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Abstract

Locusts are short horned grasshoppers that exhibit two behaviour types depending on their

local population density. These are: solitarious, where they will actively avoid other locusts,

and gregarious where they will seek them out. It is in this gregarious state that locusts can

form massive and destructive flying swarms or plagues. However, these swarms are usually

preceded by the aggregation of juvenile wingless locust nymphs. In this paper we attempt to

understand how the distribution of food resources affect the group formation process. We

do this by introducing a multi-population partial differential equation model that includes

non-local locust interactions, local locust and food interactions, and gregarisation. Our

results suggest that, food acts to increase the maximum density of locust groups, lowers the

percentage of the population that needs to be gregarious for group formation, and

decreases both the required density of locusts and time for group formation around an opti-

mal food width. Finally, by looking at foraging efficiency within the numerical experiments

we find that there exists a foraging advantage to being gregarious.

Author summary

Locusts are short horned grass hoppers that live in two diametrically opposed behavioural

states. In the first, solitarious, they will actively avoid other locusts, whereas the second, gre-

garious, they will actively seek them out. It is in this gregarious state that locusts form the

recognisable and destructive flying adult swarms. However, prior to swarm formation juve-

nile flightless locusts will form marching hopper bands and make their way from food

source to food source. Predicting where these hopper bands might form is key to control-

ling locust outbreaks. Research has shown that changes in food distributions can affect the

transition from solitarious to gregarious. In this paper we construct a mathematical model

of locust-locust and locust-food interactions to investigate how food distributions affect the

aggregation of juvenile locusts, termed groups, an important precursor to hopper bands.

Our findings suggest that there is an optimal food distribution for group formation and

that being gregarious increases a locusts ability to forage when food becomes more patchy.
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Introduction

Locust swarms have plagued mankind for millennia, affecting every continent except Antarc-

tica and impacting on the lives of 1 in 10 people [1]. A single locust swarm can contain millions

of individuals [2] and in a single day is able to move up to 200 kilometres [3]; with each locust

being able to consume its own body weight in food [4]. Locusts have played a role in severe

famine [5], disease outbreaks [6], and even the toppling of dynasties [7]. More recently, in

March 2020 a perfect storm of events caused the worst locust outbreaks in over 25 years in

Ethiopia, Somalia and Kenya during the COVID-19 pandemic [8]. Damaging tens of thou-

sands of hectares of croplands and pasture, these outbreaks presented an unprecedented threat

to food security and livelihoods in the Horn of Africa. In addition, the onset of the rainy season

meant the locusts were able to breed in vast numbers raising the possibility of further out-

breaks [9].

Locusts are short horned grasshoppers that exhibit density-dependent phase-polyphenism,

i.e., two or more distinct phenotype expressions from a single genotype depending on local

population density [10]. In locusts there are two key distinct phenotypes, solitarious and gre-

garious, with the process of transition called gregarisation. Gregarisation affects many aspects

of locust morphology from colouration [11], to reproductive features [12], to behaviour [13].

Behaviourally, solitarious locusts are characterised by an active avoidance of other locusts,

whereas gregarious locusts are strongly attracted to other locusts. Gregarisation is brought

about by locusts crowding together and can be reversed by isolating the individuals [4]. In the

Desert locust (Schistocerca gregaria), gregarisation can take as little as 4 hours with the time-

frame for reversal dependant on the length of time the individual has been gregarious (again,

potentially as little as 4 hours) [10].

In this gregarious state there is greater predator avoidance on the individual level [14], the

group display of aposematic colours has a greater effect of predator deterrence [15], and the

resulting aggregations may act as a means of preventing mass disease transmission [16]. It is

also in the gregarious state that locusts exhibit large scale and destructive group dynamics with

flying swarms of adult locusts being perhaps the most infamous manifestation of this.

Despite the destruction caused by adult swarms, the most crucial phase for locust outbreak

detection and control occurs when wingless nymphs form hopper bands, large groups of up to

millions of individuals marching in unison [4]. Depending on the species, these groups may

adopt frontal or columnar formations, the former being comet like in appearance with dense

front and less dense tail [17], and the latter being a network of dense streams [4]. As a precur-

sor to hopper bands, nymphs will form gregarious aggregations or groups, i.e. a large mass of

gregarious nymphs. Understanding the group dynamics of gregarious locusts are key to

improving locust surveys and control by increasing our ability to understand and predict

movement.

In addition to the group dynamics, better knowledge of locust interactions with the envi-

ronment would help to improve the prediction of outbreaks [18]. On longer time-scales, envi-

ronmental conditions such as rain events synchronize locust lifecycles and can lead to

repeated outbreaks [10]. On shorter time-scales, changes in resource distributions at both

small and large spatial scales have an effect on locust gregarisation [19–22]. It is these short

time-scale locust-environment interactions that we investigate in this paper, using mathemati-

cal modelling to further understand both their effect on group formation and if there is any

advantage to gregarisation in this context.

As all the mentioned behaviours arise from simple inter-individual interactions, under-

standing the group dynamics of gregarious locusts can also give deep insight into the underly-

ing mechanisms of collective behaviour. Consequently they are an important subject of
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mathematical modelling efforts. Self propelled particle (SPP) models are a frequently used

approach in which locusts are modelled as discrete individuals who update their velocity

according to simple interaction rules. SPPs are catergorised as second order models if they

include particle inertia, and first order (or kinematic) if inertia is neglected [23]. While second

order SSP models have been used fairly extensively as they able to capture collective movement

mechanisms such as alignment or pursuit/escape interactions [2, 17, 24, 25]; first order SPP

models are still useful for modelling the more disordered stages of locust behaviour [26, 27].

