cognitive ML classifier called
associative memory classifier (AMC), which can integrate both
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the clinical data and the imaging data for use in discrimination
of cardiac abnormalities. The AMC’s use was validated on the
problem of distinguishing patients with constrictive pericardi-
tis from those with restrictive cardiomyopathy. AMC and other
ML models were trained on data belonging to a cohort of 50
patients with constrictive pericarditis, and 44 patients with
restrictive cardiomyopathy. The AMC with 15 speckle-tracking
echocardiography variables was able to make the discrimina-
tion with an area under the curve (AUC) value of 0.892, and
this performance improved to 0.962 when 4 additional
echocardiographic variables (e0, E/e0, interventricular septum,
and posterior wall thickness of the left ventricle) were used by
the AMC. The authors also found that the AMC performed
better than other classifiers, namely, RF, SVM, KNN, and
neural networks.

Recognizing the views in echocardiography is an essential
first step for computer-assisted interpretation. Madani et al45

employed DL to distinguish the standard views in echocar-
diography. The authors trained a CNN to simultaneously
classify 15 standard views (12 video views and 3 still images)
based on the annotated still images and videos from 267
transthoracic echocardiograms. The CNN achieved an overall
test accuracy of 97.8% in classifying the 12 video views. On
low-resolution single still images from all 15 views, the DL
model managed to correctly classify the views with 91.7%
accuracy; in comparison, the board-certified echocardiogra-
phers in the study could achieve accuracies of only 70.2% to
84.0% with the still images.

Attia et al46 used DL to identify asymptomatic LV
dysfunction in patients. They used 12-lead ECG and echocar-
diographic data (to compute LV ejection fraction) from
44 959 patients at the Mayo Clinic to train a CNN and
identify patients with ventricular dysfunction using the ECG
data alone. Patients with LV ejection fraction below 0.35 were
identified to have asymptomatic LV dysfunction on an
independent data set of 52 870 patients with an AUC,
sensitivity, specificity, and accuracy of 0.93, 86.3%, 85.7%,
and 85.7%, respectively.

DL has also been applied in cardiac magnetic resonance
imaging. In a study published in 2016, Avendi et al used DL
algorithms and deformable models together, to perform
automatic segmentation of the left ventricle (LV) from cardiac
magnetic resonance imaging data sets. The data of the Medical
Image Computing and Computer Assisted Intervention Society
2009 challenge was used for validation and comparisons.47

CNNswere employed to automatically detect the LV chamber in
the magnetic resonance imaging scan, and then stacked
autoencoders were used to infer the LV shape. The inferred
shape was then incorporated into/within deformable models,
to further improve the accuracy and reliability of the segmen-
tation. The combined DL and deformable model approach was
found to outperform the prevalent state-of-the-art methods.

Risk prediction and patient management

With respect to risk factors, a study by Motwani et al48

showed that ML methods gave higher AUC value in predicting
all-cause mortality in patients undergoing coronary computed
tomographic angiography, as compared with the Framingham
risk score or the coronary computed tomographic angiogra-
phy severity scores.

In another study, Poplin et al49 trained DL models to make
quantitative predictions of popular cardiovascular risk factors
(CRFs) using retinal fundus photographs. The CRFs were age,
sex, smoking status, systolic blood pressure (BP), and major
adverse cardiac events. The authors trained the DL models
over retinal fundus images from 48 101 patients of the UK
Biobank and 236 234 patients of EyePACS, and tested the
models on retinal fundus images from 12 026 patients of the
UK Biobank and 999 patients of EyePACS. On testing with the
UK Biobank test data, the proposed DL models were found to
predict the (1) age with mean absolute error of 3.26 years
(95% CI, 3.22–3.31) where CI refers to confidence interval, (2)
sex with AUC of 0.97, (3) smoking status with AUC of 0.71,
(4) systolic BP with mean absolute error within 11.23 mm Hg
(95% CI, 11.18–11.51), and (5) major adverse cardiac events
with AUC of 0.70.

In another study, Wang et al50 developed a coronary artery
disease risk marker, wherein they used DL for detecting
breast arterial calcifications from mammograms. They used a
12-layer CNN to discriminate breast arterial calcification from
non–breast arterial calcification, and a pixelwise, patch-based
procedure was applied for breast arterial calcification detec-
tion. The performance was evaluated using a set of 840 full-
field digital mammograms from 210 cases, using both free-
response receiver operating characteristics analysis and
calcium mass quantification analysis. Application of CNN in
free-response receiver operating characteristics analysis
provide a detection performance which was similar to that
of the human experts.

