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Cerebral vessel segmentation is essential and helpful for the clinical diagnosis and the related research. However, automatic
segmentation of brain vessels remains challenging because of the variable vessel shape and high complex of vessel geometry. This
study proposes a new active contour model (ACM) implemented by the level-set method for segmenting vessels from TOF-MRA
data. The energy function of the new model, combining both region intensity and boundary information, is composed of two region
terms, one boundary term and one penalty term. The global threshold representing the lower gray boundary of the target object
by maximum intensity projection (MIP) is defined in the first-region term, and it is used to guide the segmentation of the thick
vessels. In the second term, a dynamic intensity threshold is employed to extract the tiny vessels. The boundary term is used to
drive the contours to evolve towards the boundaries with high gradients. The penalty term is used to avoid reinitialization of the
level-set function. Experimental results on 10 clinical brain data sets demonstrate that our method is not only able to achieve better
Dice Similarity Coefficient than the global threshold based method and localized hybrid level-set method but also able to extract

whole cerebral vessel trees, including the thin vessels.

1. Introduction

Cerebral vascular diseases have become the main incentives
to dizziness, disability, and even death in many countries
around the world, and the research for vessels arouses
concern. The segmentation of cerebral vascular structures is
important for the clinical diagnosis and analysis. In medical
image processing field, segmentation means the extraction
of anatomical structures of interest from original data [1, 2].
Because of low contrast of images, edge blur, and structure
complexity of cerebral vessels, the accurate segmentation is
still a challenging task and deserves to be researched [3, 4].
Over the past few decades, a large number of methods
for vessel segmentation have been proposed, including atlas-
based techniques [5-10], machine learning techniques [11-
14], and active contour model (ACM) [15, 16]. A compre-
hensive review can be referred to in Lesage et al. work [17].
Among these techniques, the ACM has been widely applied in
medical image segmentation because of its easy extensibility.

The ACM is based on geometric curve evolution theory and
the essential idea of that technique is to evolve the initial
curve or surface to the boundaries of target objects driven by
internal forces and external forces [18]. Active contours can
be implicitly presented by the level-set methods, which put
original curves into higher dimensional spaces to research
and are achieved in numerical computations by the Eulerian
approach [19].

ACMs using level-set formulation have various forms of
expression, and they are divided into three major categories:
edge-based, region-based, and hybrid level-set models. In
edge-based models, edges are usually generated first by
an edge-detection algorithm and then using postprocessing
to adjust to the final boundaries [20]. The typical edge-
based model is the geodesic active contour model [21]. The
model combines active contours with the computation of
geodesic distance curve, and it allows to associate classical
snakes based on energy minimization with geometric active
contours based on the theory of curve evolution.
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A method using a new indicator (i.e., salient edge energy)
to guide a given contour robustly and accurately towards the
target object boundary was proposed by W. Kim and C. Kim
[22]. They defined the salient edge energy by exploiting the
higher order statistics on the diffusion space and embedded
it into a variational level-set function. But the edge-based
models are sensitive to noise and seek to oversegment an
image.

Region-based models are built on using the similarity
among pixels to form homogeneous regions in an image [20].
The Mumford-Shah (M-S) model is the typical technique of
that, and it depends on the defined edge function based on
image gradient to stop the evolution process of active contour
curves. When the contour curve is closer to the boundary of
a target object, the value of gradient is higher, which causes
the edge function to be closer to zero, and the evolutionary
curve stops at the location of boundaries [23].

Based on the M-S model, Chan and Vese proposed the
famous C-V model [24]. The C-V model can detect objects
whose boundaries are not necessarily defined by gradient,
because the stopping term defined in the energy function
depends on the gradient of an image and is instead associated
with particular segmentation of the image. In addition, the
authors give a numerical algorithm using finite differences.
Based on the C-V model, Tian et al. [25] proposed embedding
local intensity weighting and a vessel vector field into the
vessel active contour model. However, the model needed to
be improved to better match segment 3D vessels. In these
methods, it is essential to reinitialize the level-set function to
make it close to the signed distance function [26]. However,
the periodic reinitialization is time-consuming, and it is
difficult to prevent the level-set function from being too steep
or flat during the evolution [27]. To solve the problem, Li et al.
[28] proposed a method through embedding the penalty term
for penalizing the deviation of the level-set function from a
signed distance function into the energy function.