One downside of SPP models is that there are few analytical tools available to study their

behaviour. In contrast, continuum models, in which locusts are represented as a population

density that is a function of space and time, can be analysed using an array of tools from the

theory of partial differential equations (PDEs). They are most appropriately employed when

there are a large number of individuals since they do not account for individual behaviour,

instead giving a representation of the average behaviour of the group. The latter (continuum)

approach is adopted in this paper.

The non-local aggregation equation, first proposed by Mogilner and Edelstein-Keshet [28],

is a common continuum PDE analogue of the kinematic SPP model [29, 30]. It is a conserva-

tion of mass equation of the form

@r

@t
þr � � rQ ? rð Þr½ � ¼ 0;

where Q is defined as some social interaction potential, ρ is the density (either mass or popula-

tion per unit area) of the species in question, and ? is the convolution operation. For this type

of model, the existence and stability of swarms has been proven [28], and both travelling wave

solutions [28] and analytic expressions for the steady states [27] have been found. This model

has been further extended to include non-linear local repulsion which leads to compact and

bounded solutions [31]. Usually used for single populations, the model has been further

adapted to consider multiple interacting populations [32]. While the kinematic model does

not capture complex behaviours such as alignment, the steady state solutions determine the

spatial shape and density of flock solutions of second order models (i.e. collective movement

of individuals in the same direction) [23, 33].

In a 2012 paper, Topaz et. al. [34] used a multi-population aggregation equation to model

locusts as two distinct behavioural sub-populations, solitarious and gregarious. By considering

the locust-locust interactions and the transition between the two states, they were able to

deduce both the critical density ratio of gregarious locusts that would cause a group to form

and visualised the rapid transition once this density ratio had been reached [34]. Similarly, in

our work we focus on the formation of aggregations (or groups) of gregarious locusts, visual-

ised as a clump of gregarious locusts, rather than on the collective movement dynamics in hop-

per bands. For simplicity, the Topaz model focused on inter-locust interactions and ignored

interactions between locusts and the environment. While there exists some continuum models

of locust food interactions to investigate the effect of food on peak locust density [35] or to

consider hopper band movement [36], we are not aware of any studies that consider locust-

locust and locust-food interactions as well as gregarisation in a continuum setting.

The aims of this paper are threefold. Firstly, to introduce a new mathematical model that

extends the 2012 Topaz model by including both locust-food dynamics and local repulsion.

The model is based on an idealised locust which has both long and short range locust interac-

tions and only interacts with food when it come into direct contact with it. Secondly, we use

our new model to investigate how the spacial distribution of food affects the gregarisation and

group formation process. Finally, we consider under what conditions being gregarious might

confer an advantage compared to being solitarious in terms of access to food.
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This paper is organised as follows: we begin with the derivation of a PDE model based on

our idealised locust. Then, we look at some mathematical properties of our model with a

homogeneous food distribution. We next use numerical simulations to investigate the effect of

food distribution on group formation, and the relative foraging advantage of gregarisation.

Finally, we summarise our results and offer ideas for further exploration of the model.

Models and methods

In this section we present a PDE model of locust foraging that includes both local inter-indi-

vidual and food interactions and non-local inter-individual interactions. In order to simplify

the model we make the following assumptions about locust behaviour. 1). Locusts can be clas-

sified as either solitarious or gregarious. 2). Locusts only interact with food resources when

they come into direct contact with them. 3). Local interactions between locusts (both gregari-

ous and solitarious) are repulsive (i.e. they avoid close physical contact). 4). Solitarious locusts

experience a non-local (i.e. longer-ranged) repulsion from other locusts of either type. 5). Gre-

garious locusts experience a non-local long-range attraction and short-range repulsion from

other locusts, which is consistent with them forming a well-spaced aggregation [25]. 6). The

nature (attractive or repulsive) and strengths of all interactions are constant in time.

Model derivation

In this model locusts are represented as a density of individuals (number per unit area) in

space and time and are either solitarious, s(x, t), or gregarious g(x, t), with the total local den-

sity defined as ρ(x, t) = s(x, t) + g(x, t). For later convenience we will also define the total mass

of locusts as

M ¼
Z

rðx; tÞ dx ð1Þ

and the global gregarious mass fraction as

�gðtÞ ¼
R
gðx; tÞ dx
M

: ð2Þ

We assume that the time-scale of gregarisation is shorter than the life cycle of locusts, ignor-

ing births and deaths and thus conserving the total number of locusts. We allow for a transi-

tion from solitarious to gregarious and vice-versa depending on the local population density.

Hence, conservation laws give equations of the form

@g
@t
þr � Jglocal þ Jgnon� local

� �
¼ Kðs; gÞ; ð3aÞ

@s
@t
þr � Jslocal þ Jsnon� local

� �
¼ � Kðs; gÞ; ð3bÞ

where Jðs;gÞlocal is the flux due to local interactions, Jðs;gÞnon� local is the flux due to non-local interac-

tions, and K(s, g) represents the transition between the solitarious and gregarious states.

In addition to locust densities, we include food resources in our model and let c(x, t) denote

the food density (mass of edible material per unit area). We assume that locust food consump-

tion follows the law of mass action and on the time-scale of group formation food production
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is negligible, giving

@c
@t
¼ � kcðx; tÞrðx; tÞ; ð4Þ

where κ is the locust’s food consumption rate.

Local interactions. We now turn to specifying the local interaction terms in Eq (3a) and

(3b). These are captured by taking the continuum limit of a lattice model (this should, how-

ever, be only considered an asymptotic approximation [37, 38]) following the work of Painter

and Sherratt [39]. We begin by considering solitarious locust movement on a one-dimensional

lattice with spacing Δx (we assume that local gregarious locust behaviour is the same resulting

in a similar derivation). Let sti be the number of solitarious locusts at site i at time t, and let gti ,
rt
i , and cti be similarly defined.

