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Abstract
Mouse-tracking is a sophisticated tool for measuring rapid, dynamic cognitive processes in real time, particularly in
experiments investigating competition between perceptual or cognitive categories. We provide user-friendly, open-source
software (https://osf.io/st2ef/) for designing and analyzing such experiments online using the Qualtrics survey platform.
The software consists of a Qualtrics template with embedded JavaScript and CSS along with R code to clean, parse, and
analyze the data. No special programming skills are required to use this software. As we discuss, this software could be
readily modified for use with other online survey platforms that allow the addition of custom JavaScript. We empirically
validate the provided software by benchmarking its performance on previously tested stimuli (android robot faces) in a
category-competition experiment with realistic crowdsourced data collection.
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Introduction

Capturing rapid, dynamic cognitive processes that may lie
outside subjective awareness is a key methodological task
in several realms of experimental psychology. One promis-
ing method for gaining insight into these processes is to
analyze the trajectories of subjects’ mouse cursors as they
complete experimental tasks (Freeman & Johnson, 2016).
For example, in tasks in which subjects must rapidly cat-
egorize stimuli (such as faces) into mutually exclusive,
binary categories (such as “male” and “female”), the trajec-
tories of subjects’ mouse cursors as they attempt to rapidly
select a category button can serve as direct physical
manifestations of cognitive competition between the cat-
egories (see Fig. 1 for a hypothetical trial). Stimuli that
are difficult to categorize because they are intermediate

� Maya B. Mathur
mmathur@stanford.edu

1 Department of Epidemiology, Harvard T. H. Chan School
of Public Health, Boston, MA, USA

2 Quantitative Sciences Unit, Stanford University, 1070
Arastradero Road, Palo Alto, CA 94305 USA

3 Oral & Maxillofacial Surgery (retired), University
of California at San Francisco, San Francisco,
CA, USA

between the two categories or are atypical exemplars of their
category, such as gender-atypical faces, tend to produce
mouse trajectories that differ markedly from those pro-
duced by stimuli falling clearly into one category (Dale,
Kehoe, & Spivey, 2007; Freeman, Ambady, Rule, & John-
son, 2008; Freeman, Pauker, & Sanchez, 2016). That is, the
trajectories produced when subjects attempt to categorize
ambiguous stimuli will tend to reflect the subjects’ “con-
fusion” and simultaneous or alternating attraction to both
categories; these trajectories typically show more changes
of direction and greater divergence from the most direct pos-
sible trajectory from the mouse cursor’s starting and ending
positions. For example, in the hypothetical trial depicted in
Figure 1, the subject must attempt to categorize as “robot”
or “human” a stimulus depicting an extremely human-like
android robot. Mouse-tracking has been used to investigate
category competition in diverse subdisciplines, including
language processing (Dale & Duran 2011; Farmer, Ander-
son, & Spivey, 2007; Spivey, Grosjean, & Knoblich, 2005),
social judgments of white versus black faces (Wojnow-
icz, Ferguson, Dale, & Spivey, 2009; Yu, Wang, Wang, &
Bastin, 2012), and social game theory (Kieslich & Hilbig,
2014).

Collecting reliable mouse trajectories that are compara-
ble across subjects and trials requires precise control over
the visual layout and timing of the experiment, as we will
describe. Perhaps for this reason, mouse-tracking experi-
ments to date have usually been conducted in person, with
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Fig. 1 Typical outcome measures for category-competition experi-
ments. In this example, a hypothetical subject’s cursor trajectory
suggests initial attraction to the “robot” category, but in an early
change of direction, the subject appears to become more attracted to
the “human” category. There is a final, weak attraction once again to
the “robot” category, but the subject ultimately categorizes the face as
“human”. In our implementation, there is a 570-px horizontal distance
between the category buttons and a 472-px vertical distance between
the category buttons and the middle of the Next button

subjects physically present in the lab (with some excep-
tions, e.g., Freeman et al. 2016). Such settings allow for
a consistent visual presentation of the experiment through
the use of existing mouse-tracking software (Freeman &
Ambady, 2010; Kieslich & Henninger, 2017). In contrast,
collecting mouse-tracking data online, for example through
crowd-sourcing websites, could allow for much larger sam-
ples, greater demographic diversity (Gosling, Sandy, John,
& Potter, 2010), and the possibility of implementing the
same experiment in multiple collaborating labs without spe-
cial hardware or software requirements. We are not aware of
existing open-source software that is suitable for these set-
tings, that can accommodate common experimental features
such as presentation of multiple stimuli and randomization,
and that ensures a consistent, validated experimental pre-
sentation even when subjects complete the study from their
home computers or other devices.