Electrocardiography
Diagnosis and disease classification

Electrocardiography is a noninvasive way of measuring the
electrical activity of the heart. Ever since the 2000s, there has
been a fair amount of research to classify normal and
abnormal heart rhythms in the ECG using ML algorithms.51–58

The most common ML algorithms used here have been the
linear discriminant analysis, ANN, and SVM.

For example, Li et al59 used SVM to detect life-threatening
arrhythmias ventricular fibrillation and ventricular tachycardia.
In the study, 14 features such as complexity,60 leakage,61

kurtosis,62 and the like were extracted from the ECG signal,
and different window lengths were tried while extracting the
features. Features were then selected using a genetic
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algorithm-based technique for optimal feature combinations.
Three annotated public domain ECG databases, namely, the
American Heart Association (AHA) Database, the Creighton
University Ventricular Tachyarrhythmia Database, and the
MIT-BIH Malignant Ventricular Arrhythmia Database, were
used as the training, test, and validation data sets. With 5-fold
cross validation on the out-of-sample validation data, the best
performance values were achieved with a window length of
5 seconds, giving a test accuracy of 96.3�3.4%, sensitivity of
96.2�2.7%, and specificity of 96.2�4.6%.

There have been many studies on using DL for ECG beat
classification. Zubair et al63 used CNN to classify the non–life-
threatening ECG beats into the 5 classes recommended by
the Association for Advancement of Medical Instrumentation,
namely: nonectopic, supraventricular ectopic, ventricular
ectopic, fusion, and unknown. The authors used the MIT-BIH
database to evaluate the classification performance. The
authors found that the proposed system achieved better
accuracy and superior computational efficiency than most of
the existing state-of-the art methods. Acharya et al64 con-
ducted a similar study of classifying heartbeats from the MIT-
BIH Arrhythmia Database into 5 classes using a 9-layer deep
CNN. The data set was artificially augmented to balance the
number of instances in 5 classes of heartbeats, and the
signals were filtered to remove high-frequency noise. When
trained using the augmented data, the CNN achieved
accuracy of 94.03% and 93.47% in the original and noise-
free ECGs, respectively. When the CNN was trained without
the augmented data, the accuracy reduced to 89.07% and
89.3%, in noisy and noise-free ECGs, respectively. This study
showed that the proposed CNN model can be used as a tool
for screening the ECG signal and quickly classify heartbeats.

Isin and Ozdalili65 were among the first to use transfer
learning in ECG arrhythmia diagnostics. The authors used the
AlexNet CNN13 trained on ImageNet image data, and then
applied transfer learning to carry out ECG arrhythmia
diagnostics. To train and test the ECG data, the R-T segments
of the preprocessed ECG beats, each one having 200
samples, were scaled as images of 2569256, and then
reproduced as an RGB image, before being used as input to
the CNN network. Features extracted from the sixth and
seventh layers of the deep CNN were used independently,
then principal component analysis was used to reduce the
dimensionality, and a multilayered feed-forward network was
used for classification, which exhibited a recognition rate of
98.51% and testing accuracy of around 92%. The study
showed that using transfer learning with CNNs could be useful
in detecting cardiac arrhythmias.

CNNs have also been used for identifying the R-wave peaks
and P- and T-waves of the ECG signal. Taking annotations
from QT and the MIT-BIH P-Wave Database, Sodmann et al66

used a 9-layered CNN to learn and generate features. An

Extreme Gradient Boosted Tree classifier was then trained on
the extracted features, to distinguish among the various
waves in the ECG. The developed model identified the R-wave
peaks, P-waves, and T-waves with an accuracy of 98%, 92%,
and 88%, respectively.

Deng et al67 developed a dynamic neural learning mech-
anism for ECG-based cardiovascular disease classification.
During the model training phase, cardiac dynamics within the
ECG signals were extracted using the radial basis function
neural networks through the deterministic learning mecha-
nism. The authors claimed that such cardiac dynamics
represented the beat-to-beat temporal change of ECG mod-
ifications and that it could provide a larger amount of
discriminability than the original ECG signals. For the study,
ECG signals from 52 healthy controls, 148 subjects with
myocardial infarction, 18 subjects with heart failure (HF), 15
subjects with bundle branch block, 14 subjects with dys-
rhythmia, 7 subjects with myocardial hypertrophy, 6 subjects
with valvular heart disease, and 4 subjects with myocarditis,
were used. In the test phase, the cardiac dynamics of the test
ECG pattern was compared with that of the training patterns,
and the class of the test ECG pattern was recognized
according to the smallest error principle. On leave-one-out
cross validation, the model achieved accuracies between
86.6% and 100% for each disease.