We assume that the transition probability for a locust at the ith site depends on the food

density at that site, and the relative population density between the current site and neighbour-

ing sites. If we let T �i be the probability at which locusts at site i move to the right, +, and left,

−, during a timestep, then our transition probabilities are

T �i ¼ FðciÞðaþ bðtðriÞ � tðri�1ÞÞÞ;

where F is a function of food density, τ is a function related to the local locust density, and α
and β are constants. If nutrients are abundant at the current site, then we assume locusts are

less likely to move to a neighbouring site, which implies F is a decreasing function. We set,

FðciÞ ¼ e�
ci
c0 ;

where c0 is a constant related to how long a locust remains stationary while feeding. We further

assume that as the locust population density rises at neighbouring sites relative to the popula-

tion density of the current site, the probability of moving to those sites decreases proportional

to the number of collisions between individuals that would occur. Using the law of mass

action, this gives,

tðrÞ ¼ r2;

with any constant of proportionality being subsumed into β. Thus, our transition probabilities

are

T �i ¼ e�
ci
c0ðaþ bðr2

i � r
2
i�1
ÞÞ:

Then the number of individuals in cell i at time t + Δt is given by

stþDti ¼ sti þ T �iþ1
stiþ1
þ T þi� 1

sti� 1
� ðT �i þ T þi Þs

t
i :

From this, we can deduce the continuum limit for both solitarious and gregarious locust densi-

ties, and find our local flux as

Jglocal ¼ � D
@

@x
ge�

c
c0

� �
þ ggre�

c
c0
@r

@x

� �

;

Jslocal ¼ � D
@

@x
se�

c
c0

� �
þ gsre�

c
c0
@r

@x

� �

;

where D and γ are continuum constants related to α and β respectively (and the number of

dimensions, for a full derivation see S1 Appendix). In higher dimensions, the expressions for
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the fluxes are:

Jglocal ¼ � D r ge�
c
c0

� �
þ ggre�

c
c0rr

� �
; ð5aÞ

Jslocal ¼ � D r se�
c
c0

� �
þ gsre�

c
c0rr

� �
: ð5bÞ

Non-local interactions. For our non-local interactions, we adopt the fluxes used by

Topaz et. al. [34]. By considering each locust subpopulation, solitarious and gregarious, as hav-

ing different social potentials, we obtain the following expressions for the non-local flux

Jgnon� local ¼ � rðQg ? rÞg; ð6aÞ

Jsnon� local ¼ � rðQs ? rÞs: ð6bÞ

We also adopt the functional forms of the social potentials used by Topaz et. al. [34], as they

are used extensively in modelling collective behaviour and are well studied [27]. They are

based on the assumption that solitarious locusts have a long range repulsive social potential

and gregarious locusts have a long range attractive and a shorter range repulsive social poten-

tial. The social potentials are given by,

QsðxÞ ¼ Rse
� jxj
rs and QgðxÞ ¼ Rge

� jxj
rg � Age

� jxj
ag ;

where, Rs and rs are the solitarious repulsion strength and sensing distance respectively. Simi-

larly, Rg and rg are the gregarious repulsion strength and sensing distance. Finally Ag and ag are

the gregarious attraction strength and sensing distance.

Gregarisation dynamics. For the rates at which locusts become gregarious (or solitarious)

we again follow the work of Topaz et. al. [34]. We assume that solitarious locusts transition to

gregarious is a function of the local locust density (and vice versa). This gives our equations for

kinetics as,

Kðs; gÞ ¼ � f1ðrÞg þ f2ðrÞs; ð7Þ

where, f1(ρ) and f2(ρ) are positive functions representing density dependant transition rates.

To make our results more directly comparable we again use the same functional forms as

Topaz et. al. [34]:

f1ðrÞ ¼
d1

1þ
r

k1

� �2
; ð8aÞ

f2ðrÞ ¼
d2

r

k2

� �2

1þ
r

k2

� �2
; ð8bÞ

where δ1,2 are maximal phase transition rates and k1,2 are the locust densities at which half this

maximal transition rate occurs.

A system of equations for locust gregarisation including food interactions. By substi-

tuting our flux expressions, (5a) through to (6b), and kinetics term (7), into our conservation

equations, (3a) and (3b), and rearranging the equation into a advection diffusion system, we
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obtain the following system of equations

@g
@t
þr � ðgvgÞ � Dr � e�

c
c0rg

� �
¼ � f1ðrÞg þ f2ðrÞs; ð9aÞ

@s
@t
þr � ðsvsÞ � Dr � e�

c
c0rs

� �
¼ f1ðrÞg � f2ðrÞs; ð9bÞ

@c
@t
¼ � kcðx; tÞrðx; tÞ: ð9cÞ

with

vg ¼ � rðQg ? rÞ þ De�
c
c0

1

c0

rc � grrr
� �

;

and

vs ¼ � rðQs ? rÞ þ De�
c
c0

1

c0

rc � grrr
� �

;

where f1, f2, Qs, and Qg are previously defined.

