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Building on previous studies to provide evidence
for the inclusion of non-coding elements as poten-
tial biomarkers for urothelial bladder cancer (UBC)
[2–6], Jeeta et al. [1] recently identified clinically rel-
evant non-coding mutations in five genes (TBC1D12,
GPR126, PLEKHS1, LEPROTL1 and WDR74). Clin-
ical relevance was assessed by performing analyses of
mutation frequencies across disease stages, associa-
tion with clinical outcomes, distribution of mutations
relative to one another, relative to mutational signa-
tures, their effects on gene expression, and isoform
usage. Substantiated by χ2 tests, logistic regression,
and Cox proportional-hazards models, all of these
analyses were informative. However, with regard to
mutation frequencies, a more direct calculation of
their cancer effect size—which accounts for under-
lying rates of mutation at each site and quantifies
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the somatic selection for each variant [7]—could
strengthen their conclusions regarding sites of genes
that should or should not be included in UBC detec-
tion panels.

Jeeta et al. found that two non-coding sites imme-
diately upstream of the start codon of TBC1D12
were mutated in 25.5% of 302 UBCs—either C−→T
at chr10 : 96162368 (43 tumors) or G−→A at
chr10 : 96162370 (41 tumors). They found that non-
coding mutations were strongly associated with
APOBEC signatures (P < 0.01), and inferred that
APOBEC activity was the primary cause for early and
widespread events in UBC. The frequency of these
non-coding somatic variants of TBC1D12 among
412 UBC tumor exome sequences are publicly avail-
able on the Genomic Data Commons. Our analysis
of the 24 C−→T mutations observed among these
tumors estimated the underlying C−→T mutation
rate at chr10 : 96162368, providing an estimated
cancer effect size of 37241.2, revealing it as the
4th most powerful driver mutation of cancer cell
line growth and survival of all recurrent SNVs in
TCGA-BLCA dataset: a stronger driver than any
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known SNV in UBC-associated driver genes KRAS,
PI3KCA, or FGFR3 [8, 9]. The 42 G−→A changes at
chr10 : 96162370 constituted an effect size of 7247.3
(ranked 30th). This calculated difference in cancer
effect between the two mutations correlates per-
fectly with observed functional differences in gene
expression: a C−→T mutation at chr10 : 96162368
downregulates gene expression, but a G−→A muta-
tion at chr10 : 96162370 does not [4].

The similar frequencies of these mutations
despite their difference in effect may seem puz-
zling. However, the C−→T mutation rate at
chr10 : 96162368 is 1.8×10−6 per cancer-competent
somatic cell per oncogenesis-to-tumor-resection,
whereas the G−→A rate at chr10 : 96162370 is
1.7 × 10−5—nearly an order of magnitude greater.
Why this large difference in underlying muta-
tion rate? G−→A at chr10 : 96162370 occurs in a
sequence context expected to be subject to muta-
tion by APOBEC, while C−→T at chr10 : 96162368
does not [4, 10]. Thus, APOBEC-mediated muta-
genesis explains much of the high prevalence of
chr10 : 96162370, but does not explain the high
prevalence of chr10 : 96162368; rather, its high can-
cer effect size suggests that its prevalence is observed
as a consequence of its major role in UBC tumorige-
nesis. This pattern is remarkable because it stands
in some contrast to the idea that APOBEC mutage-
nesis is particularly prone to be the source of driver
mutations in cancer. However, remarkable or not, it
may not be unusual: it has been shown in head and
neck squamous cell carcinoma that while APOBEC
mutagenesis increases the total number of mutations
occurring, on average, mutations with an APOBEC
signature exhibit a lower cancer effect size [11]. Fur-
thermore, it is not unique to non-coding mutations:
it has also been demonstrated in UBC that S249C,
the FGFR3 coding mutation with the highest muta-
tion rate and highest prevalence (due to APOBEC),
does not possess the highest effect size of FGFR3
mutations [12].

TBC1D12 provides an example of the importance
of such an analysis to the interpretation of non-
coding variant site data—an example in which the
inferred cancer effect size is corroborated by experi-
mental data, and for which the relationship between
APOBEC-induced mutagenesis and cancer effect
size has previously been explored [11]. While the
purposes of variant detection panels can be diverse,
quantification of the relative roles of sites as passen-
ger or driver mutations assists in their precise and
thoughtful design.
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