Generative adversarial networks (GANs)100 were intro-
duced in 2014. They are a class of ML (often DL) models
where 2 models are trained simultaneously: a generative
model G tries to capture the distribution of the training data,
and a discriminative model D that, given a sample, estimates
the sample’s probability of whether it belongs to the training
data or is generated by G. They are useful for unsupervised
learning, semisupervised learning, and sometimes even for
supervised learning. Recently, Zhu et al68 developed a
generative adversarial network composed of bidirectional
long short-term memory as the generator and CNN as the
discriminator, for generating synthetic ECG data, that had
high morphological similarity to the real ECG recordings.

How the conventional ML models, which use handcrafted
features, compare with the more recent DL models where
features are learned and selected automatically, is an
important discussion. Our observations on this topic are as
follows. For some applications, DL models perform over-
whelmingly better than the conventional ML ones, while for
other applications they work either equally well or better only
when the DL model is augmented with a conventional ML
model. For example, in applications pertaining to QRS peak
detection, and ECG beat delineation, multiple articles101,102

have showcased that DL methods outperform the conven-
tional ML and signal processing–based methods. In the
application of heart rhythm classification using ECG, there has
been an increasing trend of published research articles that
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show DL models performing better than the conventional ML
models.81 On public domain databases like the Physionet
2017 challenge data, the top-ranked performers83,84 used a
stacked classifier that contained a DL model and a conven-
tional ML model in union. In more complex applications like
disease classification/prediction, researchers typically use
data from multiple modalities. Considering the trade-off
between the amount of available data and the number of
features, it is common for researchers to represent the ECG
signals, with handcrafted features.96,102 In conclusion, given a
large amount of data, the features learned and selected by DL
in most cases can provide equal or better performance than
the conventional features. However, with explainability being
an important concern among healthcare practitioners, it is
preferred that researchers be able to explain the significance/
impact that each feature (either handcrafted or learned using
DL) has on the concerned application.

In-Hospital Monitoring
Critically ill patients are admitted to the intensive care unit
(ICU) or the emergency department, and it is customary to
have medical devices continuously monitor them. A large
amount of data such as heart rate, BP, temperature, pulse
oximetry, and respiratory rate are gathered from these
patients. Such data provide major opportunities to use ML
for improving patient outcomes.

Diagnosis and disease classification

In the ICU, the monitors raise alarm(s) whenever they believe
patients to be at risk. Unfortunately, these monitors have
been often found to generate false alarms.69 A study
discovered that 88.8% of annotated arrhythmic alarms were
false positives.69 Major causes of these false arrhythmic
alarms were found to be noise and artifacts in the physio-
logical signals, which again were probably caused by patient
motion or loose electrodes. Too many false alarms can create
a noisy environment and cause desensitization among
caregivers to the extent that they may ignore the true alarms
as well. There has been a large amount of research to reduce
the number of false alarms in the ICU, some of which employs
ML. In the “Reducing False Arrhythmia Alarms in the ICU:
PhysioNet/Computing in Cardiology Challenge 2015,” Ple-
singer et al70 developed a method that was based on fuzzy
logic, with promising results. ML-based models using SVM71

and RF,72 have also been applied to tackle this problem of
false ICU alarms.

Wiens et al73 used active learning to develop a clinically
useful method for patient-specific, adaptive heart beat
classification. The proposed method, when tested on the
MIT-BIH data, was able to achieve excellent performance on
the 2 main tasks suggested by the Association for

Advancement of Medical Instrumentation, with over 90% less
training data. The 2 tasks were (1) detecting ventricular
ectopic beats and (2) detecting supraventricular ectopic
beats. Furthermore, the authors used this method to develop
a tool for cardiologists that produced excellent results.

Risk prediction and patient management

Ong et al74 proposed an ML-based model that used features
such as age, heart rate, variability parameters, and vital signs
to predict cardiac arrest within 72 hours. An SVM classifier
was used to classify patients at the time of presentation to
the emergency department, on whether they would experi-
ence cardiac arrest within 72 hours. Additionally, a score for
each patient was computed based on the Euclidean distances
between the patient’s data and two cluster centers, wherein
one cluster consisted of patients having cardiac arrest or
death as outcomes, and the other cluster consisted of
patients without such outcomes. A score of 0 to 40 indicated
low risk, 41 to 60 indicated intermediate risk, and 61 to 100
indicated high risk. The authors claimed that the ML-based
score was more accurate than the modified early warning
score in predicting cardiac arrest within 72 hours in critically
ill patients presented to the emergency department.