Non-dimensionalisation. We non-dimensionalise Eq (9a), (9b) and (9c), and the explicit

expressions for f1, f2, Qs, and Qg, using the following scalings

t ¼
1

d2

�t; x ¼ ag�x; ðr; s; gÞ ¼ k1ð�r;�s; �gÞ; and c ¼ c0�c:

Then, dropping the bar notation, the dimensionless governing equations are

@g
@t
þr � ðgvgÞ � D�r � e� crg½ � ¼ � f �

1
ðrÞg þ f �

2
ðrÞs; ð10aÞ

@s
@t
þr � ðsvsÞ � D�r � e� crs½ � ¼ f �

1
ðrÞg � f �

2
ðrÞs; ð10bÞ

@c
@t
¼ � k�cðx; tÞrðx; tÞ; ð10cÞ

where

vg ¼ � rQ�g ? rþ D�e� cðrc � g�rrrÞ; vs ¼ � rQ�s ? rþ D�e� cðrc � g�rrrÞ;

and

Q�g ¼ R�g e
� jxj
r�g � A�g e

� jxj; Q�s ¼ R�s e
� jxj
r�s ;

f �
1
ðrÞ ¼

d
�

1þ r2
; f �

2
ðrÞ ¼

ðrkÞ2

1þ ðrkÞ2
:
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Note that we have introduced the following dimensionless parameters,

D� ¼
D
d2a2

g

; k ¼
k1

k2

; d
�
¼
d1

d2

; g� ¼ k2

1
g; k� ¼

kk1

d2

;

R�g ¼
Rgk1

d2ag
; A�g ¼

Agk1

d2ag
; R�s ¼

Rsk1

d2ag
; r�g ¼

rg
ag
; r�s ¼

rs
ag
:

For notational simplicity we drop the �� notation in the rest of the paper.

Results

PDE model analysis

In this section we investigate the behaviour of our model with a spatially uniform and tempo-

rally constant food density. This assumption corresponds to environments where the lengths-

cale of the food footprint is larger than the lengthscale over which the locusts are distributed,

and where the rate of food consumption is negligible compared to the speed of locust interac-

tions. Aside from simplifying the analysis, this assumption also provides a baseline with which

to compare our later results, and hence assess the impact of a patchy food distribution. Using

this and other simplifying assumptions, we are able to calculate the maximum density and size

of gregarious groups for both small and large numbers of locusts. We then consider the linear

stability of the homogeneous steady states to investigate how the availability of food affects

group formation, before finally investigating how the center of mass is affected by locust inter-

actions. Full details of all calculations can be found in S2 Appendix.

Density of gregarious groups. Under some simplifying assumptions we can estimate the

maximum density and width of gregarious locusts for both small and large numbers of locusts

(i.e. as M! 0 and M!1, respectively), termed the small and large mass limits, in one

dimension. To begin, we assume that c is constant and not depleting, there are minimal solitar-

ious locusts present in the group (i.e. ρ� g), and the effect of phase transitions in the group is

negligible (i.e. f1(ρ)s = f2(ρ)g = 0). Finally, while the support of g is infinite (due to the linear

diffusion) the bulk of the mass is contained as a series of aggregations; consequently we will

approximate the support of a single aggregation as O. Using these assumptions we can rewrite

Eq (10a) as a gradient flow of the form,

@g
@t
¼ r � gr

dE
dg

� �� �

;

where

E½g� ¼
Z

O

1

2
g½Qg ? g� þ

De� cg
6

g3 þ De� cðg logðgÞ � gÞ dx; ð11Þ

where E[g] represents an energy functional (can be thought of as a function of a function, see

[40] for more details on gradient flows) with the minimisers satisfying

dE
dg
¼ ðQg ? gÞ þ

De� cg
2

g2 þ De� c logðgÞ ¼ l:

Next, we follow the work of [31, 35, 41] and with a series of simplifying assumptions we
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consider both the large and small mass limit in turn. First, we note that Eq (1) becomes

M ¼
Z

O

rðxÞ dx ¼
Z

O

gðxÞ dx:

To find the large mass limit, we begin with Eq (11) and assume that g(x) is approximately

rectangular and for a single aggregation that the support is far larger than the range of e
� jxj
r .

This gives e
� jxj
r � 2rdðxÞ (where δ(x) is the Dirac delta function), and therefore Qg� 2(Rg rg −

Ag)δ(x). Using these assumptions we can estimate the maximum gregarious group density,

||g||1, as

jjgjj1 ¼

3 � Rgrg � Ag

� �
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðRgrg � AgÞ
2
�

4ðDe� cÞ2g
3

s0

@

1

A

2De� cg
;

ð12Þ

with support,

jjOjj ¼
2MDe� cg

3 � Rgrg � Ag

� �
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðRgrg � AgÞ
2
�

4ðDe� cÞ2g
3

s0

@

1

A

:

ð13Þ

The accuracy of this approximation is illustrated by Fig 1. We observe that within our model

as c increases so too does the maximum density of our locust formation. However, as the mass

Fig 1. Large mass limit with estimates for the max value and support. The estimates of the max value and support are labelled ||g||1 andO

respectively, with simulation results given by the red lines. For both the simulation and calculations D = 0.01, γ = 60, Rg = 0.25, rg = 0.5, Ag =

1, and c = 0 and 1. As the mass M is increased the gregarious locust shape g becomes increasingly rectangular as the maximum locust density

does not depend on the total mass. In addition as the amount of food is increased from c = 0 on the left to c = 1 on the right, the maximum

density for the gregarious locusts increases.

https://doi.org/10.1371/journal.pcbi.1008353.g001
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of locusts, M, increases the maximum density remains constant and the support ||O|| becomes

larger. Finally, by using these derived relationships with field measurements of maximum

locust densities we can estimate values of γ.

For the small mass limit, we begin with Eq (11) and approximate the social interaction

potential using a Taylor expansion, e
� jxj
r � 1 �

jxj
r (giving Qg � ðRg � AgÞ � jxj

Rg
rg
� Ag

� �
). In

addition, to be able to solve the resulting equations we ignore the effect of linear diffusion

within O. While this gives a less accurate approximation it still shows the effect of food on

maximum density. Under these assumptions, Eq (11) yields

E½g� ¼
Z

O

1

2
g ðRg � AgÞ � jxj

Rg

rg
� Ag

 !" #

? g

 !

þ
De� cg

6
g3 dx: ð14Þ

Following [35], we find the estimate of the maximum gregarious locust density, ||g||1, as

jjgjj
1
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

3M2 Ag �
Rg

rg

 !