The present paper therefore provides open-source soft-
ware enabling reliable and precise design of mouse-tracking
experiments through the widely used software Qualtrics
(Provo, UT, last accessed 10-2018), a graphical user inter-
face that is designed for online data collection that interfaces

easily with crowd-sourcing websites such as Amazon
Mechanical Turk. Our software pipeline consists of:
(1) a premade Qualtrics template containing embedded
JavaScript and CSS that manages stimulus presentation,
trains subjects on the experimental task, and collects mouse
trajectory and time data; and (2) R code to clean, parse, and
analyze the data. We present a validation study demonstrat-
ing consistent data collection even in relatively uncontrolled
online settings and demonstrating that these methods show
concurrent validity when benchmarked using previously
tested stimuli.

A basic category-competition experiment

In a standard category-competition experiment, the subject
views a series of stimuli presented sequentially on separate
pages. The subject must categorize each stimulus by
clicking on one of two buttons presented on the left and right
sides of the window (Fig. 1). Stimuli are typically chosen
such that some fall clearly into one of the categories, while
others are ambiguous or difficult to categorize. Ambiguous
stimuli are thought to activate mental representations of both
categories simultaneously, leading to dynamic competition
that manifests in real time as unstable mouse dynamics
(Freeman & Johnson, 2016). That is, because the subject
is continuously or alternately attracted to both categories,
the mouse trajectory may contain frequent direction changes
and may diverge substantially from a direct path from
the start position to the location of the category button
ultimately chosen.

Specifically, past literature (e.g., Freeman et al. 2008)
has used several outcome measures to operationalize
category competition through mouse dynamics. More
ambiguous stimuli typically increase the number of times
the subject’s mouse changes directions horizontally (x-
flips). Additionally, compared to unambiguous stimuli,
ambiguous stimuli tend to produce trajectories that diverge
more from an “ideal trajectory” consisting of a straight
line from the subject’s initial cursor position to the finally
chosen radio button (Fig. 1, red dashed line). That is, the
maximum horizontal deviation between the ideal trajectory
and the subject’s actual trajectory (Fig. 1, red solid
line), as well as the area between the ideal and actual
trajectories (Fig. 1, pink shading), are typically larger for
ambiguous stimuli. Our implementation calculates these
measures using trajectories rescaled to unit length in both
the x- and y-dimensions and calculates the area using
Riemann integration. Other outcome measures can include
the maximum speed of the subject’s cursor (ambiguous
stimuli tend to produce higher maximum speeds, reflecting
abrupt category shifts (Freeman et al. 2016)) and the total
reaction time for the trial (ambiguous stimuli tend to produce
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Table 1 Modifiable JavaScript global variables

Variable Default Meaning

howManyPracticeImages 6 The number of practice stimuli (for which no mouse trajectories will

be recorded)

howManyRealImages 10 The number of experimental stimuli (for which mouse trajectories will

be recorded)

maxAnswerTime 5000 The maximum time (ms) that can be spent on a trial.

Trials with longer answer times will receive a “took too long” alert.

maxLatency 700 The maximum time (ms) after trial onset for which subject can

leave mouse position unchanged.

Trials with longer latencies will receive a “started too late” alert.

longer reaction times). We calculate reaction time as the
time elapsed between the start of the trial, after the page is
fully loaded, to the time the subject clicks on a button to
categorize the stimulus. However, both maximum speed and
reaction time have limitations and are perhaps best treated
as secondary measures (Freeman et al., 2016).

How to create and analyze an experiment
with our software

Our open-source software provides a user-friendly data
collection and analysis pipeline for creating such exper-
iments as follows. All questionnaire and code files are
available online (https://osf.io/st2ef/), along with a detailed
READ-ME file that users are strongly encouraged to
read before implementation. First, the user imports into
Qualtrics a template questionnaire implementing the val-
idation study presented below. The key feature is two
question “blocks” that present the stimuli sequentially, in
randomized order, via Qualtrics’ “Loop & Merge” fea-
ture; other blocks in the survey, such as one present-
ing demographic questions, can be added or removed as
needed. The image URLs in the Loop & Merge can sim-
ply be edited through the Qualtrics interface to replace
the default stimuli. The first block of the questionnaire
shows instructions (Online Supplement). Then the first
Loop & Merge block presents training stimuli to accli-
matize the subject to the experiment, including to alert
messages designed to optimize subject behavior for mouse-
tracking, detailed in “Optimizing subject behavior for
mouse-tracking” below. The second Loop & Merge block
of experimental stimuli begins data collection by activat-
ing mouse-tracking. The underlying JavaScript that acti-
vates mouse-tracking1 requires no modification except that
global variables specifying the number of training stimuli
(howManyPracticeImages, defaulting to 6) and real

