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A B S T R A C T

Given the crucial role of specific matrix metalloproteinases (MMPs) in the extracellular matrix, an imbalance in 
the regulation of activation of matrix metalloproteinase-9 (MMP-9) zymogen and inhibition of the enzyme can 
result in various diseases, such as cancer, neurodegenerative, and gynecological diseases. Thus, developing novel 
therapeutics that target MMP-9 with single-chain antibody fragments (scFvs) is a promising approach. We used 
fluorescent-activated cell sorting (FACS) to screen a synthetic scFv antibody library displayed on yeast for 
enhanced binding to MMP-9. The screened scFv mutants demonstrated improved binding to MMP-9 compared to 
the natural inhibitor of MMPs, tissue inhibitor of metalloproteinases (TIMPs). To identify the molecular de-
terminants of these engineered scFv variants that affect binding to MMP-9, we used next-generation DNA 
sequencing and computational protein structure analysis. Additionally, a deep-learning language model was 
trained on the screened scFv library of variants to predict the binding affinities of scFv variants based on their 
CDR-H3 sequences.

1. Introduction

Matrix metalloproteinases (MMPs) are a group of proteases respon-
sible for remodeling of the extracellular matrix [1,2]. When not properly 
regulated by their inhibitors and activators, specific MMPs are associ-
ated with various diseases, making them promising targets for novel 
protein-based therapeutics [1,3]. Monoclonal antibodies (mAbs) are 
well-established therapeutic proteins, generally well-tolerated with 
minimal risk of side effects [4]. Various antibodies have been previously 
used [5–7] and engineered [8–10] to target proteases, especially MMPs. 
The large antigen-binding interface of mAbs, combined with multiple 
flexible binding loops and complementarity-determining regions 
(CDRs), allows for high binding affinity and selectivity [11]. This can be 
further enhanced through protein engineering techniques like directed 
evolution and yeast surface display [12–14]. Additionally, established 
platforms for antibody production and purification make mAbs great 
protein alternatives for developing MMP binders [12,15,16].

Among MMPs, the overexpression of MMP-9 is strongly associated 
with poor prognosis in various cancers [17,18], neurodegenerative [1,4]
and female health-related diseases [19–21]. Further, advances in 
generating humanized antibodies, and various antibody fragments, such 
as antigen-binding fragments (Fab), single chain antibody fragments 
(scFv), and camelid antibodies, as recombinant proteins [22] has made 
antibodies one of the leading classes of biological binding molecules. 
Antibody variants have been easily cloned, produced, and genetically 
manipulated for diverse purposes. Antibody discovery efforts to find 
potential therapeutics targeting MMPs, specifically MMP-9 due to its 
pathological contribution in several diseases, led to several hit anti-
bodies [23,24].

The Complementarity-Determining Region 3 of the Heavy Chain 
(CDR-H3) in monoclonal antibodies (mAbs) is essential for antigen 
recognition, playing a significant role in improving antigen binding af-
finity and selectivity [25,26]. However, developing effective antibodies 
targeting enzymes like MMPs can be challenging, as the active sites of 
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these enzymes are often deeply recessed within a major cleft or concave 
structure, which can be difficult for the antigen-binding sites of native 
human or murine antibodies to access. Native antibodies typically have 
relatively flat surfaces, with CDR-H3 regions averaging 9 to 12 amino 
acids in length. To address this issue, several synthetic human antibody 
libraries have been developed by incorporating antigen-binding regions 
(paratopes) from camelid antibodies, which are known for their longer 
CDR-H3 regions. These longer CDR-H3 loops are better suited to pene-
trate the concave active sites of MMPs, improving the chances of 
effective binding [27]. To date, some MMP-9 antibodies have been 
developed with inhibitory function [28–30]. For example, REGA-3G12, 
an MMP-9 monoclonal antibody, binds to the enzyme’s catalytic site but 
does not directly interact with the catalytic zinc ion or its adjacent 
residues 23. These results suggest that particularly for active site in-
hibitors, the optimal distribution of CDR-H3 lengths and amino acid 
compositions is crucial for achieving paratope conformations compat-
ible with the structural conformation of the targeted MMPs’ active sites.

The advancement of machine learning (ML), particularly, deep 
learning (DL) and natural language processing (NLP) technologies, 
along with increased computing power, has further enhanced biotech-
nological applications, including protein design and engineering 
[31–35]. These developments have led to the creation of Large Protein 
Language Models (LPLMs), which assist in discovering the evolutionary, 
structural, and functional properties across protein space by encoding 
amino-acid sequences into numeric vector representations [36]. In this 
study, we leveraged pretrained LPLMs to extract features from CDR-H3 
sequencing data to train a downstream Long-Short-Term Memory 
(LSTM) model to predict the binding affinity between CDR-H3 and 
MMP-9cd. To understand the predictive influence of each amino acid in 
CDR-H3 on the binding affinity, we used Shapley Additive exPlanations 
(SHAP). This technique applies game theory to explain the contribution 
of each input feature to the prediction made by an ML model. By 
analyzing the file generated by this technique, we can gain insights into 
feature importance, understand the distribution of feature impacts, 
detect interactions between features, and interpret the overall behavior 
of the model.

This study uses directed evolution and yeast display to screen a 
synthetic scFv antibody library previously engineered for decreasing 
non-specific binding [25] to improve binding to the MMP-9cd (Fig. 1). 

We achieved this by combining the fluorescent-activated cell sorting 
(FACS) screening approach with next-generation sequencing (NGS) 
analysis. FACS allows for high throughput screening of high-affinity 
binders, while NGS offers an unparalleled level of DNA sequencing de-
tails compared to traditional methods. By providing both the sequence 
and frequency information for each scFv antibody in the library, NGS 
allows us to pinpoint key amino acid residues crucial for binding to 
MMP-9cd. The amino acid frequency of CDRH3 of scFv variants, ob-
tained from deep sequencing of negative (non-binders) and positive 
(binders) after FACS sorts toward MMP-9, revealed some residues were 
consistently present in high-affinity binders, suggesting their crucial role 
in binding interactions. These results were also used to fine-tune protein 
language models. These ML-developed models focused on CDR-H3 
predicted not only the scFv variants kept as testing population with 
high precision, but also other negative and positive MMP-9 binders that 
were unrelated to this study or library. This comprehensive approach 
goes beyond traditional screening techniques, enabling the identifica-
tion of promising candidates that might otherwise be missed.