4De� cg

3

v
u
u
u
u
t

;
ð15Þ

with support,

jjOjj ¼ B
2

3
;
1

2

� � ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
MDe� cg

6 Ag �
Rg

rg

 !
3

v
u
u
u
u
t

:
ð16Þ

where B is the β-function (for definition see [42], page 207).

The results of these approximations can be seen in Fig 2. While less accurate than those of

the large mass limit, they illustrate that as the amount of food increases, so too does the maxi-

mum locust density. However, the effect is less pronounced than in the large mass case. It also

demonstrates how the maximum locust density and support both increase with an increase in

locust mass.

The accuracy of both the small and large mass approximations and the transition between

the two can be seen in Fig 3 for both the maximum group density and support. In the simula-

tions, we estimate the finite support, O, as the region where g> 0.01. It is worth noting that

the results for large and small mass limits likely apply to locust hopper bands and not just gre-

garious groups [23, 33].

Linear stability analysis of homogeneous steady states. In order to gain insights into the

conditions under which groups can form, we investigate the stability of spatially-homogeneous

steady states. In this analysis we perturb the homogeneous steady states by adding a small

amount of noise. We then find under what conditions the small perturbations grow and are

likely to lead to gregarious aggregations. As the calculation is somewhat lengthy, though stan-

dard, we omit the details here. They can be found in S2 Appendix.

We begin by defining the homogeneous steady states of s, g, and c, as �s, �g , and �c, with the

total density given as �r ¼ �s þ �g . We again assume that c does not deplete (i.e. κ = 0). As we are

assuming either an infinite or periodic domain, we must redefine the global gregarious mass

fraction, Eq (2), as

�gðtÞ ¼
gðtÞ
rðtÞ

: ð17Þ
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Fig 2. Small mass limit with estimates for the max value and support. The estimates of the max value and support are labelled ||g||1 andO

respectively, with simulation results given by the red lines. For both the simulation and calculations D = 0.01, γ = 60, Rg = 0.25, rg = 0.5, Ag = 1,

and c = 0 and 1.

https://doi.org/10.1371/journal.pcbi.1008353.g002

Fig 3. Small and large mass limit estimates and simulated results for both the maximum group density (left) and support (right). In the simulations

we estimate the finite support, O, as the region where g> 0.01.

https://doi.org/10.1371/journal.pcbi.1008353.g003
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By rewriting �s and �g in terms of this global gregarious mass fraction and the total density as

�g ¼ �g�r; and �s ¼ ð1 � �gÞ�r;

we find the condition for group formation as

�g >
��g ¼

De� �c

�r
þ De� �c �rgþ Q̂s

Q̂s � Q̂g

;
ð18Þ

where Q̂s and Q̂g are the Fourier transform of Qs and Qg respectively. From this, it can be seen

that as �r increases the gregarious fraction required for group formation increases. This effect

is diminished as the amount of available food increases.

For our specific functions Qg ¼ Rge
�
jxj
rg � Age� jxj and Qs ¼ Rse

�
jxj
rs , taking the one dimen-

sional Fourier transforms of Qs and Qg using the following definition,

f̂ ðkÞ ¼
Z

Rn
f ðxÞe� ik�x dx;

gives the following relationship,

�g >
��g ¼

De� �c

�r
þ De� �c �rgþ 2Rsrs

2Ag � 2Rgrg þ 2Rsrs
:

ð19Þ

Interestingly, Eq (18) suggests there is also an upper limit on locust density for group for-

mation. This would likely correspond with an environment so thick with locusts that there is

insufficient room for aggregations to form. We can find this density by taking Eq (19) and

substituting ��g ¼ 1 and solving for �r as,

�r ¼
ðAg � RgrgÞ þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðAg � RgrgÞ
2
� ðDe� �cÞ

2
g

q

De� �cg
�

2

3
jjgjj1;

where ||g||1 is maximum density for the large mass limit given in Eq (12).

Finally, we calculate if it is possible for a particular homogeneous density of locusts to

become unstable (and thus form a gregarious aggregation). By calculating the homogeneous

steady state gregarious mass fraction as,

�g ¼
f2ð�rÞ

f1ð�rÞ þ f2ð�rÞ
;

then by combining with (19) we obtain an implicit condition for group formation as

f2ð�rÞ
f1ð�rÞ þ f2ð�rÞ

>

De� �c

�r
þ De� �c �rgþ 2Rsrs

2Ag � 2Rgrg þ 2Rsrs
:

ð20Þ

In Eq (20), if the values on the left are not greater than those on the right then it is not possible

for a great enough fraction of locusts to become gregarious and for instabilities to occur. As

the value of the right hand side decreases as the amount of food increases, we can deduce that

the presence of food lowers the required density for group formation.

Time until group formation with homogeneous locust densities. We also estimate time

until group formation with homogeneous locust densities and a constant c. By assuming that s
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and g are homogeneous we can ignore the spatial components of Eq (10a) and (10b). We again

denote the combined homogeneous locust density as �r however now �r ¼ sðtÞ þ gðtÞ. Finally,

assuming that g(0) = 0, we find the homogeneous density of gregarious locusts as a function of

time is given by

gðtÞ ¼
�rf2ð�rÞ

f1ð�rÞ þ f2ð�rÞ
1 � e� ½f1ð�rÞþf2ð�rÞ�t
� �

;

which we then solve for t� such that gðt�Þ ¼ ��g �r, where ��g is given by Eq (18). This gives an

estimation for time of group formation (i.e. the time required for the homogeneous densities

to become unstable) as,

t� ¼

� ln 1 �
��g ðf1ð�rÞ þ f2ð�rÞÞ

f2ð�rÞ

 !

f1ð�rÞ þ f2ð�rÞ
:

ð21Þ

Thus, as increasing food decreases the gregarious mass fraction, ��g , required for group forma-

tion it follows that it also decreases the time required for group formation.