Combining region-based methods with other informa-
tion, Said [29] proposed a robust level-set-based multiregion
and texture image segmentation approach. Zhang et al. [30]
proposed a method to associate interactively specified regions
of interest with the active contour model while keeping the
user interaction to the minimum. Sciolla et al. [31] proposed
amultigrid level-set segmentation method based on a region-
based function, the Hellinger distance. Jiang et al. [32] used
the hybrid level-set method with a nonlinear speed function
to extract brain from cerebral MRI volume. Zhao et al. [33]
developed a MIP-guided approach for brain vessel segmen-
tation. They first projected the volume onto the 2D plane,
applied an integrated active contour model to extract blood
vessels from MIP images, and then projected back to the 3D
volume. The proposed method showed satisfying segmenting
results. However, their method is a little complicated with
several projection and back projection operations.

In this study, we propose an ACM implemented by
the level-set method in order to segment cerebral vascular
structures from TOF-MRA data. We consider both the region
information and edge information and combine them to
characterize the energy function. A fixed gray threshold is
used into the region term to represent the global information.
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In addition, we embed the adaptively dynamic threshold
into our model to depict local region information, which
is helpful for segment more integrated vessels. To avoid
reinitializing level-set function in every evolution, the penalty
term proposed by Li et al. is extended to 3D and applied into
our model.

The organization of this study is as follows. In Section 2,
we will introduce the related works. In Section 3, the pro-
posed segmentation methodology is depicted. Experimental
validations and discussion are given in Section 4. Section 5
concludes the paper.

2. Related Works

Considering both region information and boundary infor-
mation and combining them to characterize the energy
function is a good idea for segmenting the complex objects.
Zhang et al. [34] proposed a hybrid level-set (i.e., HLS)
method for segmentation of medical images. They use preset
p value which represents the lower gray-level of target object
to replace p, and y,,, in the region term of traditional C-V
model, and the geodesic active contour model is applied to
represent the edge term. The definition of energy function to
be minimized is defined as

e@) =« | (-wH@da+p[ glvH@)ldo,

where I is the image to be segmented, ) is the image domain,
a and f3 are weighting factors to balance the first-region term
and the second-boundary term, and the zero level set of
level-set function ¢ represents the active contour. H(¢) is the
Heaviside function defined as

1, if¢p=0

H(¢): 0, if¢<0. @

Parameter p is preseted representing the lower gray
boundary of the object to be segmented, which means it will
extract the object with gray higher than y. However, since the
value of p is fixed, it cannot fit the wide intensity distribution
of vessels well, especially for those small thin ones.

To solve the problem, Hong et al. [35] proposed a local-
ized hybrid level-set (i.e., LLS) method for the segmentation
of 3D vessel images, and they calculated locally specified
dynamic threshold p(u) to indicate the lower bound of target
object and embedded the local gray information into the
region term. Defined function u(u) is

(u) = k # Ky (w) * [H (¢ (u)) I (u)]
! K, (u) + H (¢ (w))

, 3)
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where u € Q, k € [0.5,1] is an adjusting coefficient for
preventing the active contours stopping evolution inside the
target areas before reaching the boundary, and K, is the
Gaussian kernel function characterizing the intensity profile
of a blood vessel cross section, such as
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Ky (u) = (4)
which is used to convolve with the image in order to detect the
main vessels. By the use of dynamic threshold y(u) defined in
(3), the method can segment the tiny vessels better, but it may
lose some intensity information of thick parts due to dynamic
p(u) formulation limitations.