1The JavaScript code is already embedded in the template Qualtrics
files, but it is also available as standalone files (https://osf.io/st2ef/).

experimental stimuli (howManyRealImages, defaulting
to 10) must be changed to match the number of user-
supplied stimuli. Additional parameters that the user can
optionally change are listed in Table 1. The Qualtrics
template also contains (in the “Look and Feel” section
accessible through the Qualtrics user interface) a small snip-
pet of CSS that formats the radio buttons.2 The Qualtrics
questionnaire is then ready to collect data.

After data collection, the raw Qualtrics dataset in
wide format will contain columns with continuous records
of the subjects’ mouse coordinates (xPos and yPos),
the absolute time (ms since January 1, 1970, 00:00:00
UTC, which is the standard origin time in JavaScript)
at which these coordinates were recorded (t), the times
at which each trial began (onReadyTime), and the
times at which the subject chose a category button
(buttonClickTime). These variables are recorded as a
single string for each subject with a special character “a”
separating the individual recordings, enabling easy parsing
in R or another analysis software. That is, onReadyTime
and buttonClickTime are sampled once per trial,
while xPos, yPos, and t are sampled as a triplet
approximately every 16–18 ms.3 Additionally, the user’s

2The CSS code is also available as a standalone file (https://osf.io/
st2ef/).
3Specifically, our JavaScript function for recording mouse position
(getMousePosition) is triggered by “mousemove” events issued
by the browser. Therefore, the frequency of mousemove events
determines the minimum time interval for measuring mouse position.
The current World Wide Web Consortium standards (“UI events”,
2018) do not specify a frequency at which browsers should issue
mouse events, but at the time of writing, the most common browsers
use a de facto standard 60-Hz rate (to match the most common display
screen refresh rate). Other factors may also contribute to the sampling
rate, including mouse DPI (the number of positions reported by the
mouse per inch of movement), the system’s USB polling rate (how
often the mouse is queried for data), and potential variable lag due to
high demand on CPU resources. However, in practice we have found
that the effect of these factors must be minimal because our median
mouse position interval (17 ms) agrees well with the 60-Hz event
reporting interval of 16.7 ms.
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browser, browser version, operating system, and browser
resolution are recorded. Table 2 provides details on these
variables, along with additional variables that are collected
in the raw Qualtrics data but were not used in the present
analyses.

The R code in data prep.R automatically checks
the data for idiosyncratic problems, returning a list of
subjects flagged for possible exclusion, along with reasons
(see “Special considerations for online use” below for

details). The R code then parses the raw data downloaded
from Qualtrics, computes the outcome measures described
above, and returns the dataset in an analysis-ready format.
Specifically, the code first parses the character-separated
strings into a list for each subject, each of which contains
a list for each experimental stimulus. For example, a
particular subject might have the following x-coordinate
lists for the first three stimuli (prior to rescaling the
trajectories to unit length):

[[1]]
[1] 947 946 946 946 946 944 941 938 936 934 932 927 922 916 910

[16] 908 906 903 899 894 887 880 874 867 859 850 839 829 815 803
[31] 794 786 777 768 758 750 744 736 728 723 719 717 714 709 703
[46] 700 696 692 690 689 687 684 681 680 678 676 675 674 672 670
[61] 669 668 668

[[2]]
[1] 972 968 964 960 956 951 946 939 927 917 908 900 888 876 862

[16] 847 831 816 801 784 772 763 753 743 733 725 721 715 709 704
[31] 699 696 694 692 689 685 683 682 679 676 675 674 674 673 672
[46] 671 671

[[3]]
[1] 988 987 986 982 977 972 966 961 953 942 927 910 894 878 866

[16] 849 826 808 792 781 771 761 751 745 741 738 733 729 725 722
[31] 719 715 710 707 704 701 699 696 693 689 686 685 683 682 681
[46] 679 678 676 676 676