2. Materials and methods

2.1. Strain and plasmids

Saccharomyces cerevisiae, strain EBY100 (aGAL1-AGA1:: URA3 ura3 
52trp1leu2Δ200pep4::HIS2prb1Δ1.6Rcan1 GAL) and RJY100 strain 
[25] were used for yeast surface display of the N-terminal domain of 
TIMP-1 (N-TIMP-1) as the control, and scFv variants in the naïve library, 
respectively. The N-TIMP-1 is expressed at the N-terminus of the Aga2p 
protein and subsequently integrated into the pCHA vector backbone, 
resulting in a free N-terminus capable of binding to MMP-9cd. As for 
scFv variants, the pCTCON2 vector was employed to express the scFv at 
the C-terminus of Aga2p [25].

2.2. Yeast surface display of N-TIMP-1 and scFvs

The yeast cells, which had been electroporated with plasmids, were 
incubated overnight in minimal SDCAA, pH 6. This media composition 
included 20 g/L dextrose, 6.7 g/L yeast nitrogen base, 5 g/L Bacto 
casamino acids, 10.19 g/L sodium phosphate dibasic (Na2HPO4⋅7H2O), 

Fig. 1. The general approach for protein engineering and design of antibody scFv variants using directed evolution, yeast surface display to target MMP- 
9. 1) Library generation: a library of scFv variants with mutations in the CDR-H3 region to introduce diversity in both amino acid composition and length was used. 
These scFv variants were then electrotransformed into a yeast strain for display, labeling, and screening. 2) Expression and display: yeast cells carrying expression 
plasmid vectors encoding different scFvs were grown and induced for display of the scFvs variants genetically fused to the C-terminus of Aga2p on the yeast surface. 
Cells expressing scFv variants were incubated with MMP-9cd enzyme and further with proper fluorescent conjugated ligands that label scFv variants for further 
binding analysis. 3) Screening and sequencing: the scFv library of mutants was screened for binding to MMP-9cd into binder (positive) and non-binder (negative) 
populations using FACS. The DNA isolated and amplified from the sorted scFv libraries were sequenced via Sanger sequencing and/or next-generation sequencing. 4) 
Data analysis and model training: The sequencing data extracted from NGS was used as an input for a machine learning model determining key residues of CDR-H3 on 
MMP-9cd binding. This data was used to train and validate a protein language model to predict the binding affinity of specific CDR-H3 regions to MMP-9cd.
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and 8.56 g/L sodium dihydrogen phosphate monohydrate (NaH2-

PO4⋅H2O) and in a shaker incubator at 30 ◦C and 250 rpm. Subse-
quently, the yeast cells were induced in SGCAA media (similar to SDCAA 
but with 20 g/L galactose instead of dextrose, pH 6) for 20 h at 30 ◦C, 
starting with an initial OD600 of 1.00. Yeast cells displaying N-TIMP-1 
or scFv variants were harvested at an OD600 of 0.2 and washed twice in 
750 µL of ice-cold PBSA (8 g/L NaCl, 0.2 g/L KCl, 1.44 g/L Na2HPO4, 
0.24 g/L KH2PO4, pH 7.4 %, and 0.1 % BSA). Subsequently, these cells 
were incubated with 6xHis-MMP-9cd from Enzo Life Sciences (Farm-
ingdale, NY), a final concentration of 400 nM, for 60 min at room 
temperature, following previously reported methods [37]. After incu-
bation, the samples underwent two washes with 750 µL of ice-cold 
PBSA, and the cells were kept on ice. For the primary antibody label-
ing process, mouse anti-c-Myc Antibody (GenScript, NJ) solution at a 
1:100 ratio in PBSA buffer (0.25 mg/ML) was used to incubate the cell 
for 30 min on ice. Subsequently, for the secondary antibody labeling, the 
cells washed three times in ice-cold PBSA were incubated with goat 
anti-mouse Alexa Fluor 488 antibody (Invitrogen, 2 mg/ML) and 
anti-6xHis monoclonal antibody conjugated with Alexa Fluor 647 
(Invitrogen, 1 mg/ML) at 1:100 dilution in PBSA for either one for 
30 min on ice, shielded from light. Following the completion of the final 
washes, the labeled cells were resuspended in 750 µL of PBSA for 
analysis using a BD Accuri™ C6 Plus flow cytometer (BD Biosciences, 
NJ). The data obtained from the flow cytometer were further analyzed 
using FlowJo software (FlowJo, LLC, OR).

2.3. Protein expression and purification

Recombinant active human MMP-9cd (auto-cleavage resistance) 
[38] with an N-terminal 6xHis tag was expressed in Rosetta™(DE3) 
pLysS (Millipore Sigma) cells using a pET-28a(+)− 6xHis-MMP-9cd 
vector as previously described [37,39,40]. Briefly, MMP-9cd protein 
expression was induced with 0.5 mM IPTG for 21 h at 25 ◦C. Insoluble 
MMP-9cd protein was extracted from E. coli cells via sonication and 
solubilized under denaturing conditions with urea. Bacterial pellets 
were mixed with lysis buffer and kept shaking overnight at 4 ◦C. Lysate 
was then incubated with sodium deoxycholate and DNase I for 1 h at 
room temperature. The lysate was then separated by centrifugation, and 
aliquots were collected for subsequent SDS-PAGE analysis. This cycle of 
sonication, solubilization, lysis, and centrifugation was repeated until no 
insoluble material remained in the pellet fraction. The pooled super-
natants containing solubilized MMP-9cd were purified by immobilized 
metal affinity chromatography (IMAC) using Ni resin. Finally, the pu-
rified MMP-9cd was refolded through gradient dialysis. For the original 
sorts, purchased 6xHis-MMP-9cd protein from Enzo Life Sciences 
(Farmingdale, NY) was used. Moreover, human MMP-3cd with a C-ter-
minal 6xHis tag was expressed using pET-29b(+) and purified as pre-
viously discussed [39].