A multicenter study by Churpek et al75 found that ML
methods predicted the clinical deterioration in patients on
wards more accurately than the conventional regression
methods. In the study, variables such as demographics,
laboratory values, and vital signs were used in a discrete time
survival analysis framework to predict the combined outcome
of cardiac arrest, ICU transfer, or death. Among the examined
models, the RF-based model was found to be the most
accurate, with an AUC of 0.80 (95% CI, 0.80–0.80). Further-
more, all tested ML algorithms, namely, gradient-boosted
machines, bagged trees, SVM, NN, LR, KNN, and decision
trees, also gave better results than the modified early warning
score. The authors then suggested that these techniques
could be used for improved identification of critically ill
patients on the wards.

Frizzell et al76 developed ML-based approaches to predict
the 30 day all-cause readmission of patients discharged
following a HF hospitalization. The variables used for devel-
oping the predictive models included information pertaining to
demographics, socioeconomic status, medical history, char-
acterization of HF (including admission symptoms), admission
and discharge medications, vital signs, weight, selected
laboratory treatments, and discharge interventions. The
authors tried multiple predictive models, including a tree-
augmented naive Bayesian network, LR, gradient-boosted
models, and RF. Each model’s performance was evaluated
using the validation data set, and the C statistic was used to
evaluate a model’s ability to discriminate between a read-
mission or not. The authors found that all evaluated ML
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models showed only modest discrimination ability, with their
C statistic varying between 0.59 and 0.62. Therefore, they
concluded that ML models in this case did not provide a
significant improvement in predicting HF readmissions, as
compared with the traditional statistical models.

Sandu et al proposed a reinforcement learning–based
model for BP regulation in post–cardiac surgery patients.77

The state-of-the-art BP regulation technique uses a propor-
tional–integral–derivative controller (based on classical feed-
back control loop) with predecided patient models. The
authors in the study highlighted the advantage of reinforce-
ment learning–based models, which do not have to use a
predecided patient model; instead, they can directly use the
clinical data for training. All experiments by the authors were
done on simulated data. Reinforcement learning was also
used by Rom et al78 while training a spiking neurons
architecture for cardiac resynchronization therapy (CRT). The
spiking neural network architecture allows the atrioventricular
delay and interventricular interval parameters to adapt
according to the information provided by the intracardiac
electrograms and hemodynamic sensors. The adaptive car-
diac resynchronization therapy prototype in simulations
showed a 30% increase in cardiac output as compared with
a nonadaptive cardiac resynchronization therapy device. The
authors softly suggested that using an adaptive cardiac
resynchronization therapy device can improve the quality of
life for patients with congestive HF.

Mobile and Wearable Technology
The popular use of smartphones and wearable technology has
caused an explosion of available biomedical data. Such data
provide major opportunities for early diagnosis and prevention
of cardiovascular diseases.79,80

Diagnosis and disease classification

Hannun et al81 used an end-to-end DL approach for detecting
multiple heart rhythm classes in patients who used a single-
lead ambulatory ECG monitoring device. The developed DNN
model contained convolutional layer blocks and ResNet
blocks. The authors trained the DNN on a huge annotated
data set obtained from iRhythm Technologies, consisting of
91 232 single-lead ECG records from 53 549 patients, that
were divided into 12 rhythm classes. Testing across 328
records from 328 unique patients, which were annotated by a
group of cardiologists, the DNN model showcased an average
F1 score of 0.837, which was better than what individual
cardiologists achieved, an average F1 score of 0.78.

Ort�ın et al82 proposed a fully automated, single-lead, and
real-time ventricular heartbeat classifier. The proposed method
used an echo state network to classify the ECG signals

following the Association for Advancement of Medical Instru-
mentation recommendations with an interpatient scheme. The
model was validated on the MIT-BIH arrhythmia and the Incart
data sets. On the MIT-BIH arrhythmia data, the method
respectively achieved a sensitivity and precision of 95.4% and
88.8% for lead II, and 90.9% and 89.2% for lead V1. The
methodology was proven to be a competitive single-lead
ventricular heartbeat classifier and was comparable to the
existing state-of-the-art algorithms that used multiple leads.