In the process, the code accounts for the possibility of
order-randomized Loop & Merge iterates by appropriately
reordering the coordinate and time data. The outcome
measures are computed for each subject and appended
to the wide-format dataset. By default, our analysis code
defines the time variable as the time elapsed from the
beginning of each trial, specifically the time at which the
page was loaded. Note that if the trajectories are to be
directly averaged rather than used to compute the outcome
measures we describe, the times should be standardized to
account for differences in the times elapsed for each trial
(Freeman & Ambady, 2010). This can be accomplished
simply by passing the argument rescale = TRUE to
the function get subject lists when parsing the time
data. Additional outcome measures, such as trajectory
curvature (Dale et al., 2007; Kieslich & Hilbig, 2014;
Wojnowicz et al., 2009) or speed profiles throughout a trial
(Freeman et al., 2016), could also be easily calculated from
the raw coordinate data supplied by the provided R scripts.
Finally, the dataset is reshaped into an analysis-friendly long
format, such that there is one row for each trial rather than
for each subject:

id cat xflips xdev area speed rxnt
1 1 Robot 0 0.132 0.0599 0.00295 1048
2 2 Robot 0 0.112 0.0577 0.00906 701
3 3 Robot 1 0.225 0.1638 0.00776 1184
4 4 Robot 2 0.266 0.1473 0.00328 2022
5 5 Robot 2 0.254 0.1129 0.00655 1410
6 6 Robot 2 0.254 0.1180 0.01493 1037

(Note that the outcome measures xflips, xdev,
and area are computed using rescaled trajectories, so
are unitless.) The code also prints information about
alert messages displayed to subjects, discussed in the
next section. Although analysis methods will differ by
substantive application, we provide an example R file,
analysis.R, which conducts the analyses described in
“Validation study” below.

Methodological details

Optimizing subject behavior for mouse-tracking

If subjects sometimes make their category decisions prior
to moving their mouse cursors—that is, if they wait to
begin moving their cursors until they have already made a
decision—then their mouse trajectories may begin too late
to capture dynamic category competition (Freeman et al.,
2016). For this reason, at the end of each trial in which the
subject took more than 700 ms (by default) to begin moving
the cursor, the questionnaire issues a “started too late”
alert warning the subject to begin moving the cursor faster
at the beginning of each trial. Additionally, to encourage
fast decision-making and discourage subjects from taking
unscheduled breaks from the experiment, after any trial in
which the subject takes longer than 5000 ms (by default)
to make a category decision, the questionnaire issues a
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Table 2 Codebook of mouse-tracking, timing, and computing system variables in raw Qualtrics data

Variable Units Meaning

xPos px x-coordinate of cursor relative to upper left-hand
corner of browser window

yPos px y-coordinate of cursor relative to upper left-hand corner
time ms since 1970-01-01 Time at which each coordinate pair was measured

0:00:00 UTC
onLoadTime ms since 1970-01-01 Time at which page for each trial started loading

0:00:00 UTC
onReadyTime ms since 1970-01-01 Time at which the page for each trial was loaded

0:00:00 UTC (beginning of trial)
buttonClickTime ms since 1970-01-01 Time at which subject made category decision

0:00:00 UTC (end of trial)
pageSubmitTime ms since 1970-01-01 Time at which subject proceeded to next trial by

0:00:00 UTC clicking “Next”
windowWidth px Width of subject’s browser window at beginning of trial
windowHeight px Height of subject’s browser window at beginning of trial
alerts N/A Alerts received during each trial:

0 = none
1 = started too early
2 = started too late
3 = surpassed time limit for trial
4 = window too small to fully display experiment

latency ms Time between onReadyTime and first mouse move
stimulusOrder N/A Stimulus URLs for each trial in the order presented to

subject
browser Browser N/A Internet browser

browser Version N/A Browser version

browser Operating.System N/A Operating system

browser Resolution N/A Browser resolution

“took too long” alert reminding the subject to answer more
quickly (Freeman et al., 2016). Some investigators choose
not to limit total response time (e.g., Kieslich & Hilbig
2014), in which case the parameter maxLatencyTime could
simply be set to a very large value, such as 50,000 ms.
All alerts are recorded in the dataset at the time they are
triggered, but to avoid disrupting the subject’s behavior
during the trial, they are not displayed onscreen until after
the subject selects a category button, but before the subject
clicks the Next button to proceed to the next trial. The
recorded alert data allow investigators to exclude trials or
subjects receiving certain types of alerts if desired. The full
text of all alert messages appears in the Online Supplement.