2.4. Screening the yeast-displayed scFv library using FACS

The non-specific scFv library, a generous gift from the Wittrup lab- 
MIT-Chemical Engineering, was previously engineered to minimize 
the non-specific binding to various protein targets [25]. The library’s 
structure consisted of 5 different heavy chain segments (VH) and 3 
variations of light chains (VL), connected by a glycine linker, all pre-
sented in the VL-VH format. To expand the diversity of the library, mu-
tations were applied to the CDR-H3 loop in terms of length and amino 
acid compositions [25]. The library of synthetic scFv library was origi-
nally recovered from the glycerol stock in 50 ML SD-CAA media (20 g 
glucose, 6.7 g yeast nitrogen base without amino acids, 5 g casamino 
acids, 10.4 g sodium citrate, 7.4 g citric acid monohydrate, pH 4.5) 
containing 100 µg/ML ampicillin to prevent bacterial growth. The li-
brary was diluted to 500–1000 L after overnight growth at 30 ◦C shaker. 
Before each round of cell sorting, the yeast cells were induced in SGCAA 
media. The number of cells was measured to reach a density of OD600 of 

1.00 (10^7 cells/ML). Subsequently, the cells were incubated with pu-
rified 6xHis-MMP-9cd protein, followed by primary and secondary 
antibody labeling. After washing, the cells were resuspended in ice-cold 
PBSA buffer, following the procedure outlined in the "Yeast surface 
display of N-TIMP-1 and scFvs” section. These samples were kept on ice 
and protected from light until loaded into the BD FACS Aria II cell sorter. 
A pentagon gate was applied to screen variants that exhibited strong 
signals for Alexa Fluor-488 and Alexa Fluor-647, indicating expression 
and positive binding to MMP-9cd, respectively. Additionally, another 
rectangular gate was used to collect clones with a positive signal for 
Alexa Fluor 488 and a weak signal for Alexa Fluor 647, indicating 
non-binder scFv variants to MMP-9cd.

After sorting, the cells were recovered by inoculating them in a 
50 ML SDCAA medium with a pH of 4.5. They were then allowed to 
grow overnight at 30 ◦C. The yeast library was stored in 20 % glycerol 
stock at − 80 ◦C for longer storage. The library underwent two rounds of 
screening, each involving staining, sorting, recovery, and regrowth. In 
the first round, cells were incubated with 300 nM MMP-9cd and sorted 
based on yield mode to eliminate unwanted variants. Approximately 
5 % of the population (10^6 cells) was collected for the positive gate 
(binders), while up to 3 % (3 ×10^5 cells) were collected for the negative 
gate (weak or non-binders). In the second round, the concentration of 
MMP-9cd was reduced to 100 nM, and the sorting mode was changed to 
purity to increase the efficiency of sorted cells, which exhibit both 
positive expression and binding signals. Up to 2 % of the population 
(5 ×10^5 cells) was collected in the last sort.

2.5. DNA isolation for Sanger and Next-generation sequencing

After sorting using FACS, isolated yeast clones were grown on se-
lective SDCAA plates at a 30 ◦C incubator for further binding analysis 
and DNA sequencing. For the Sanger sequencing of isolated clones, the 
yeast DNA plasmids were extracted using the Zymoprep Miniprep II kit 
(Zymoprep), amplified using PCR, and purified using the SV Gel and 
PCR Clean-Up System (Promega Corporation) and were sequenced at the 
Eurofins genomics.

For the next-generation sequencing (NGS) analysis, the yeast plasmid 
DNA from the scFv antibody libraries, either negative or positive sorts, 
were isolated using the Zymoprep Miniprep II kit. To ensure high-quality 
sequencing data, the plasmid DNA underwent Lambda-Exo digestion to 
remove impurities, including yeast cell genomes, from the extracted 
DNA as previously described [41]. Subsequently, the heavy chain genes 
were selectively amplified by PCR using Phusion high-fidelity poly-
merase and corresponding primers that were up and downstream of 
CDR-H3. This targeted amplification strategy was chosen due to the high 
mutation rate in the CDR-H3 and further analysis of this region. Finally, 
the amplified scFv variants (positive or negative) were sequenced by 
Azenta/Genewiz using an Illumina sequencing platform.

DNA sequences obtained from NGS were analyzed using multiple 
Python scripts. These scripts were designed to sort each VH variation and 
align the CDR-H3 regions. The Python codes included translation of 
DNA sequences into three forward and three reverse frames of amino 
acid sequences, identification of amino acid residue mutations in the 
CDR-H3 region and counting the number of repetitions. Subsequently, 
the frequency of amino acid residues in the CDR-H3 region and the CDR- 
H3 length were compiled and graphed using PRISM software packages 
(GraphPad Software, Inc., CA).

2.6. Training a DL model for predicting binding

DL models were trained using 2380 unique CDR-H3 sequences of 
scFv variants in the positive gate and 153 unique CDR-H3 sequences in 
the negative gate. Two large protein language models (LPLM) were used 
for extracting features from protein sequences: The Evolutionary Scale 
Modeling (ESM)− 2 models (with 650B, 3B, and 15B parameters) [31]
and the AntiBERTy model with 26 M parameters [42]. ESM-2, a 
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state-of-the-art LPLM developed by Meta AI, is trained on sequences 
from the UniRef protein sequence database using a Masked Language 
Modeling (MLM) objective. AntiBERTy is similar to the ESM-2 model but 
has fewer parameters and was trained exclusively on antibody se-
quences, capturing the diversity and specificity of the immune reper-
toire. In the MLM, amino acids are randomly masked in a protein 
sequence, and the model is trained to predict the missing amino acids 
from their surrounding context. This approach helps the language model 
learn vector representations (called embeddings) that capture patterns 
and dependencies in protein sequences, which can then be used in 
downstream protein prediction tasks. The performance of LPLM em-
beddings in downstream tasks typically depends on the model’s size 
(number of parameters) and the diversity of its pre-training database 
[31].