Many single-channel ECG signal classification algorithms
were recently developed toward the 2017 PhysioNet/CinC
Challenge. The objective of the CinC challenge was to
encourage the development of ML and DL methods that
could identify from a single, short ECG lead recording (30–
60 seconds), whether it shows normal sinus rhythm, atrial
fibrillation (AF), an alternative rhythm, or is too noisy to be
classified. All recordings were collected using the AliveCor
device. Teijeiro et al83 won the challenge by obtaining the
highest F1 test score of 0.83. Teijeiro et al carefully crafted
features, which included morphological and rhythm-related
features, and built 2 classifiers; one evaluated the ECG signal
with aggregated feature values, and the other evaluated the
ECG signal as a sequence of features extracted from each
heartbeat using RNNs. The decisions of the classifiers were
finally combined using a stacking technique. Another notable
work was presented by Plesinger et al,84 who claimed to have
achieved an overall test F1 score of 0.83 in the challenge.
They used 2 ML approaches in parallel; the first approach
used a 13-layered CNN to process 6 seconds of ECG signal,
while the second approach extracted 43 handcrafted features
and used a bagged tree ensemble for classification. Of the 2
approaches, the CNN-based approach was first applied to
classify the ECG signal, and if the confidence of classification
was not above a defined threshold, the second bagged tree
ensemble–based approach was used for making the decision.

There have been multiple studies on identifying AF in
patients using non-ECG data and ML. Shashikumar et al85

used a DL approach to monitor and detect AF using wearable
technology. For the study, photoplethysmographic data and
triaxial accelerometry from 98 subjects (45 with AF and 53
with other rhythms) were gathered using a multichannel wrist-
worn device. A continuous wavelet transform was applied to
the photoplethysmographic data to derive spectrograms, and
then a CNN was trained on the spectrograms to project them
to a 1-dimensional feature vector. This feature vector, along
with other features calculated on the basis of beat-to-beat
variability and signal quality, were fed to an elastic net logistic
classifier to classify each patient to AF class or non-AF class.
Leave-one-out cross validation resulted in an AUC value of
0.95 and accuracy of 91.8%. Lahdenoja et al86 used
accelerometers and gyroscopes in smartphones to measure
cardiogenic micromovements of the patients’ chests, and
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then used SVM, kernel SVM, and RF classifiers to distinguish
patients with AF from healthy individuals. The study achieved
a sensitivity of 93.8% and specificity of 100%.

The amount of data generated by biosensors in mobile and
wearable technology is enormous, and it is not feasible to
have physicians manually label all these data. To label
biosensor data without access to the ground truth, Zhu et al87

proposed 2 Bayesian approaches for aggregating the labels
from independent and potentially correlated annotators
(algorithms and/or humans), to infer a more reliable label
than each individual annotator. Results from applying the
models on simulated data, and 2 publicly available biomedical
data sets (2006 PhysioNet QT data set and Capnobase
Respiratory Rate Database) showed that the proposed
method could perform better than the existing approaches
in literature.

A significant challenge while analyzing biosensor data is
that they can be noisy. Baseline wandering, which is caused
by the subjects’ motion, muscle artifacts, and the like, is
among the most commons forms of noise. This is because
the subjects having mobile/wearable devices are expected
to move constantly and perform various tasks throughout
the day. Effective noise detection is therefore an important
research problem and is an active area of research. Satija
et al88 proposed a novel unified framework for automatic
detection, localization, and classification of single and
combined ECG noise. In the framework, the ECG signals
were first decomposed using the modified ensemble empir-
ical mode decomposition algorithm for discriminating the
ECG components from the noise and artifacts. Short-term
temporal features such as maximum absolute amplitude,
number of zero crossings, and local maximum peak ampli-
tude of the autocorrelation function, were then computed
from the extracted high-frequency and low-frequency signals.
Finally, a decision-rule–based algorithm was used to detect
the presence of noise and classify the type of noise. The
proposed framework was evaluated on 5 benchmark ECG
databases and on real-time ECG signals. The proposed
framework achieved an average sensitivity of 99.12% and
specificity of 98.56% in detecting the presence of noise.
With respect to classifying the different types of noise, it
achieved an average sensitivity of 98.93%, positive predictive
value of 98.39%, and classification accuracy of 97.38%. The
authors claimed that their proposed framework performed
better in noise detection than the existing state-of-the-art
methods, and localized short bursts of noise accurately with
low–end-point delineation errors. To assess the quality of
ECG signals, Yaghmaie et al89 introduced a dynamic signal
quality index. The index used a smoothed pseudo–Wigner-
Ville transform to derive the time-frequency patterns of the
ECG signal, and then based on a weighted cross-correlation
function, assigned a score between 0 and 1 to each ECG