In any way, the above two methods both have respective
pros and cons. Former preseted y value drives the contours
to enclose thick vessel boundaries with gray-levels greater
than y, but it can not perform well on tiny vessels. The
latter with dynamic g(u) value can deal with the tiny vessels
better but does not extract the thick vessels completely. Thus,
in our study, we take full advantage of these two methods.
Meanwhile, we also extend the penalty term proposed by Li et
al. [28] from 2D segmentation to 3D application and embed it
into the energy function to keep the characteristic of a signed
distance function.

3. Proposed Methodology

3.1. Definition of the Energy Function. To tackle 3D cerebral
vessel segmentation, we propose a new hybrid level-set model
(i.e., NHLS model) inspired by models in [34, 35]. To segment
more integral vessels, we incorporate dynamic y(u) value to
the original hybrid model, and the proposed energy function
is defined as follows:

e8) e [ (1-w)H($)do
~a | (- u@)H($)do ©

+ﬁjﬂg|VH(¢>)|dQ +yP(¢),

where I is the 3D volume data to be segmented, Q is
data domain, u € Q, y, is set based on the lower gray-
level boundary of the target object, and y(u) is calculated
according to (3) representing the local threshold.

In (5), the four terms play different roles. The first term
represents the global region information which drives the
active contour curve to get close to the regions with bigger
intensity value than p,. The second term is used to represent
local region information which adaptively adjust to the
threshold to segment the local tiny parts. The role of the third-
boundary term is equivalent to the geodesic active contour
model, and it encourages the contour curve to enclose the
regions with high image gradient. Parameters &, , and f3
are used to balance the two region terms and one boundary
term. And the fourth term is the penalty term, in which y is
a preseted parameter controlling the effect of penalizing the

deviation of ¢ from a signed distance function, and P(¢) is
the penalty term to avoid reinitializing ¢ in evolution, which
is defined as

P@)= [ 3 (vp-1Yda ©

The related PDE can be derived from the gradient decent
flow applied to functional (5):

=5(¢)

or(se-an (7))

3.2. Implementation. Edge function g(-) represents the reg-
ularized gradient map used for geodesic active contour and
nonlinear diffusion related to boundary feature of the image.
In this study, g(-) is defined as

_ 1
(142 (8)

Function H(-) is the Heaviside function and the original
function is not continuous; therefore, it cannot fit the smooth
boundary curve of the practical object. To solve this problem,
it is usual to use a kind of smooth function to replace the
original one. There are various proposed smooth types of the
Heaviside function. We adopt the smooth Heaviside function
H(¢) as follow:

H(¢)=%<l+%arctan(%>). )

And the definition of corresponding Dirac function &(¢) is

5(¢) =

ere o

We use the above computations H(¢) and &(¢) to replace
original H(-) and &() in (2) and (7), respectively.

Considering the penalty term in (7), A is the Laplacian
operator, and

A~ d”(|v¢|):‘“v[( |v¢|)v“’] i

has factor 1-1/|V¢| as diffusion rate. If [V¢| > 1, the diffusion
rate is positive. If [V¢| < 1, the diffusion rate is negative.



Equation (7) can be simply written as

¢k+1 _ (/)k
T T aM M BN + yP, (12)
where ¢**! and ¢* denote the level-set function ¢ in (k + 1)th
and kth iterations, respectively, At is the preset time step, M,
is the global region term, M, is the local term, N is the edge
term, and P is the penalty term. It is required to illustrate that
M, is a fixed value decided by I and g, is not related to ¢.
M,, N, and P can be also expressed as M,(¢*), N(¢¥), and
P(¢F), and they are affected by ¢*. Difference equation (12)
can be represented as follows:

¢t = ¢F + At (M, + a,M, + BN +yP).  (13)

Iteration from ¢ to ¢**!

includes five steps:
(i) Compute dynamiclocalized threshold y(u) according
to (3).

(ii) Compute penalty term P in terms of (6).
(iii) Calculate a; M, + o, M, + yP.

(iv) Update ¢* to ¢k’ using </5k, = ¢F + At(, M, + &, M, +
yP).