A low-dimensional visualization of features was extracted from each 
LPLM model. The embeddings produced by the LPLM for each amino 
acid in a sequence were averaged over CDR-H3 positions (Fig. S1A). 
Then, the principal components were extracted from the embedding 
vectors and used for two-dimensional projection using the t-SNE algo-
rithm [43]. The non-binders (orange dots) form a cluster in the 
embedding space, demonstrating the utility of LPLMs for distinguishing 
between CDR-H3 regions that are binders and non-binders (Fig. S1B). 
Embeddings extracted for each amino acid position in the CDR-H3 re-
gion were padded to the same length and used to train a downstream 
LSTM model to predict binding affinity with MMP-9cd. LSTM models are 
particularly suitable for capturing long-range dependencies in sequence 
data [44] and can be effectively used to learn interactions between 
residues that might be far apart in sequence [45]. While more advanced 
models like transformers can be used to capture these dependencies, 
LSTMs are computationally more efficient when dealing with relatively 
short sequences, such as CDR-H3.

The sequences in the dataset were split into 80 % training and 20 % 
test sets. Each model was trained for 50 epochs with early stopping and 
the Adam optimizer. The initial learning rate was 0.001, with decay 
steps of 1000 and a decay rate of 0.9. The predictive performance of the 
model was evaluated using precision, recall, and F1 metrics in both a 
cross-validation setting and an independent out-of-sample test set. To 
understand the predictive influence of each amino acid in CDR-H3 on 
binding affinity, Shapley Additive exPlanations (SHAP) were employed. 
SHAP, a technique based on game theory, explains the contribution of 
each input feature to the prediction made by a machine learning (ML) 
model [46,47]. The DeepSHAP algorithm [46] was used to compute the 
predictive significance of each amino acid residue in CDR-H3 binding. 
DeepSHAP uses reference baselines to compute differences in neuron 
activations and linearly decomposes the model’s output into contribu-
tions from each input feature. These contributions were then aggregated 
over multiple reference baselines to capture the effect of all possible 
feature combinations, providing a scalable and accurate approximation 
of Shapley values for deep learning models. Contributions were aver-
aged over the embedding dimension to produce one Shapley value per 
amino acid residue in a CDR-H3, and SHAP force plots were then created 
for each sequence. The force plots visualize the impact of each residue 
on the binding of a single CDR-H3, showing how the residue pushed the 
prediction for CDR-H3 from the base value to the model output. To 
understand the overall importance of each position or residue in bind-
ing, global Shapley values were calculated by averaging the Shapley 
values over all CDR-H3 samples in the dataset.

2.7. AlphaFold2 protein complex modeling and analysis

AlphaFold2-Multimer pipeline was used to predict the complete 
three-dimensional structure of the MMP-9cd-scFv complex [48]. This 
approach involved incorporating the amino acid sequences of both the 
antibody heavy and light chains alongside the MMP-9cd sequence 
within a single FASTA file. Subsequently, the generated structures were 
subjected to a relaxation process using Amber, a molecular dynamics 

package, to relieve steric clashes and optimize the geometry for better 
physical realism. Also, up to 20 template hits were allowed during the 
modeling process to enhance the prediction accuracy. These templates 
provide structural references that guide the folding and interaction 
predictions.

3. Results

3.1. Screening of the synthetic scFv library for binding to MMP-9cd 
showed improvement in both expression and binding levels compared to the 
naïve library

A synthetic scFv antibody library previously engineered for 
nonspecific binding was used [25]. Previous study showed an enrich-
ment of four amino acids (Gly, Val, Trp, and Arg) within the CDR-H3 
region [25] of scFv antibody libraries. The Trp residue was shown to 
have a substantial effect on nonspecificity in binding to various antigen 
targets. This knowledge was subsequently applied to generate a new 
library (also known as naïve library in this study), resulting in scFv 
antibodies exhibiting robust binding to a wide range of antigens with 
minimal nonspecificity. The overall backbone of the library used a 
combination of five VH and three VL frameworks, with the majority of 
mutational diversity focused on the CDR-H3 loop [25]. Key highlights of 
this scFv library included the elimination of Trp and a significant drop in 
the frequency of Arg and Val. Additionally, allowing CDR-H3 loop 
length diversity (6 to 17 aa), which mimics the natural repertoire, and 
ensuring a library size of at least one billion members were among the 
significant improvements [25]. This synthetic scFv antibody library was 
subjected to two rounds of FACS targeting MMP-9cd. Two sort gates 
(positive and negative) were used to collect the cells sorted as positive 
binders with dual positive expression and binding signals, and negative 
binders with only positive expression determined by c-Myc detection 
and low MMP-9cd binding (Fig. 2A, Fig. S2).

Although the scFv antibody framework includes a combination of 
different light chains and heavy chains, the backbone and other CDR 
regions except for CDR-H3, which was heavily mutated (both length and 
amino acid composition), exhibit significant similarity to each other 
with up to 80 % sequence homology across the entire scFv backbone. 
Additionally, analyzing a large dataset with both bound and unbound 
antibody structures revealed minimal movement in most CDR regions, 
except for CDR-H3 from the antigen-binding site [49]. Therefore, the 
rationale behind this approach was based on previous studies demon-
strating that CDR-H3 serves as the primary functional contributor to 
antigen recognition in most antigen-binding sites [50–52]. Additionally, 
separate high throughput screenings were conducted to isolate 
high-affinity binders using the positive gate and to identify weak or 
non-binders through the negative gate. The number of selection rounds 
was intentionally limited, aiming not only to isolate the few tightest 
binders but also to obtain a diverse set of unique binders for compre-
hensive statistical analysis.

A significant enrichment of positive scFv binders was observed 
compared to the original or naive library. An increase of more than 10 % 
in the overall expression of collected cells through the positive gate was 
noted, along with a similar increase in binding affinity (Fig. S3). The 
percentage of positive binders collected after two rounds of sorting in 
the P1 gate increased significantly from 3 % to 26 %. This enrichment 
suggests that the sorting strategy effectively isolated high-affinity 
binders from the naïve scFv library (Fig. 2B).