Conservation properties. Another aspect of the model we investigate is what properties

of locust densities the model conserves. By construction our model preserves the mass of

locusts, i.e. Eq (1) is constant in time. In addition, using a similar method to [31] we show in

S2 Appendix that inRn
and with a constant food source, i.e. c(x, t) is constant in space and

time, the center of mass is also preserved. From this we can conclude that prior to group for-

mation the locust center of mass is only moved due to non-uniformities in the food source.

Numerical results

We now investigate both the effect of food on locust group formation and the effect of gregari-

sation on locust foraging efficiency in one dimension. In order to simulate our equations, we

used a first order upwinding Finite Volume Scheme for the advection component with Fourier

transforms to solve the convolution and central differencing schemes for the diffusion terms.

We used an adaptive Runge-Kutta scheme for time. A full detailed derivation can be found in

S3 Appendix.

Parameter selection and initial conditions. The bulk of the parameters, Rs, rs, Rg, rg, Ag,

k, and δ, have been adapted from [34] to our non-dimensionalised system of equations. We

explore two parameter sets that we will term symmetric and asymmetric based on the time

frame of gregarisation vs solitarisation. In the symmetric parameter set (δ = 1, k = 0.681), gre-

garisation and solitarisation take the same amount of time and the density of locusts for half

the maximal transition rate is lower for solitarisation. This is the default parameter set from

Topaz et. al. [34] with an adjusted k1 term that is calculated using Eq (20) and the upper range

for the onset of collective behaviour as� 65 locusts/m2 [34, 43]. This behaviour is characteris-

tic of the Desert locust (S gregaria) [10].

In the asymmetric parameter set (δ = 1.778, k = 0.1), solitarisation takes an order of magni-

tude longer than gregarisation, and the density of locusts for half the maximal transition rate is

lower for solitarisation. This is the alternative set from Topaz et. al. [34]. The Australia plague

locust (Chortoicetes terminifera) potentially follows this behaviour taking as little as 6 hours to

gregarise but up to 72 hours to solitarise [44, 45]. The complete selection of parameters can be

seen in Table 1.

At the densities we are investigating we will assume that the majority of movement will be

due to locust-locust interactions rather than random motion, so we set our dimensional linear
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diffusion term to be of the order 10−2, giving our non-dimensional linear diffusion as

D = 2.041 for both symmetric and asymmetric parametrisation. Next, we estimate the maxi-

mum locust density as� 1000 locusts/m2 [17] and adapt this to our one dimensional simula-

tion as jjgjj1 � 10
ffiffiffiffiffi
10
p

locusts/m. Then using Eq (12) we find γ = 431.87 for the symmetric

parameters and γ = 294.44 for the asymmetric parameters.

To estimate κ we begin with Eq (10c) and set the nondimensionalised density of locusts to 1

(ρ = 1) (and ρ = 0.5 for the asymmetric parameters), we then want the locusts to consume

approximately 70% of the food over the course of the simulation (i.e., c transitions from c = 1

to c = 0.30). Solving for κ we find κ� 0.09 (and κ� 0.18 for the asymmetric parameters).

Our spatial domain is the interval x = [0, L], where L = 3/0.14 (this comes from non dimen-

sionalising the domain used by [34]), with periodic boundary conditions (i.e., s(0, t) = s(L, t)).
Our time interval is 12.5 units of time (in dimensional terms this is a 3m domain for a simu-

lated 50 hours).

The initial locusts densities are given by

sðx; 0Þ ¼
ramb

16:6
ð16:6þ mÞ and gðx; 0Þ ¼ 0; ð22Þ

where ρamb is a ambient locust density and μ is some normally distributed noise, m � N ð0; 1Þ.
To ensure that simulations were comparable, we set-up three locust initial condition and

rescaled them for each given ambient locust density. Finally, the initial condition for food is

given by a smoothed step function of the form,

cðx; 0Þ ¼
FM

2z
tanh a x � x0 �

z

2

� �� �� �

� tanh a x � x0 þ
z

2

� �� �� �� �

; ð23Þ

with α = 7, x0 = L/2, FM being the food mass and z being the initial food footprint. We will also

introduce ω = 100z/L which expresses the size of the food footprint as a percentage of the domain.

The effect of food on group formation. To investigate the effect that food had on locust

group formation, we ran a series of numerical simulations in which the total number of locusts

and the size of food footprint were varied, while the total mass of food remained constant. The

food footprint ranges from covering 2.5% of the domain to 50% of the domain (ω = 2.5% to

ω = 50%). For the symmetric parameters four food masses were tested, FM = 1.5, 2, 2.5 and 3,

and for the asymmetric variables two food masses were tested, FM = 1.5 and 3. As a control we

also performed simulations with both no food present and a homogeneous food source, repre-

sented by ω = 0% and ω = 100% respectively, for each ambient locust density.

Table 1. Dimensionless parameters used in numerical simulations for both symmetric and asymmetric gregarisation-solitarisation.