(v) Update ¢ to ¢**" using ¢**' = ¢* + AtBN, which
is achieved by the semiexplicit method. In fact, we
can also use the explicit method to get ¢**! directly,
which plays the same role with the explicit method.
However, explicit methods have limitations in time
steps, and they need to set time steps small to
keep methods stable. If we use explicit methods, the
time steps maybe set small to make sure that the
process of evolution maintains stability, which leads
to time-consuming process [36]. Thus, we choose the
semiexplicit method.

There is an additional problem to address that is to set
the initial curve of level set. In this study, we apply Frangi’s
vessel enhancement algorithm into the original data and then
implement the canny detection to get the fuzzy boundary of

where «, 8, and ¢ are thresholds of 3D vesselness function
which is used to control the sensitivity of vessel enhancement
filter to parameters R, Ry, and S.

As multiscale eigenanalysis of local Hessian operators
can enhance local rod-like shapes of varying radii. The value

R, R.2
(1-ew(-5) o (-3
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vessel. That boundary curve is used as the initial curve. By
this method, it can make sure that every evolution is around
the vessel region, which improves efficiency.

3.3. Outlier Removement. Since the intensity value of some
nonvessel points are very close to those of vessel points,
some nonvessel points (i.e., outlier) exist in the segmentation
results. In order to remove the outlier points around vessels
as much as possible, we need to consider the shape feature of
vessels.

Eigenvalues of the Hessian matrix have been successfully
used in blood vessel enhancement [37]. For a 3D volume, we
assume that the eigenvalues of the Hessian matrix are sorted
as [A;] = [A,] = |A5]. The ideal tubular structure in a 3D
volume would have

A5l =0,
IA,] < |7, (14)
A=A,

Furthermore, in MRA images, the fact is that vessel structures
are brighter than the background and the Frangi’s vessel
enhancement algorithm makes use of all the eigenvalues of
Hessian matrix, and it can consider fully the geometric feature
that the eigenvalues represent and suppress the impact of
irrelevant points on vessels. They define two geometric ratios
Ry, Rg, and §, respectively, as

[A2As]
|A,] (15)
R = T
]

S= A2+ 1,2+ 4%

where Ry gets maximum for a blob structure, R, differenti-
ates plane structures from line structures because in the latter
situation it will be zero, and S is the measure to distinguish
background which will be slow because the eigenvalues are
small in the background. On the basis of the three parameters,
Frangi et al. define a vesselness function combining those
components as follows:

iftA,>00rA;>0

s> (16)
) (1 - exp (—2—62)> , otherwise,

of vesselness function is between 0 and 1. If objects are
tubular structures, vesselness function V,(S) is close to 1.
For an ideal tubular structure, R, = 1, Rz = 0. It is
noticed that when R; = 0, the second term in (16) is
approximately equal to 1. However, when R, = 1, the value
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FIGURE 1: Outlier removement. NHLS segmentation before (a) and after (b) outlier voxels are eliminated with the connectivity filter and LLS

segmentation before (c) and after (d) the connectivity filter.

of the first term in (16) has slight gap with 1. In order to
make V_(S) approximately equal 1, we take advantage of
function tan(wr/2)x. When x = 1, tan(m/2)x approaches
positive infinity, and exp(-tan(m/2)(x)) is approximately

0,
Va (S) =
(1-

2a2

Considering some available information that can be used
to help remove noise may be lost during the process of
segmentation; therefore, the algorithm is first used onto the
original data to obtain the enhancement vessel structure
instead of being applied directly onto the segmentation result.
Then, we use the vessel structure to guide the elimination
process of nonvessel outlier points in the segmentation result.

4. Experimental Results and Discussion

Experiments in extracting cerebral vessels have been con-
ducted on 10 TOF-MRA data sets which were acquired from
Navy General Hospital. The 4 sets of data (Data 1, Data 2,
Data 3, and Data 4) analyzed in this paper are with the size of
512 x 512 x 216 voxels, the resolution of 0.39 x 0.39 mm?, and
aslice thickness of 1.2 mm. The experiments are implemented
on a computer with Intel® Core™ i5-4590 CPU 3.30 GHZ
CPU, 12.0 G RAM, and Windows 7 operating system. The
parameters used are as follows: At = 2.0, oy = «, =
0.003, f=0.02, y=10, &= 10.