3.2. Next-generation sequencing of the screened scFv antibody library 
revealed enrichment of mainly polar residues after two rounds of FACS

Sequence analysis of scFv binders and non-binders from the positive 
and negative sort gates revealed amino acids likely to enhance binding 
affinity towards MMP-9. The next-generation sequencing (NGS) data, 
which included 2380 unique CDR-H3 sequences from the positive gate 
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and 153 unique CDR-H3 sequences from the negative gate, indicated a 
higher frequency of certain amino acids in the CDR-H3 sequences of the 
final positive library compared to the naive library. Notably, the fre-
quency of arginine (Arg) increased by approximately six-fold (Fig. 3A, 
Fig. S4). This observation is particularly intriguing given that the naive 
library was designed with a low frequency of Arg. The substantial 
enrichment of Arg in the binder-selected pool implies that its presence in 
the CDR-H3 loop likely contributes to the folding or structural stability 
of the heavy chain [53], enhancing the overall binding affinity since all 
collected scFv variants in the positive gate exhibit high expression 
levels. However, the enrichment of positively charged Arg residues 
could also be due to interactions with the negatively charged surface of 
MMP-9cd, particularly at the enzyme’s active site and adjacent regions. 
This observation aligns with previous studies on CDR-H3 regions of 
high-affinity antibody binders, which have demonstrated that an in-
crease in Arg residues occurs after affinity maturation. Additionally, a 
high Arg content in CDR-H3 has been correlated with increased 
nonspecific binding to the target antigen. Additionally, Arg side chains 

are expected to contribute favorably to binding energy in many 
protein-protein interactions [54]. In addition to Arg, other residues were 
enriched in the positive pool are mainly polar residues or those with 
polar side chains, such as Ser, Tyr, Gly, and Gln (Fig. 3B).

A thorough DNA sequencing analysis of all the unique sequences 
obtained for positive binders revealed that regardless of the length of 
CDR-H3, the combinations of Gly/Tyr/Ser residues are dominant in the 
screened scFv with improved MMP-9 binding (Fig. 3C). Overall, these 
results suggest that enrichment of Tyr residue, which is larger in size, 
likely facilitates favorable contacts with the MMP-9cd, while presence of 
smaller residues such as Ser and Gly may contribute to suitable con-
formations beneficial to high-affinity binding. This finding also aligns 
with previous evidence in the structures of Fabs screened from analo-
gous minimalist libraries [55,56]. Taken together, these results suggest 
that high-affinity binding is best mediated by Tyr in combination with 
small, flexible residues like Gly and Ser.

The NGS analysis was also used to determine the frequency of CDR- 
H3 lengths among scFv variants that were screened as positive binders 

Fig. 2. FACS sorting of yeast cells displaying scFvs. A) Yeast cells displaying scFvs were directly incubated with fluorescent-conjugated c-myc antibody and the 
catalytic domain of MMP-9 (MMP-9cd) with 6xHis-tag, and then labeled with fluorescent-conjugated anti c-myc and anti-6xHis antibodies for quantitative analysis of 
expression and binding, respectively. B) Flow cytometry dual scatter plots of the naive scFv library and the screened scFv library after two rounds of FACS sorting 
toward MMP-9cd. The diagonal gate (P1) defines the enriched population of yeast cells displaying scFvs with high MMP-9cd binding affinity.
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and non-binders to MMP-9cd. Interestingly, CDR-H3 sequences with a 
length of 11 amino acids appeared the most frequently in the pool of 
positive binders. This was followed by CDR-H3 lengths of 13, 14, and 12 
residues, respectively. In contrast, non-binders exhibited an enrichment 
of CDR-H3 lengths at 6 and 8 amino acids (Fig. 3D). This is consistent 
with the length of CDR-H3 region (11 amino acids) in REGA-3G12 
antibody, an inhibitor of MMP-9cd [57,58].

The CDR-H3 sequences from the negative binder population of scFv 
variants showed a high abundance of leucine (Leu), Phenylalanine 
(Phe), and methionine (Met) (Fig. S5). These amino acids are classified 
as non-polar and uncharged side chains, typically considered less 
favorable for making strong molecular interactions with MMP-9cd. 
Thus, there is a potential correlation between CDR-H3 length and the 
binding affinity of isolated scFv variants with improved binding to 
MMP-9. The enrichment of shorter CDR-H3 lengths in the non-binder 
population and the dominance of non-polar amino acid residues indi-
cate a reduced capacity for forming key contacts with the MMP-9′s 
binding pockets.

3.3. Performance of the DL model for predicting MMP-9cd binding of scFv 
variants

A stratified 10-fold cross validation was performed on the training 
sequences. Metrics for the LSTM classifiers trained on features extracted 
from ESM-2 (650MB, 3B, and 15B) and AntiBERTy models (Fig. 4). The 
precision indicates the percentage of CDRH-3 sequences predicted by 
the model to be binders that were experimentally verified as binders. 
The recall indicates the percentage of experimentally verified binders 
the models detected. The F1 score is the harmonic mean of precision and 
recall. The LSTM model trained on features extracted from LPLMs is very 

effective at predicting the binding affinity of CDR-H3 to MMP-9 with 
precision close to or above 99 %. The LSTM model trained on features 
extracted from the largest ESM model (ESM-2–15B) has the highest out- 
of-sample F1 score (99.11 %). However, its F1 score exceeds that of the 
smallest model, AntiBERTy, with 26 M parameters, by only 0.67 %. 
Considering the memory usage and the speed of inference for larger 
models, one might prefer the smaller AntiBERTy model over the larger 
ESM models for this application.

Force plots were created using the Shapley values generated by the 
DeepSHAP algorithm. The plot consists of arrows that represent each 
feature’s contribution. The length of the arrow is proportional to the 
binding contribution’s magnitude. Positive contributions were shown in 
red while negative contributions were shown in blue. Indices were used 
to distinguish between the same amino acids in different positions of 
CDR-H3 (Fig. 5A). For instance, REGA-3G12 (CDR-H3: AVIIYGSSWRY) 
was predicted to be a positive binder, with the Gly6 and Val2 residues 
primarily contributing to this binding prediction by the model. On the 
other hand, M0072 (CDR-H3: GAWYL), a non-binder scFv antibody to 
the active MMP-9cd [59], was correctly predicted as a negative binder. 
The Leu5 residue mainly drove this non-binding prediction, as this 
residue frequently appeared in non-binder sequences discussed in the 
NGS analysis section. The residue-position mapping also uncovers spe-
cific interactions between residues and positions critical for under-
standing the scFv variants’ binding mechanisms to MMP-9cd (Fig. 5B).