Variable Description Symmetric Value Asymmetric Value Source

k Ratio of density of maximal phase transition rates 0.681 0.1 Eq (20) [24] [34] [10] [45]

δ Ratio of maximal phase transition rates 1 1.778 [34] [10] [45]

D Linear diffusion coefficient 2.041 2.041

γ Non-linear diffusion coefficient 431.87 294.44 Eq (12) [17]

Rs Strength of non-local solitarious repulsion 1063.5 878.1 [34]

rs Range of non-local solitarious repulsion 1 1 [34] [24]

Rg Strength of non-local gregarious repulsion 940.5 775.6 [34]

rg Range of non-local gregarious repulsion 0.2857 0.2857 [34] [24]

Ag Strength of non-local gregarious attraction 2008.7 1658.6 [34]

κ Food consumption rate 0.09 0.18 Eq (10c)

https://doi.org/10.1371/journal.pcbi.1008353.t001
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We varied the ambient locust density ranging from ρamb = 0.8 to ρamb = 1.4 for the symmet-

ric parameters. This range was selected based on Eq (20) so that in the absence of food group

formation would not occur. In each simulation, the solitarious and gregarious populations

very quickly tend to an almost smooth and symmetric distribution around the food, however a

small quantity of noise persists across the population and this breaks the symmetry leading to

group formation. As we found in certain cases the initial noise had an effect on whether a

group would form we ran three simulations for each combination of ρamb, ω, and FM with var-

ied initial noise and took the maximum peak density across the three simulations.

For the asymmetric variables we varied ρamb from ρamb = 0.3 to ρamb = 0.55, to test the effect

food had on the time frame of group formation. From Eq (20) in the absence of food there

should be group formation in the upper half of this density range. However Eq (21), suggests

this will only occur outside or right at the end of our simulated time frame. We ran a single

simulations for each combination of ρamb, ω, and FM.

The results for the symmetric parameter experiments are displayed in Fig 4. The plots show

the peak gregarious density of the three simulations for each of the varying food footprint sizes

Fig 4. Maximum gregarious locust density for the symmetric gregarisation parameters with varying food footprint sizes and initial

ambient locust densities. For the simulations, x = [0, 3/0.14] with periodic boundary conditions and t = [0, 12.5]. The initial condition for

locust densities is given by Eq (22) and food initial conditions are given by Eq (23). Ambient locust density ranges from ρamb = 0.8 to ρamb =

1.4, food footprint ranges from ω = 0% to ω = 50%, the food mass FM = 1.5, 2, 2.5 and 3, and the consumption rate κ = 0.09. The plots show

the maximum peak gregarious density for the varying food footprint sizes and ambient locust densities, in the blue regions there was no

group formation and in the green regions there was successful group formation. From this we can deduce that food lowers the required

locust density for group formation and this is more pronounced within an optimal food width.

https://doi.org/10.1371/journal.pcbi.1008353.g004
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and ambient locust densities. In the blue regions there was no group formation, whilst in the

green regions indicate successful group formation. It can be seen in the plots that as the food

mass is increased the minimum required locust density for group formation decreases. This

effect is more pronounced within an optimal food width and this optimal width increases as

the amount of food increases.

The results for the asymmetric parameter experiments are displayed in Fig 5. Again, green

indicates successful group formation and blue indicates no group formation. It can be seen in

these plots that with no food present a group failed to form within the simulated time. From

this we can infer that food also decreases the required time for group formation, again there is

an optimal food width for this effect.

We can delve deeper into the results by looking at a representative sample of simulations in

Fig 6. In these simulations ρamb = 1.2, κ = 0.09, and FM = 1.5, with food footprints ω = 7.5%,

10%, and 12.5% as well as with no food present. In the simulations in which food is present,

prior to group formation gregarious locusts aggregate at the center of the food. If the food

source is too narrow (ω = 7.5%, t = 3) there is an attempt at group formation but the gregarious

mass is too small and the food source has not been sufficiently depleted so a large portion

remains within the food source, thus the group does not persist. If the food is too wide (ω =

12.5%) the gregarious locusts simply cluster in the center of the food and do not attempt group

formation. However, if the food width is optimal (ω = 10%) there is a successful group formed,

this is seen as clump or aggregation of gregarious locusts in the final plot.

The effect of gregarisation on foraging efficiency. It is also possible to investigate the

effect of gregarisation on foraging efficiency. Using [46–48] as a guide we first calculate the per

capita contact with food for solitarious and gregarious locusts, respectively as

ZsðtÞ ¼
1

M

Z L

0

cðx; tÞsðx; tÞ
ð1 � �gðtÞÞ

dx and ZgðtÞ ¼
1

M

Z L

0

cðx; tÞgðx; tÞ
�gðtÞ

dx;

Fig 5. Maximum gregarious locust density for the asymmetric gregarisation parameters with varying food footprint sizes and initial

ambient locust densities. For the simulations, x = [0, 3/0.14] with periodic boundary conditions and t = [0, 12.5]. The initial condition for

locust densities is given by Eq (22) and food initial conditions are given by Eq (23). Ambient locust density ranges from ρamb = 0.3 to ρamb =

0.55, food footprint ranges from ω = 0% to ω = 50%, the food mass FM = 1.5 and 3, and the consumption rate κ = 0.18. The plots show the

maximum peak gregarious density for the varying food footprint sizes and ambient locust densities. In the blue regions there was no group

formation and in the green regions there was successful group formation. From this we can deduce that food lowers the required time

forgroup formation and again this is more pronounced within an optimal food width.

https://doi.org/10.1371/journal.pcbi.1008353.g005
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where M is given by (1). We then calculate the instantaneous relative advantage at time t as

bðtÞ ¼
ZgðtÞ
ZsðtÞ

: ð24Þ

For full reasoning behind the validity of these metrics of foraging efficiency see S4 Appendix.

We then select a range of food footprints, ω%, and two food masses, FM, for a fixed ambient

density of locusts, ρamb = 0.95, from the previous simulations. We record the gregarious mass

fraction and instantaneous relative advantage as functions of time and plot these against each

other in Fig 7. By looking at the instantaneous relative advantage versus the global gregarious

mass fraction prior to group formation in Fig 7, it can be seen that as the gregarious mass frac-

tion increases so too does the foraging advantage of being gregarious. Thus, as a greater pro-

portion of locusts become gregarised it is more advantageous to be gregarious. This effect is

increased by the mass of food present but is diminished by the size of the food footprint to the

point where no advantage is conferred when the food source is homogeneous. This effect is

visualised in Fig 6, as prior to group formation gregarious locusts aggregate in the center of the

food mass and displace their solitarious counterparts.