4.1. Comparisons with the HLS and LLS Model. As Figures
1(a) and 1(c) suggest, TOF-MRA is sensitive to fat tissues
which would shutter the blood vessels. A circle of points on
the top of the head is introduced in the segmented volume
due to similar intensity value between tissues and blood
vessels. To eliminate them, the volume is processed with an
automatic connectivity filter. We first perform the Frangi’s
vessel enhancement method onto the original MRA data.
Then, we preserve the points in our segmentation result
that the first step obtained and then start regional growth
algorithm using vessel connectivity. Figures 1(b) and 1(d)

equal to 0, so (1 — exp(—tan(rr/2)(x))) is closer to 1 than
before. Thus, in order to enhance the tubular structures
to a larger extent, we modified the vesselness function as
follows:

ifA,>00rA;>0

2 2 2 (17
p(w»p(%) (1 p(ZS_)) otherwise. )

present the results after applying such a filter to LLS model
and our NHLS model.

All the three methods have been experimented with 10
data sets. Results of the three tests are depicted in Figure 2.
The first column of Figure 2 shows the MIP images. The
second column shows the segmentation results by HLS
model. The third column shows the segmentation results by
LLS model. The last column shows the results segmented by
our NHLS model.

As for HLS model, through analyzing the histogram of the
data set, we notice that the intensity value of cerebral vascular
structures is approximately higher than 200. But, there exist
differences among different parts of vessels, and for some of
them the intensity value may be between 150 and 200. In
our experiments, we set low intensity value g, of the three
level-set method to be 200; it will extract the vessels with
intensity higher than 200 and those lower than 200 will not
be extracted as well. The segmentation result is shown in the
second column.

Aswe can see, the segmentation result of cerebral vascular
structures is not ideal that it only extracts the large artery
structures of vessels but loses many tiny vessel branches.
In that method, key parameter y, is predefined to be 200
which means it is unable to extract the small branches with
intensity lower than 200. On the other hand, predefined y,
is a global threshold; however, the intensity value of different
vessel branches is inhomogeneous and has some differences.
Therefore, it is essential to consider the local features.

As for LLS model, which is an improved method of HLS
model replacing predefined y, with dynamic y(u), dynamic
p(u) is the automatically computed local threshold. The
definition of p(u) is achieved by the Gaussian kernel function
modeling the intensity of a blood vessel cross section.
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FIGURE 2: The result of cerebral vascular structures segmented by three models. Each row relates to one patient: the first column represents
the MIP images. The second column shows the segmentation result of HLS model; the third column shows the segmentation result of LLS
model after noise voxels are eliminated with the connectivity filter; the last column shows the segmentation of NHLS model after noise voxels

are eliminated with the connectivity.

Deviation o of Gaussian kernel is 3.24 in our experiment. The
segmentation result is in the third column.

It is noticed that the segmentation result of the second
method can extract not only the thick artery structures of
vessels but also the tiny branches. On one hand, because the
vessel branches are very complex and intensity inhomogene-
ity occurs in vessel structures, threshold y(u) dynamically
calculated can characterize the local information of vessels
better. On the other hand, using dynamic thresholds repre-
senting the lower bound of vessels can consider the regional
information better and the segmentation results are more
integral than the original one.

However, compared with HLS, the regions of the thick
vessels extracted by LLS are not brighter, which means the
segmentation result of the thick vessels is not integrated. The
defect is caused since the LLS model pays more attention
to local and tiny information and neglects some global
information, and the segmentation result includes some
irrelevant points with the similar intensity value to vessels
around the vessels.