Special considerations for online use

Asmentioned, allowing subjects to complete the experiment
on their own devices, rather than in a controlled lab setting,
poses several challenges to collecting reliable and precise
mouse-tracking data. For example, the software cannot

precisely position the subject’s cursor at the start of each
trial; browsers do not provide this functionality to preclude
malicious misuse. Furthermore, the experiment interface is
displayed with the same pixel dimensions for every subject
and trial, regardless of the size and resolution of each
subject’s screen, potentially yielding interfaces of somewhat
differing visual sizes for different subjects. Fixing the visual
size, rather than the pixel dimensions, of the experiment
interface across subjects was not feasible because the survey
software does not have reliable access to data on each
subject’s screen size and resolution. Additionally, if subjects
attempted to complete the experiment with a browser
window that is smaller than the size of the experiment
interface (for example, because their devices’ screens are
physically too small), then they might have to scroll in
the middle of each trial, leading to non-continuous mouse
trajectories and erroneous reaction times.

Our JavaScript implementation addresses each of these
possibilities. To ensure that the cursor starts in an
approximately fixed location, the Next button, which is
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the necessary ending point for the cursor on every trial, is
positioned in the same location on every trial. Furthermore,
if the subject moves the cursor away from this position
before the next trial begins (i.e., while the page is loading),
the questionnaire issues a “started too early” alert to warn
the subject not to begin moving the cursor before the page
is loaded. During the first training trial, the code checks the
pixel dimensions of the subject’s browser window, and if
the window is smaller than the expected pixel dimensions
of the experiment interface, the questionnaire issues an alert
instructing the subject to increase the window size until the
stimulus image, both radio buttons, and the submit button
are fully visible. On subsequent trials, the subject’s ability to
scroll is disabled, such that subjects using devices with too-
small screens or browser windows will not have access to
the Next button and will thus be unable to proceed through
the experiment.

As mentioned above, the use of fixed pixel dimensions
does not guarantee that the visual distance between the
buttons will be the same for every subject due to the many
possible combinations of different physical dimensions of
computer monitors and different pixel-per-inch resolutions.
In addition, some subjects might use their browser’s zoom
function, changing both the pixel distances and the visual
distances. Therefore, our R analysis code by default rescales
all trajectories to unit length in both the x- and y-
dimensions. However, the validation study described in
“Validation study” below found systematically larger values
of the outcome measures for subjects with trajectories
suggesting non-standard pixel scaling due, for example, to
zooming typically showed larger values of the outcome
measures. These differences persisted despite that the
trajectories had been rescaled to unit length. Importantly,
despite these mean differences on the outcome measures,
the key stimulus ambiguity effects were comparable
between subjects with non-standard pixel scaling and
subjects with standard pixel scaling. In practice, then,
investigators might choose to simply adjust analysis models
for covariates indicating whether a subject had non-standard
pixel scaling (operationalized as having unexpectedly large
or small pixel distances between the starting and ending
x-coordinates on any trial) and whether a subject had
ever had a too-small window; this is the approach we
adopt in the validation study. Because the experimental
manipulation is randomized, these idiosyncrasies of the
visual display size effectively introduce “non-differential”
noise in the continuous outcome measures, in which case
the estimate for the effect of stimulus ambiguity remains
unbiased even without adjustment for the scaling and
window size variables (Rothman, Greenland, Lash, & et
al. 2008). Thus, estimates should be comparable across
samples with different frequencies of non-standard scaling

and too-small windows. However, adjusting for these
variables as “precision covariates” may improve statistical
power by removing some of the residual variation on the
outcome measures that is due to these visual idiosyncrasies
rather than to stimulus ambiguity. The provided R code
automatically includes these two indicator variables (called
weird.scaling and wts, respectively) in the prepared
long-format dataset. Alternatively, subjects displaying these
idiosyncrasies could simply be excluded.

As an additional data quality concern in online settings,
it is sometimes possible for automated “bots” to complete
Mechanical Turk tasks, yielding invalid data (Difallah,
Demartini, & Cudré-Mauroux, 2012). Because bots do
not physically use computer mice or trackpads to proceed
through the questionnaire, but rather select buttons directly,
they would not provide any mouse trajectories at all for
our data collection system to erroneously record. If a bot
managed to complete the questionnaire and respond to any
alerts in the process, our data preparation script would
automatically flag its data for exclusion due to missing
trajectories.