Analyzing Shapley values extracted from the ML model can be useful 
in identifying specific residues and positions in the CDR-H3 that enhance 
binding to MMP-9cd. The average (global) Shapley value for a specific 
position represents the mean contribution of that position to the scFv 
binding affinity to MMP-9cd, across different possible amino acids 
(Fig. S6A). The positions with high positive average Shapley values (1 

Fig. 3. Next-generation sequencing of binders and non-binders to MMP-9. A) The bar graph displays the frequency of amino acids in the CDR-H3 loop of the 
final scFv library, normalized to the naive library. Each bar’s height indicates the relative enrichment or depletion of a specific amino acid in the final library. B) This 
bar graph represents the proportion of various amino acid types (Positive: R, K, H, Negative: D, E, Hydrophobic: A, I, L, M, F, W, V, Neutral: G, C, P, and Polar: N, Q, S, 
T, Y) at each position within the CDR-H3 region of the scFv variants with 11 aa lengths. Each bar corresponds to a specific position in the CDR-H3 region, showing the 
relative frequency of each amino acid type. The height of each colored segment within a bar indicates the prevalence of that particular amino acid type at the given 
position. C) The sequence logo illustrates the amino acid frequencies at each position within the CDR-H3 loop of the final scFv library with 11 aa residues. The height 
of each letter is proportional to its frequency at a given position, with taller letters indicating higher frequency. D) The distribution of CDR-H3 lengths among positive 
and negative MMP-9cd binders.
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through 6) are critical and could be prime targets for mutations while 
designing targeted libraries to improve binding affinity. Conversely, 
positions with low or negative Shapley values are associated with low or 
no binding to MMP-9cd. The average global Shapley value per amino 
acid residue represents the mean contribution of that residue to the scFv 
variants’ binding to the MMP-9cd (Fig. S6B). The bar chart reveals that 

the amino acid residues Cys, Phe, and Met, in general, have negative 
effects on binding irrespective of their locations. Positional variability 
captures the fluctuations in Shapley values for each position within the 
CDR-H3 region (Fig. S6C). The contributions of positions 1 through 7 
can vary greatly depending on the specific amino acid at these positions. 
The amino acid variability at these positions highlights the flexibility of 

Fig. 4. A computational model for predicting binding affinity of CDR-H3 to MMP-9. The pre-trained LPLMs were used to extract the vector representations 
(embeddings) for the CDR-H3s, which were padded to achieve a uniform length. These embeddings were used to train a downstream LSTM model with LSTM, dense, 
and binary classification layers. The REGA-3G12 CDR-H3 (AVIIYGSSWRY) with a length of 11 amino acids was passed to the pre-trained LPLM ESM-2 650MB. This 
model produced 11 × 1280 vector representations, with 1280 vectors corresponding to each amino acid. To achieve a uniform length of 17 × 1280 (where 17 is the 
maximum length of CDR-H3 in the training dataset), the embeddings were zero-padded. These zero-padded embeddings were input into the downstream LSTM 
model, which had been previously trained to predict CDR-H3 binding affinity to MMP-9. The model predicted a 99 % probability of binding to MMP-9cd for the 
REGA-3G12 CDR-H3 (AVIIYGSSWRY).
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these residues for binding interactions to the MMP-9cd target and could 
be targeted for further optimization.

3.4. The engineered scFv variants showed improvement in MMP-9cd 
binding compared to N-TIMP-1

The individual scFv variants isolated after FACS screening with an 
improved binding affinity towards MMP-9cd were isolated, grown, and 
induced for scFv expression on the yeast and MMP-9 binding. Yeast cell 
surface display serves as a valuable high throughput screening platform 
for quantitative analysis of the expression level of stable scFv mutants 
displayed on the yeast [53,60] and binding to soluble MMP proteins 
using immunolabeling and flow cytometry. A significant increase in 
expression levels (up to three-fold) and MMP-9cd binding up to six-fold 
was achieved compared to N-TIMP-1, a known tight binder of MMP-9cd 
[41](Fig. 6A, Fig. S7). This finding represents a significant achievement 
in developing high-affinity binders for MMP-9cd after two rounds of 
FACS. The flow cytometry dual scatter plots also represent the scFv 
expression and MMP-9cd binding level for these scFv variants compared 
to N-TIMP-1 and REGA-3G12 (Fig. 6B, Fig. S8), demonstrating higher 
expression and MMP-9cd binding values compared to N-TIMP1. 

Additionally, these scFv variants were tested for binding toward 
MMP-3cd, another MMP family member that shares similarities in the 
active site with MMP-9cd but is different in sequence, structure, and 
function. The results showed that all isolated scFv clones isolated after 
screening toward MMP-9cd exhibited a higher binding to MMP-9cd 
compared to MMP-3cd up to three-fold (Fig. S9). This visual evidence 
further supports the significant increase in binding affinity and expres-
sion levels of the scFvs isolated from the synthetic scFv antibody library.

The Sanger sequencing of isolated clones (Table 1), shows that clones 
containing negatively charged residues such as Asp, and positively 
charged residues like Lys, His, and Arg exhibit higher expression 
compared to those that do not contain these residues. Overall, an in-
crease in charged and hydrophilic residues, along with a decrease in 
hydrophobic residues, improved solubility of scFv variants consistent 
with previous observations in this area [61,62].

3.5. The length and charge of the scFv variants’ CDR-H3 have a positive 
effect on MMP-9 binding

AlphaFold2 was used for structural modeling of protein complexes of 
engineered scFv variants with binding improvement toward MMP-9cd. 