The proposed method in this paper is inspired by the
HLS model and the LLS model. The result is in the last col-
umn. Our model combines the global threshold information
with the localized threshold information. We analyze the
histogram of data and find that the intensity value of vessels
is approximately higher than 200; therefore we set global
threshold 4, to be 200 which means it will extract the target
regions with intensity value larger than 200. By embedding
the global threshold into the energy function, we define

and extract the thick main artery structures of vessels better.
In addition, we conceive a dynamic threshold through the
role of the Gaussian kernel function, which is used to
characterize the local intensity information of vessels. The
local thresholds segment the tiny vessels from background
more completely.

To highlight advantages of our approach, Figure 3
presents some details of Data 1. The first row is the seg-
mentation result, and the second row and third row are the
amplified spatial details corresponding to the local regions
(marked with the blue boxes). The details show that the
result of the HLS model loses many surrounding branches,
the LLS model segments tiny branches, but branches are
not continuous. The last column is the result segmented by
NHLS which extracts those branches, at the same time, it is
more integrated. In addition, the thick structures are hollow
segmented by LLS with dynamic threshold, and our method
solves the defect.

Besides the visual inspection, we also evaluate the seg-
mentation accuracy using the Dice Similarity Coefficient
(DSC), a widely used metric to evaluate segmentation algo-
rithms for different medical image modalities [38]. Radi-
ologists are invited to segment four sets of MRA data,
and the segmentation results are as the ground truth. We,
respectively, count the voxel numbers of results segmented
by HLS, LLS, and our NHLS model and the voxel numbers
of corresponding ground truths. The DSC is defined as

N{M n G}

DSC=2x m x 100, (18)
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FIGURE 3: Some details. The first row represents the segmentation results by HLS, LLS, and NHLS. The second and third row are the amplified
spatial details corresponding to the local region, respectively (marked with the blue boxes).
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FIGURE 4: The DSC of four sets of data using three methods.

where M and G are the segmentation results and ground
truths and N is the voxel number. And N denotes the set
cardinality. It has value 1 when M and G are equal and 0 when
they do not share any voxel.

Figure 4 summarizes the average DSC for three methods.
Three observations can be made from Figure 4. First, the
DSC achieved by our method is over 80% for most cases.
This might be because parts of the vessel were not high-
lighted due to the vascular disease causing disconnection
among voxels in the spatial domain. Second, the average
DSC of our method is 29.7%~44.8% higher than that of
LLS. We think that is mainly due to not ideal segmenta-
tion of main thick vessels. Third, the average DSC of our
method is 22.1%~33.9% higher than that of HLS method.
We believe HLS model’s poor performance is mainly due
to the static intensity threshold. Although we could manu-
ally select the most suitable threshold value for evolution,

it remains challenging to distinguish low contrast vessel from
background.

4.2. Sensitivity Analysis for the Parameters. The correspond-
ing parameters of the above experiments are «;, «,, 3, At, y,
and e. Among them, three parameters «;, «,, and At have
more effects on the segmentation results. Parameters o; and
«, are the weight coefficients of the two region terms, and they
balance the roles between the global grayscale and the local
information. By our test, when «,; equals «,, which means
the two region terms play the same role, our segmentation
results are better. The test on Data 1 is as shown in Table 1.
About At, we reference the selection of time step in [28],
which considers both the speed of evolution and the error
in the boundary location, and it concludes that time step At
usually is set smaller than 10. In our experiments, if the time
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TaBLE 1: Corresponding parameters o, «,.
o, /oy 0.25 0.5 1 2 4
DSC (%) 82.71 85.12 89.49 84.00 80.49

step is bigger, the evolution can be speeded up; however, there
exist more nonvessel points in the segmentation result, which
affects the accuracy. At = 2.0 is a tradeoff and suitable for this
study.

5. Conclusions

We have introduced a new hybrid method for the automatic
segmentation of cerebral vessels based on an active contour
model. The joint energy terms of static and adaptive dynamic
kernel within the level-set framework allow for the extraction
of thick and thin vessels as well. We have evaluated our
method on 10 data sets showing that approximately 80% of
DSC are required, and the method performs comparably bet-
ter than the other two algorithms. Our future work includes
acceleration of the current method and further accuracy
improvement through vascular compartment recognition.
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