Extensions to other survey platforms

This software is tailored to the Qualtrics survey platform.
However, because the specialized functions that manage
the collection of mouse trajectory and timing data are
entirely contained in the JavaScript, this code could be
readily adapted to other online survey platforms or custom
experimental interfaces as long as they are able to: (1)
support addition of custom JavaScript, and provide a
JavaScript API with basic functions similar to Qualtrics’
addOnReady, addOnLoad, disableNextButton,
enableNextButton, and setEmbeddedData; (2)
present multiple stimuli iteratively, while recording their
possibly randomized order; and (3) display the experiment
at fixed pixel dimensions. In short, to use this software on
another platform, an investigator would need to use that
platform’s user interface to adjust the questionnaire display
and flow to imitate our Qualtrics-implemented design and
would need to add our custom JavaScript, replacing the
small number of calls to the Qualtrics API with the relevant
functions for the investigator’s own platform. Additionally,
the values of some JavaScript global variables related to
the display of the experiment, such as minWindowWidth
and minWindowHeight, might require modification. The
JavaScript is thoroughly commented to facilitate such
adaptation and further modification by other users. Finally,
it would also be possible for investigators with experience
coding in HTML to create a simple survey platform,
incorporating our Javacsript code, that could be hosted on
their own servers or used to run subjects in the lab.
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Limitations

Our implementation has limitations. Occasional idiosyn-
crasies (e.g., extremely poor quality connections, use of
proxy servers) can cause losses of coordinate data for some
trials or subjects. Our R code automatically checks for sub-
jects with these data losses and creates a list of subject IDs
that should be excluded, along with reasons for exclusion.
The validation study presented below suggested that these
issues affect a small fraction of trials for approximately
10% of subjects when data are collected in an uncontrolled
crowdsourcing setting. A conservative analysis approach,
which we adopt in the validation study, could be to exclude
every subject with data losses on any trial.

Additionally, our implementation cannot control sub-
jects’ individual mouse speed settings. That is, different
mice and trackpads may be set to respond with larger or
smaller onscreen movements for any given physical move-
ment of the subject’s hand, and these differences in mouse
dynamics could affect the confusion measures. Because our
implementation collects data through an Internet browser,
it is not able to measure subjects’ mouse speeds indepen-
dently of, for example, their hand speeds. However, like the
visual idiosyncrasies produced by non-standard pixel scal-
ing or small browser windows, we would expect differences
in mouse speed settings to introduce only non-differential
noise in the outcomes and thus not compromise estima-
tion of stimulus ambiguity effects (albeit with some loss of
statistical power).

Last, although our implementation appears to perform
reliably across common browsers (see “Effect of stimulus
ambiguity on mouse trajectories”), it is incompatible with
Internet Explorer; subjects running Internet Explorer will be
unable to proceed through the questionnaire, and no data
will be collected. (At present, Internet Explorer has only
a 3% share of browser usage worldwide (“Browser market
share worldwide”, 2018). Finally, subjects with very slow
Internet connections, causing image stimuli to load slowly,
may receive a large number of “started too late” alerts,
although their data will otherwise be useable. In practice,
subjects with a high frequency of “started too late” alerts
could be discarded if this were of concern.

Validation study

Design and subjects

To validate the provided software, we used it to perform a
simple category confusion experiment using image stimuli
depicting the faces of humanoid robots ranging from very
mechanical to very humanlike. Previous work (e.g., Mathur
& Reichling 2016; Mathur & Reichling 2009) suggests

that humanoid robot faces that closely, but imperfectly,
resemble humans—those occupying the “Uncanny Valley”
(Mori, 1970)—can provoke intense feelings of eeriness,
dislike, and distrust in human viewers. One mechanism of
these negative reactions may be that robots occupying the
Uncanny Valley provoke category confusion, which may
itself be aversive (Yamada, Kawabe, & Ihaya, 2013). In
partial support for this hypothesis, Mathur and Reichling
(2016) found that robot faces in the Uncanny Valley elicited
the most category confusion. As a validation, we attempted
to conceptually reproduce Mathur and Reichling (2016)’s
findings using the mouse-tracking software presented here.
From Mathur and Reichling (2016)’s stimuli, we arbitrarily
selected five “unambiguous” faces not occupying the
Uncanny Valley (Fig. 2, row 1) and five “ambiguous”
faces occupying the Uncanny Valley (Fig. 2, row 2).
Given previous findings regarding these faces (Mathur
& Reichling, 2016), we expected mouse trajectories to
indicate greater average confusion for ambiguous faces
vs. unambiguous faces. We analyzed mouse trajectories
from n = 188 United States subjects recruited on Amazon
Mechanical Turk from among users with a prior task
approval rating of at least 95%. We compensated subjects
$0.25 to complete the study and set a time limit of 20
minutes for the entire task to discourage subjects from
taking long breaks from the study. Subjects used the
template Qualtrics questionnaire provided here to categorize
each face as either a “robot” or a “human”. We randomized
the order of stimulus presentation for each subject. A link to
a live demonstration version of the questionnaire is provided
at https://osf.io/st2ef/.