beat (identified by the Pan and Tompkins algorithm103) to
indicate the signal quality. The index was validated by
testing its effectiveness in noise detection. The index was
used to discriminate noisy signals from normal ECG data and
also noisy signals from the abnormal heart rhythms’ ECG
data. On testing with the public databases on PhysioNet, the
dynamic signal quality index achieved an AUC of 0.93 in
discriminating normal versus noisy ECG data, and an AUC of
0.94 in discriminating abnormal heart rhythm versus noisy
ECG data. The authors also claimed that these noise
detection results were better than the previous state-of-
the-art metrics when used individually.

Precision Medicine
Precision medicine is defined as the approach to optimize the
medical care provided to a patient by accounting for the
patient’s genes, environment, and lifestyle. Though precision
medicine in cardiology is fairly new compared with that in
oncology, there have been a considerable number of studies
in this area.

Diagnosis and disease classification

RNNs have the ability to take temporal relations into account.
A study by Choi et al90 found that using RNN in modeling the
events in electronic health records could improve the
performance in initial diagnosis of HF, as compared with that
of conventional methods, which ignore temporality. Data were
drawn from 3 884 HF incidents/cases and 28 903 controls.
Events such as disease diagnosis, medication orders, and
procedure orders were time stamped, and a 12- to 18-month
window of cases and controls were observed. It was found
that RNNs performed better than the other baseline methods
such as regularized LR, multilayer perceptron with 1 hidden
layer, SVM and KNN, in both the 12-month and the 18-month
observation windows. Also, the RNN using the 18-month
observation window performed better than the RNN using the
12-month observation window.

In a study by Juhola et al,91 the authors showed that it was
possible to separate different genetic cardiac diseases on the
basis of Ca2+ transients using ML methods. The diseases
studied were catecholaminergic polymorphic ventricular
tachycardia, long QT syndrome, and hypertrophic cardiomy-
opathy. Classification accuracy of up to 87% was obtained for
these diseases, and it indicated that Ca2+ transients are
disease specific. Multiple classifiers, namely, KNN, RF, and
least square SVM, were examined here, and RF was found to
provide the highest accuracy.

Statistical methods and machine learning approaches have
often been used in high throughput differential gene expres-
sion analyses from microarrays or RNA sequencing, with the
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intent to identify a list of genes that are altered in patients but
not in controls. For example, in Kullo and colleagues’92 study,
the single-nucleotide polymorphism rs653178 in the ATXN2-
SH2B3 locus was found to be significantly associated with
peripheral arterial disease. LR analysis adjusted for age and
sex was used here to identify the single-nucleotide polymor-
phisms associated with peripheral arterial disease case/
control status in the discovery, replication, and combined sets.

In another study, Khera et al93 examined the relationship
between familial hypercholesterolemia mutations and high
polygenic score, to early-onset myocardial infarction, using LR
models that were adjusted for the first 4 principal compo-
nents of ancestry. Of the patients scored, the top 5% were
considered to have high polygenic scores. To obtain the
polygenic score, the authors used a method that accounts the
polygenic score to 6.6 million common DNA variants, and
accordingly quantified the cumulative susceptibility conferred
by these variants.104

Risk prediction and patient management

Weng et al showed that applying ML algorithms using routine
clinical data significantly improved the accuracy in predicting
the first cardiovascular event over 10 years, as compared
with an established algorithm by American College of
Cardiology (ACC) guidelines.94 RF, LR, gradient-boosting
machines, and neural networks were used in these studies,
and all of them were found to give better results than the
established algorithm of the American College of Cardiology.

In a recent study, ML models, namely, LR, RF, gradient-
boosted trees, CNN, and long short-term memory, were
applied on features extracted from longitudinal electronic
health records, with and without the genotype information, to
predict 10-year cardiovascular disease events.95 The study
was performed in a cohort of 9 824 cases and 99 666
controls and showed that ML models that employ longitudinal
electronic health record features perform significantly better
in prediction than the American College of Cardiology and the
AHA pooled cohort risk equation, and also better than ML
models that employ only American College of Cardiology/
AHA features. A further improvement in predictive perfor-
mance was also achieved when genotype data in the form of
204 single-nucleotide polymorphisms were included as fea-
tures.