Fig 6. A selection of plots showing the effect of food distribution on gregarisation and locust group formation with symmetric

parameters. In these simulations ρamb = 1.2, κ = 0.09, and FM = 1.5 with ω = 7.5%, 10%, and 12.5%, as well as with no food present (labelled

ω = 0%). In the plots, blue is solitarious, red is gregarious, and green is food. If the food source is too narrow (ω = 7.5%, t = 3) there is an

attempt at group formation but the gregarious mass is too small and a large portion remains within the food source, thus the group does not

persist. If the food is too wide (ω = 12.5%) the gregarious locusts simply cluster in the center of the food and do not attempt group formation.

Finally, if the food width is optimal (ω = 10%) there is a successful group formed, this is seen as clump or aggregation of gregarious locusts in

the final plot.

https://doi.org/10.1371/journal.pcbi.1008353.g006
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Discussion

Locusts continue to be a global threat to agriculture and food security, and so insights into the

hopper band formation process that can help predict and control outbreaks is of great impor-

tance. In this paper we presented a continuum model that includes non-local and local inter-

individual interactions and interactions with food resources. This model extends the model of

Topaz et. al. 2012 [34] for locust gregarisation to include food interactions and local repulsion.

By analysing and simulating our new model we have found that food acts to: increase maxi-

mum locust density, lower the gregarious fraction required for group formation (an important

precursor to locust hopper bands), and decreases both the required density and time for group

formation with this effect being more pronounced at some optimal food width.

Analytical investigations of our model shows that a spatially uniform and temporally con-

stant food source has a variety of effects has on locust behaviour. Firstly, by considering a

purely gregarious population we found that the maximum locust density is affected by the

amount of food present, in that increasing food leads to increased maximum density. Then, by

performing a linear stability analysis we found the gregarious mass fraction required for group

formation depends on both the ambient locust density and the amount of food present, with

increasing food decreasing the required gregarious mass fraction. Using this relationship we

then found that the presence of food lowers both the required time and density of locusts for

group formation, and interestingly that our model also has a theoretical maximum locust den-

sity for group formation. Finally, we have also shown that the center of mass of locusts is not

dependent on the locust-locust interactions we explored, so prior to non captured interactions

such as alignment the movement of the center of mass is driven by food. In simulations this

Fig 7. Instantaneous relative advantage of gregarious locusts vs gregarious mass fraction at various food footprints and food masses. In

these simulations ρamb = 0.95 and κ = 0.09, with the symmetric parameter set. The homogeneous food source is labelled ω = 100%. It can be

seen that as the gregarious mass fraction increases so too does the foraging advantage of being gregarious, this effect is increased by the mass of

food present but is diminished by the size of the food footprint.

https://doi.org/10.1371/journal.pcbi.1008353.g007
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was seen when prior to group formation gregarious locusts aggregated at the center of the food

source.

Then using numerical simulation techniques we confirmed in our model that similar to

previous studies highly clumped food sources lead to a greater likelihood of gregarisation [20].

However, we found that there may exist an optimal width for these food clumps for group for-

mation. Similar to our analytic investigations, food was shown to lower the required density

for group formation via the symmetric parameters and the required time via the asymmetric

parameters. We also found that the optimal width is dependent on the amount of food present

relative to the locust population. This effect appears to be brought about by the depletion of

the food source, if the food source is not sufficiently depleted, then a gregarious group will fail

to form because a portion of the gregarious population will remain on the food. In addition, by

looking at the relative foraging advantage of gregarious locusts in our simulations we found

that as the gregarious mass fraction increases so too does the foraging advantage of being gre-

garious. This effect is increased by the mass of food present but is diminished by the size of the

food footprint to the point where no advantage is offered with a homogeneous food source.

In 1957 Ellis and Ashall [49] found that dense but patchy vegetation promoted the aggrega-

tion of hoppers and that sparse uniform plant cover promoted their dispersal. While there are

various explanations about the costs and benefits of group living [50], it is less well understood

for phase polyphenism. In addition to studies having shown benefits in terms of predator per-

colation [51] or in relation to cannibalism [52]. Our study, in line with recent studies about

solitary and social foraging in complex environments [53] and Ellis and Ashall observations

[49], provide another possible avenue of exploration for the advantage of phase polyphenism.

As with many models, ours required a variety of simplifying assumptions to keep the math-

ematics tractable, which limits the direct biological relevance of the model at present. While

our model is most applicable in the stage prior to hopper band formation and does not prop-

erly capture the movement of hopper bands, these results presented can give guidance on how

higher order models might behave [23, 33]. With this in mind, there are many ways that the

model could be further developed. First, by having locust behaviours dependent on time, levels

of hunger [54], and/or the inclusion of a heterogeneous age structure. Differing local locust-

locust and locust-food interactions between solitarious and gregarious populations. Finally,

using a higher order model that is able to capture collective movement mechanisms such as

alignment or pursuit/escape interactions [55].

Finally, preventative methods are the key to improving locust control. This includes the

ability to predict mass gregarisation according to resource distribution patterns so that the

area searched for locusts is reduced and control efforts are deployed in high risk areas early on

[18]. Further exploration of our results has the potential to improve predictive gregarisation

models and early detection efforts by further increasing our understanding of the link between

gregarisation and vegetation (resource) distribution (the latter becoming increasingly easy to

quantify during field surveys, and aerial surveys including drones and satellite imagery [21,

45]). Future research could focus on developing decision support systems integrating predic-

tive gregarisation models and GIS data from surveys.
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