Statistical analysis

We regressed each of the five outcome measures described
in “A basic category-competition experiment” on a binary
indicator for stimulus ambiguity. For ease of interpretation,
we first standardized the four continuous outcome vari-
ables (area, maximum x-deviation, peak speed, and reaction
time); thus, their coefficients represent the average number
of standard deviations by which the outcome measure was
larger for ambiguous versus unambiguous trials. Regression
models were semiparametric generalized estimating equa-
tions (GEE) models with a working exchangeable correla-
tion structure and robust inference, and the unit of analysis
was trials (1880 observations). We chose the GEE specifi-
cation in order to account for arbitrary correlation structures
within subjects and within stimuli, as well as to avoid mak-
ing distributional assumptions on the residuals for highly
skewed outcomes such as reaction time. Models for contin-
uous outcomes used the identity link, while the model for
x-flips used the Poisson link. To account for residual varia-
tion in the visual display size of the experiment as described
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Fig. 2 Mouse trajectories for a single subject categorizing unambiguous (top row) versus ambiguous (bottom row) humanoid robot faces.
Trajectories have been rescaled to unit length in both the x- and y-dimensions

in “Special considerations for online use” above, each out-
come model included main effects of indicator variables for
non-standard pixel dimensions and for too-small browser
windows (the variables weird.scaling and wts), as
well as all possible interactions among these nuisance vari-
ables and the stimulus ambiguity indicator. As a sensitivity
analysis, we also performed the analyses excluding all such
subjects (for an analyzed n = 103) rather than adjusting
for the nuisance covariates, yielding nearly identical point
estimates and inference.

Results

Descriptive measures

Table 3 displays demographic characteristics of the ana-
lyzed subjects, as well as their Internet browsers and operat-
ing systems. We collected data on 203 subjects (using an a
priori sample size determination of n = 200) and excluded
24 due to idiosyncratic timing issues, yielding an analyzed

sample size of 188. These exclusion criteria are conserva-
tive in that we excluded all trials for any subject with these
problems on any trial, even if only a small number of tri-
als were affected. As discussed in “Special considerations
for online use”, our questionnaire also collects data on scal-
ing and window size idiosyncrasies that do still allow for
normal data collection but that could in principle affect the
confusion measures; of the analyzed subjects, 18 had a too-
small window on at least one trial, and 77 had non-standard
pixel dimensions on at least one trial. No subject’s data
indicated a clear violation of the instructions, so we com-
pensated all subjects who completed the study on Amazon
Mechanical Turk.

Across all trials, subjects used a median browser window
height of 775 px (25th percentile: 726 px; 75th percentile:
938 px) and a median window width of 1532 px (25th
percentile: 1366 px; 75th percentile: 1846 px). Across
all trials, the median reaction time was 1170 ms (25th
percentile: 859 ms; 75th percentile: 1628 ms). The average
latency (that is, the time elapsed between the beginning of
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Table 3 Demographics and computing system characteristics for
subjects in validation study

Overall

Total N 188

Age (mean (SD)) 36.80 (11.73)

Education (n (%))

Did not graduate high school 2 (1.1)

Graduated 2-year college 35 (18.6)

Graduated 4-year college 75 (39.9)

Graduated high school 54 (28.7)

Post-graduate degree 22 (11.7)

Female (mean (sd)) 0.52 (0.50)

Race (n (%))

Black/African American 16 (8.5)

Caucasian 144 (76.6)

Native American 8 (4.3)

East Asian 12 (6.4)

Hispanic 14 (7.4)

Middle Eastern 4 (2.1)

Southeast Asian 3 (1.6)

South Asian 2 (1.1)

Browser (n (%))

Chrome 153 (81.4)

Edge 2 (1.1)

Firefox 33 (17.6)

Operating system (n (%))

Chrome OS 7 (3.7)

Linux 6 (3.2)

Macintosh 19 (10.1)