Diller et al96 developed DL models to estimate prognosis
and guide therapy in a cohort of 10 019 adult patients with
adult congenital heart disease. The parameters/variables
used as input to the DL algorithms were clinical and
demographic data, ECG parameters, cardiopulmonary exer-
cise testing, and few selected laboratory markers. On the test
data, the authors were able to predict the patients’ need to
discuss with the multidisciplinary teams about their

management, surgical or catheter intervention, and device
implantation, with 90.2% accuracy.

Bellot and Van der Schaar97 studied the problem of
personalized survival estimates of patients in heterogeneous
populations and proposed a novel ML-based solution called
the Hierarchical Bayesian Survival model. Their goals were
(1) to make more accurate predictions by making these
predictions personalized to a specific patient, (2) to better
understand diseases and their risk factors, and (3) to provide
model outputs that are interpretable by clinicians. The
proposed Hierarchical Bayesian Survival model was a
probabilistic survival model that captured individual traits
through a hierarchical latent variable formulation. Survival
paths were then estimated by jointly sampling the location
and shape of the individual survival distribution. When
compared with other baseline survival models, the Hierar-
chical Bayesian Survival was found to be computationally
expensive, but it consistently achieved a higher time-
dependent concordance index105 and lower Brier score106

in predicting survival. The authors also introduced a person-
alized interpreter that could test the effect of covariates on
each patient.

Shah et al98 studied 397 HF patients with preserved
ejection fraction, with the goal of identifying phenotypically
distinct HF categories with preserved ejection fraction. The
authors performed detailed clinical, laboratory, electrocar-
diographic, and echocardiographic phenotyping of the
patients. Different statistical learning algorithms, namely,
unbiased hierarchical cluster analysis of phenotypic data
and penalized model-based clustering, were used to sepa-
rate patients into mutually exclusive groups to comprise a
novel classification of HF with preserved ejection fraction.
Phenomapping analysis separated the patients into 3
distinct groups that had different clinical characteristics,
cardiac structure/function, invasive hemodynamics, and
outcomes. One of the phenomapping groups had an
increased risk of HF hospitalization even after adjusting
for traditional risk factors. All the phenomapping analyses
were performed blinded to clinical outcomes. The authors
were also able to replicate the HF with preserved ejection
fraction phenomapping group classification on a validation
cohort (n=107).

Okser et al99 developed a predictive modeling framework
to predict the extreme classes of risk to atherosclerosis and
their progression over a 6-year period. The framework used
CRFs and single-nucleotide polymorphisms selected with ML
techniques as features, and achieved AUCs of 0.84 and 0.76
for the risk prediction and disease progressions tasks,
respectively. These performances were found to be signifi-
cantly better than the performances achieved when using
CRFs alone. The CRFs used were sex, age, BMI, waist
circumference, systolic and diastolic BP, cholesterol levels,
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triglycerides, apolipoprotein A1, apolipoprotein B, and
whether the patient smoked.

Limitations and Challenges in Applying ML

Although ML and DL seem to hold promise in medicine,
they have limitations. DL requires vast amount of data.
Unlike obtaining images of dogs and cats, it can be
challenging and expensive to obtain a large amount of
labeled data in medicine. First, to obtain data associated
with a disease of interest, one has to find patients with the
disease, and those patients need to be willing to share
their data. Second, the data must be annotated by trained
clinicians; the process of obtaining annotations for data can
therefore be time consuming and expensive. ML algorithms
are subject to the principle of garbage in–garbage out.
Therefore, having high-quality training data is essential to
the performance of ML algorithms. The annotations pro-
vided by clinicians can be subjected to bias. Disagreements
can often occur between clinicians regarding the diagnosis/
annotation. To obtain high-quality annotations, ideally a
panel of highly trained clinicians would be required to
provide the annotations, which understandably is an
expensive procedure.

ML and DL algorithms are subject to bias. One type of bias
is the sample bias, which occurs when the distribution of
one’s training data does not reflect the actual environment
where the ML model will be applied. Consider a case where
ML has been used to build a predictive model, which predicts
sudden cardiac arrest using heart rate variability data from
patients with HF. Such model(s) would be limited in applica-
tion, since sudden cardiac arrests occur in a much broader
population. Another type of bias is unconscious human bias.
ML algorithms are trained with data gathered and labeled by
humans. Humans can be subjective, and they are affected by
their surroundings and upbringings. There have been studies
that showed that most healthcare providers have an implicit
bias in terms of positive attitudes toward whites and negative
attitudes toward people of color.107,108 Such human bias can
easily get incorporated into the ML models trained for
providing clinical decisions.