Fig. 5. Residue-Position Mapping. A) The Shapley plot illustrates the final prediction of the machine learning model. Red arrows indicate specific amino acids that 
positively contribute to the binding prediction, while blue arrows represent amino acid residues that negatively participate in the binding prediction. B) The heatmap 
represents the impact of various amino acid residues at specific positions on binding affinity. Higher Shapley values (warmer colors) show positive contributions to 
MMP-9 binding, highlighting crucial interactions between residues and positions. Conversely, lower Shapley values (cooler colors) indicate negative contributions.

Fig. 6. scFv variants isolated after two sequential FACS screening for MMP-9cd binding. A) The bar graph shows the mean fluorescence intensity for 6xHis- 
MMP-9cd binding to scFv variants, adjusted for background and normalized to N-TIMP-1 which was used as a positive control for 6xHis-MMP-9cd binding. Yeast- 
displayed scFv variants were incubated with 300 nM soluble 6xHis-MMP-9cd protein in all experiments. Each data point represents the mean of triplicate samples, 
with error bars and the standard error of the mean (SEM) displayed for each data point. B) Flow cytometry scatter plots illustrate several isolated yeast-displayed scFv 
variants with enhanced MMP-9cd binding activity, using N-TIMP-1 as a reference. The x-axis (APC channel) represents binding to 6xHis-MMP-9cd (300 nM), while 
the y-axis (FITC channel) shows scFv expression levels.
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AlphaFold2 Multimer uses a complex deep-learning architecture, spe-
cifically designed to process the complex interactions between amino 
acids [63], by integrating all interacting chains within a single predic-
tion run, effectively simulating the entire complex [64]. This feature 
makes AlphaFold2 Multimer an exceptional tool for predicting complex 
protein-protein interactions like those between antibodies and antigens 
[65]. However, the limited availibity of sufficient co-evolution data 
restricts the accuracy of predicting antibody-antigen interactions as 
antibodies bind strongly to antigens due to process like somatic hyper-
mutation and affinity maturation [66]. The hypermutation and affinity 
maturation processes involve the rapid evolution and selection of anti-
body mutants within an organism to improve binding affinity, distinct 
from the long-term evolutionary processes that co-evolution data typi-
cally capture. Thus, analysis of relative metrics of AlphaFold2 for the 
modeled scFv variants revealed high confidence in the accuracy of the 
model protein complex structures. For instance, all scFv/MMP-9cd 
structures have a predicted Local Distance Difference Test (pLDDT) 
score exceeding 85, indicating AlphaFold’s high confidence in the po-
sitions of each atom within the predicted structures. Furthermore, the 
predicted template modeling (pTM) score, which assesses both the ac-
curacy of the entire predicted protein structure and its similarity to a 
known reference structure, is above 0.5 for all structures, showing a high 
degree of accuracy (Table S1).

The active site and exosite regions of MMP-9cd exhibit a distinct 

negative charge and a concave geometry, though they present a flatter 
conformation compared to other MMPs (Fig. 7). The surface charge and 
geometry of the CDR-H3 loop of scFv antibody variants complement the 
active site of MMP-9. Most of the engineered scFV variants including top 
isolated mutants with upto five-fold improvement of MMP-9 binding 
compared to N-TIMP-1, SynAb-pK16, and SynAb-MK2, are predicted to 
have positively charged CDR-H3 regions that align well with the nega-
tively charged area of the MMP-9 active site and its convex shape. This 
suggests that these variants have specialized adaptations for binding to 
MMP-9cd. This finding is consistent with the positive charge and 
concave geometry of the CDR-H3 loop in REGA-3G12, an MMP-9 
inhibitory antibody, which allows it to effectively fit into the active 
site (Fig. 7).

These isolated scFvs possess 12 amino acid residues in the CDR-H3 
loop. The length and amino acid composition of this region confer a 
convex shape to these isolated scFvs. These distinct features present a 
favorable opportunity for the rational design of scFv variants, particu-
larly by focusing on the CDR-H3 length and amino acid composition of 
murine or human antibodies. These antibodies have shorter CDR-H3 
regions compared to camelid antibodies, making them suitable for 
enhanced binding to the relatively flat active site of MMP-9cd. This 
explains the frequent appearance of charge and polar amino acid resi-
dues in strong binders are predominantly charged and polar. Addition-
ally, the structural studies provide evidence for the longer CDR-H3 

Table 1 
Sanger sequencing of isolated scFv antibodies. Sequences of the different CDR regions in the light and heavy chains are shown in the table. Kabat numbering is used 
for numbering the residues in each antibody.

CDR sequences

Clone names VL VH

L1 L2 L3 H1 H2 H3

SynAb-pK14 RASQSVSSSYLA GASSRAT QQYGSSPSTF GFTFSNAWMS RIKSKTDGGTTDY PSFSAQPPYYS
SynAb-pK15 RASQSVSSSYLA GASSRAT QQYGSSPSTF GSGYSFTSYW GIIYPGDSDTRY GDALDPPMYS
SynAb-pK16 RASQSISSYLN ASSSLQS QQSYSTPLTF GFTFSNAWMS RIKSKTDGGTTDY IQVAKDGQSKTA
SynAb-MK1 RASQSISSYLN ASSSLQS QQSYSTPLTF GSGYSFTSYW GIIYPGDSDTRY DYSASSSGE
SynAb-MK2 RASQSISSYLN AASSLQS QQSYSTPLTF GGTFSSYAIS GGIIPIFGTANY HPIYSGHKGSGG
SynAb-MK4 RASQSVSSSYLA GASSRAT QQYGSSPSTF GFTFSNAWMS RIKSKTDGGTTDY DQATPMYRTYYP

Fig. 7. Surface charge distribution of CDR-H3 on different scFvs and MMP-9cd. The surface charge is visually represented by color, with red indicating 
negatively charged regions, blue showing positively charged areas, and white denoting neutral regions. The 90◦ rotation offers a detailed view of the charge dis-
tribution, revealing the three-dimensional electrostatic landscape and geometry of each protein’s CDR-H3. The active site of MMP-9cd displays a prominent 
negatively charged area, suggesting a strong potential for electrostatic interactions with positively charged CDR-H3 sequences. As a positive control, REGA-3G12’s 
CDR-H3 domain shows a neutral to positive charge distribution, which is well-suited for electrostatic interactions with MMP-9cd.
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regions in high-affinity binders compared to non-binders or weak 
binders, which often feature shorter CDR-H3 loops with a higher pro-
portion of non-polar residues. This pattern indicates that the charge 
distribution in the variable regions of antibodies, particularly within the 
CDR regions, plays a crucial role in determining their antigen-binding 
capability as well as their overall stability and folding [67].