Windows 155 (82.4)

the trial and the subject’s first mouse movement) was 442
ms (25th percentile: 87 ms; 75th percentile: 640 ms), which
is short enough to suggest that the mouse trajectories would
have captured dynamic competition processes occurring
almost immediately after stimulus presentation. Across all
sampled mouse coordinate pairs, the median sampling rate
was 17 times per second (25th percentile: 16 ms; 75th
percentile: 18 ms). To provide some reference for the
frequency of alert messages that can be expected, 68% of
trials received no alerts, and the remaining 32% of trials
received a median of 1 alert (of a maximum of 4).4 Table 4
displays the relative frequencies of each alert type among
all alerts received, and Table 5 displays the percent of

4It may appear counterintuitive that a trial could receive all four alerts,
including both “Started too early” and “Started too late”. However,
this can occur if the subject moves the cursor outside the Next button
before the subsequent trial has fully loaded (“Started too early”) but
then, once the subsequent trial is loaded, waits too long to move the
cursor again (“Started too late”). To avoid confusing the subject, in
this situation, only the “Started too early” alert is actually displayed,
though both alerts are recorded in the dataset.

Table 4 Summary of all 711 alert messages received in validation
study across all 1880 trials

Alert type % of all alerts received

Started too early 40

Started too late 31

Surpassed trial time limit 8

Window too small 21

subjects receiving each alert type at least once. The fairly
high frequency of alerts is to be expected: as discussed
in “Optimizing subject behavior for mouse-tracking”, the
alerts, particularly those instructing the subject to begin
moving the cursor sooner or to avoid moving it before
the trial is fully loaded, are designed to optimize subject
behavior rather than to indicate invalid data.

Effect of stimulus ambiguity onmouse trajectories

As a visual example of the mouse trajectories, Fig. 2
shows unit-scaled trajectories from the fifth subject. For this
subject, ambiguous faces 6, 8, and 9 in particular elicited
mouse trajectories characteristic of substantial category
confusion, evidenced by x-flips and large deviations from
the ideal trajectory. (The reason for the rightward trajectory
for face 7 is that the subject classified this face as “Human”,
whereas all the other faces were classified as “Robot”.)
Figure 3 aggregates outcome data across subjects in violin
plots that display the medians of each standardized outcome
measure for ambiguous versus unambiguous stimuli, as
well as density estimates of their distributions. These
results indicate visually that each measure of confusion
was on average higher for ambiguous versus unambiguous
stimuli. That is, aligning with the predicted results discussed
in “A basic category-competition experiment”, subjects’
cursors appeared to make more horizontal changes of
direction, to make less direct paths, and to reach higher
peak speeds for ambiguous versus unambiguous stimuli,
and furthermore trials for ambiguous stimuli elicited longer
reaction times. Point estimates from the GEE models of the
mean difference for each confusion measure for ambiguous
versus unambiguous stimuli (Fig. 3) were in the predicted

Table 5 Percent of subjects (n = 188) receiving each type of alert
message at least once across 10 trials

Alert type % of subjects

Started too early 60

Started too late 58

Surpassed trial time limit 20

Window too small 10
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Fig. 3 Violin plots showing standardized outcome data for 1880 trials
(188 subjects) for ambiguous versus unambiguous face stimuli. Violin
contours are mirrored kernel density estimates.Horizontal lineswithin

violins are medians. ̂β = GEE estimate of mean difference (ambiguous
- unambiguous); p = p value for difference estimated by robust GEE
inference

direction for all stimuli (with p < 0.0001 for all outcomes).
Collectively, these results suggest that the software and
methods presented here adequately capture confusion
when implemented through realistic crowdsourced data
collection.

Consistency of results across computing systems

As a post hoc secondary analysis to assess the consistency
of these stimulus ambiguity effects across browsers and
operating systems, we refit the regression models including
interaction terms of browser (Firefox vs. Chrome) and of
operating system (Macintosh vs. Windows) with stimulus
ambiguity. The resulting coefficients thus estimate the
differences in the stimulus ambiguity effect on confusion
between browsers or between operating systems. We
excluded subjects who used other, much less common,
browsers and operating systems due to their small sample
sizes, yielding 1720 trials in this analysis. Across the five
outcomemodels, the browser interaction coefficients ranged

in absolute value from 0.03 to 0.28 with p values from 0.32
to 0.54, and the operating system interaction coefficients
ranged in absolute value from 0.004 to 0.26 with p values
from 0.14 to 0.62. While this validation study was not
specifically powered to assess for differences in results
across browsers and operating system effects, these results
suggest that any such effects are likely fairly small.
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