There are many stakeholders in the healthcare system.
These include the patients, the physicians, the employers, the
insurance companies, the pharmaceutical firms, and the
government. All these stakeholders have competing interests.
To deploy ML in medicine, all stakeholders have to be on
board. For example, physicians may resist the deployment of
ML in medicine, considering that their role/job could be
replaced by ML-based systems.

The issue of liability is another serious challenge when
applying ML in medicine. In medicine, patients’ lives are at

stake. Who should be blamed when an ML algorithm provides
a wrong diagnosis or a bad recommendation for treatment
and the patient dies because of that recommendation? Should
the physician be blamed, or should the person who took
responsibility in building the ML-based recommendation/
diagnoses model be blamed?

The issue of patient data privacy is another significant
concern when applying ML in medicine. To obtain concrete
insights, ML-based systems need vast amounts of data to be
trained upon. It is therefore required that patients be willing to
share their personal data to fuel the growth of ML in medicine.
Though efforts have been made to deidentify the medical
records/data, there is still a risk of reidentifying the patients
from such data.109

Many ML algorithms, for example, RF and especially the DL
algorithms, work like a “black box.” In other words, their
decision-making processes are seldom understood in totality.
If DL is employed to make recommendations on the patients’
treatment plan, the patients may want to know the reasons
behind those recommendations. Also, when the algorithms
work like a black box, it could be much harder for the
physicians to trust and understand the working of ML-based
recommender systems and catch the incorrect recommenda-
tions, if any.

Future of ML-Based Applications in the
Cardiovascular System
The need for using ML in the cardiovascular systems will
continue to grow. As wearable and mobile devices become
more widely used, the amount of cardiovascular data made
available for training ML-based systems will explode. The use
of ML in cardiovascular systems can enable high-accuracy
automated diagnosis and save expert clinicians a considerable
amount of time. Wearable devices with sensors and software
capable of analytics will be in high demand.

The cost of sequencing the human genome is rapidly
decreasing with the development of high-throughput sequenc-
ing technology. Such reduction in cost is fueling the growth of
ML-based research for precision medicine. The exponential
growth of biomedical data is unquestionable. However, at the
same time, the data can be dispersed and not well organized.
Efforts to make integrated and curated data sets will enable
ML efficacy, in the future. In fact, such efforts are already
being made. For example, the AHA recently established the
Precision Medicine Platform through the efforts of multiple
AHA volunteers and a collaboration with Amazon Web
Services.110 The goals of the platform are (1) to make the
data available for researchers, (2) to make searching across
orthogonal data sets easy, (3) to provide a secure workspace/
facility for taking advantage of the power of cloud computing,
and (4) to provide a place for users to share insights.
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Continuous efforts are necessary to avoid bias in data.
There are no quick and easy solutions to this problem.
Solving this problem requires careful sampling of the data,
and conscious efforts from the creators of the ML-based
systems to eliminate personal bias from the input data.

One of the future directions of research would be to
build classifiers that are more interpretable. Interpretability
in ML models would allow physicians and patients to trust
the ML-based systems. In a recent study, an interpretable
ML model was built for accurate prediction of sepsis in ICU
patients.111 Another example of an ML algorithm that is
both accurate and interpretable is the optimal decision
tree.112

While the appropriate use of ML algorithms can enable
better health care, the limitations of ML algorithms need to be
acknowledged. In the near future, ML algorithms can at most
assist physicians, and obviously cannot replace them.
Physicians should therefore not feel threatened by AI, but
could rather embrace it as a tool for providing better health
care to patients. That being said, once ML’s use in medicine
becomes prominent, there will be changes in how physicians
work. Future physicians would not only be required to be well
versed in traditional medicine but also would be required to
use/understand the ML-based systems effectively and have
good knowledge in statistics and data analytics.

Conclusions
In this article, we have highlighted and summarized the state
of the art in ML-based applications for improving patient
outcomes pertaining to the cardiovascular system. There has
definitely been an explosion of cardiovascular data, as well
as an explosion of interest in applying AI. Because ML is
better suited to find structures within complex data sets
than traditional statistical methods, their application can
surely improve patient outcomes. ML has limitations: (1)
being prone to bias and (2) being difficult to interpret.
Additionally, there are challenges of accountability and
competing interests of stakeholders, which may restrict
the usability of ML-based applications in medicine. Deploy-
ment of ML-based models in medicine needs a well-thought-
out plan. Once planned, their deployment could lead to
lasting benefits for mankind.
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