3.6. The scFv variants with improved MMP-9 binding show close contacts 
between CDR-H3 with MMP-9cd active site

Studying the protein complex structure of scFv variants with MMP-9 
revealed important contacts between CDR-H3 and the active site of 
MMP-9cd or neighboring loops (exosites). The interactions of the scFv 
CDR-H3 region with MMP-9cd determines residues and their specific 
position responsible for improving MMP-9cd binding, as well as poten-
tially determining the binding location in proximity to the enzyme 
active site. Protein complexes predicted by AlphaFold multimer for 
REGA-3G12, a known positive binder, and SynAb-pK16 and SynAb- 
MK2, the two highest binders to MMP-9, reveal interesting in-
teractions between the scFvs and MMP-9cd (Fig. 8). Consistent with the 
global Shapley values, the first six positions of CDR-H3 appeared to 
contribute significantly to MMP-9cd binding, with position 6 having the 
closest contacts. Interestingly, for all of these scFvs, position 6 is found 
to be important in binding to the active site residues or neighboring 
residues of MMP-9cd, specifically involving Gly104, Asp233, and 
Gly231 in REGA-3G12, SynAb-pK16, and SynAb-MK2, respectively. This 
highlights the significance of specific amino acids at position 6 in driving 
effective binding interactions with MMP-9cd.

The SynAb-MK2 variant makes several hydrogen bond (H-bonds) 
with MMP-9cd residues close to the active site. The scFv residue Gly231 

at position 6 of CDR-H3 makes an H-bond with residues Ile92 and Pro90 
located at the exosite of MMP9-cd (Fig. 8. B) similar to Gly104, an amino 
acid at position 6 in the REGA-3G12 variant (Fig. 8. A), emphasizing the 
importance of Gly residue, one of the most frequent residues appeared in 
deep sequencing and position 6 of CDR-H3. The SynAb-pK16 variant 
makes several critical interactions with MMP-9cd, particularly at posi-
tion 6 of its CDR-H3, which is Asp233 (Fig. 8. C). This residue plays a key 
role in binding to the exosite of MMP-9cd. Additionally, SynAb-pK16 
makes further contacts through positions 4 and 5 of its CDR-H3, 
which are Ala231 and Lys232, respectively.

Regardless of position 6, as suggested by global Shapley values, po-
sitions 1, 4, and 5 also play significant roles in interacting with MMP-9cd 
in these scFv variants. This highlights the importance of these positions 
in directing the binding towards MMP-9cd. In summary, these findings 
emphasize the role of CDR-H3, particularly the first six positions, in 
enhancing binding between scFvs and MMP-9cd. Further, it highlights a 
potential hot spot residue at position 6 for interaction with MMP-9cd 
and underlines the importance of other residues (positions 1, 4, and 5) 
for proper binding orientation.

4. Discussion

A synthetic antibody library previously engineered for improved 
nonspecific binding 25was used to screen, isolate, and analyze the scFv 
antibody variants with improved binding to MMP-9. The scFv antibody 
variants showed improved binding to MMP-9 compared to endogenous 
MMP-9 inhibitor, N-TIMP-1, and other MMP-9 inhibitory antibodies 
such as REGA-3G12 [57,58]. The role of both length and amino acid 
composition in the CDR-H3 loop in binding to MMP-9 was investigated 
using experimental and computational analysis, considering the 

Fig. 8. Binding interactions between CDR-H3 variants and MMP-9cd. The structure of MMP-9cd (in grey) complexed with the scFv antibody variants is depicted, 
with the light chain (VL) shown in dark blue, the heavy chain (VH) in cyan, and CDR-H3 in dark pink. (A) The REGA-3G12 variant illustrates an interaction at 
position 6 of CDR-H3, where Gly104 forms a hydrogen bond with residues of MMP-9cd. (B) The SynAb-MK2 variant features Gly231 at position 6 of CDR-H3 forming 
hydrogen bonds with Ile92 and Pro90, located at the exosite of MMP-9cd. (C) The SynAb-pK16 variant with residue Asp233 at position 6 of CDR-H3 highlighted, 
which plays a crucial role in binding to the exosite of MMP-9cd, with additional interactions involving positions 4 (Ala231) and 5 (Lys232).
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significance of CDR-H3 in antibody-antigen interactions. The results of 
next-generation DNA sequencing analysis revealed patterns in the 
CDR-H3 of scFvs binders with polar residues such as Ser, and Tyr being 
dominant in frequency. The most favorable length of CDR-H3 for MMP-9 
binding was found to be 11 amino acids which was consistent with 
computational modeling and structural studies in binding to the MMP-9 
catalytic site. Further, the importance of CDR-H3 charge was high-
lighted as the selected scFv variants with improved MMP-9 binding 
showed positive surface charges which match the negative charge in the 
MMP-9cd active site.

A machine learning strategy based on recent advances in developing 
protein language models to predict protein structure and function was 
used to generate a model that predicts scFv variants binding to MMP-9 
based on CDR-H3 sequences as the key driver of binding with high ac-
curacy. The fine-tuned MLM model can be used to highlight significant 
residues for binding to MMP-9 and similar targets. The developed 
models and knowledge could be translated to other protein binders.

The MMP activity could be blocked by targeting the neighboring 
regions outside of the catalytic domain, known as exosites [68]. Unlike 
the catalytic domains, which are similar across MMPs, different MMPs 
have distinct exosites. Targeting exosites using synthetic antibodies was 
previously used to provide selective inhibition of specific MMPs which 
led to the development of mAbs targeting MMP-9, such as AB0041 and 
AB0046, as well as their humanized version, GS-5745 [69]. Using the 
developed language model tools to optimize key regions of scFv anti-
bodies focusing on CDR-H3 regions could facilitate overcoming the 
limitations in targeting specific MMPs.
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