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Introduction. Manual delineation of the left ventricle is clinical standard for quantification of cardiovascular magnetic resonance
images despite being time consuming and observer dependent. Previous automatic methods generally do not account for one
major contributor to stroke volume, the long-axis motion.Therefore, the aim of this study was to develop and validate an automatic
algorithm for time-resolved segmentation covering the whole left ventricle, including basal slices affected by long-axis motion.
Methods.Ninety subjects imaged with a cine balanced steady state free precession sequence were included in the study (training set
𝑛 = 40, test set 𝑛 = 50). Manual delineation was reference standard and second observer analysis was performed in a subset (𝑛 =
25). The automatic algorithm uses deformable model with expectation-maximization, followed by automatic removal of papillary
muscles and detection of the outflow tract. Results.Themean differences between automatic segmentation and manual delineation
were EDV −11mL, ESV 1mL, EF −3%, and LVM 4 g in the test set. Conclusions.The automatic LV segmentation algorithm reached
accuracy comparable to interobserver for manual delineation, thereby bringing automatic segmentation one step closer to clinical
routine. The algorithm and all images with manual delineations are available for benchmarking.

1. Introduction

Cardiovascularmagnetic resonance (CMR) imaging can pro-
vide diagnostic information about the left ventricle (LV) with
clinical parameters such as end-diastolic volume (EDV), end-
systolic volume (ESV), ejection fraction (EF), left ventricular
mass (LVM), stroke volume (SV), cardiac output (CO), peak
ejection rate, peak filling rate, and regional wall thickening.
To extract these clinical parameters current clinical practice is
to perform endocardial and epicardial delineationsmanually,
which is time consuming and therefore often only performed
in end-diastole and end-systole [1]. However, delineations in
two frames only will not give peak filling rate and peak ejec-
tion rate which require time-resolved segmentation. There is

also a need for segmentation throughout the cardiac cycle in
the evaluation of patients with dyssynchrony, for example, to
determine first and last segments with contraction [2]. With
a typical time resolution of 30 frames per heartbeat, time-
resolved manual delineation thus requires 15 times longer
than manual delineation in only end-diastole and endsystole.

Automatic segmentation is desirable to reduce both
analysis time and observer dependency. The continued need
for manual delineation indicates that previously suggested
automatic methods do not give satisfactory results. Often
they do not cover the whole LV and there is a need for
much manual interaction. Petitjean and Dacher [3] pointed
out that it is hard to conclude on superiority of any of the
previously proposed methods since the results are obtained
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on images with different quality and in different patient
populations. Also, the methods are validated using different
error measurements, both clinical parameters and image
processing error measurements. In midventricular slices the
errorswere by Petitjean andDacher concluded to be generally
satisfactory [3]. However, basal and apical slices generally
yield higher errors [4].

Inclusion of all basal slices in the segmentation is
important since the atrioventricular plane displacement is a
major contributor to cardiac pumping [5, 6]. The long-axis
motion causes the outflow tract to move in and out of the
imaging plane during a cardiac cycle. Thereby, segmentation
of endocardial and epicardial borders become more difficult
in the most basal slices and an automatic detection of the
long-axis motion is needed. To our knowledge three studies
have included slices with outflow tract [4, 7, 8]. However, in
the study by Jolly et al. [4] the detection of outflow tract was
not defined, in the study by Hu et al. [7] the outflow tract
was detected but the detection of long-axis motion was not
defined, and finally in the study by Codella et al. [8] the user
defined the most basal slice in both end-diastole and end-
systole and thus the long-axis motion was not detected by the
algorithm.

The aims of this study were (1) to develop an algorithm
for time-resolved LV segmentation covering the whole LV,
from the basal slices with outflow tract to the apex, and
(2) to validate this new algorithm with regard to clinical
parameters and image processing errors for comparison to
previous algorithms, and (3) to provide software as well as
images with manual delineation to enable benchmarking for
future algorithms.

2. Methods

2.1. Study Population and Design. In total 90 subjects were
included in the study, both patients referred for clinical
evaluation of known or suspected coronary artery disease
as well as healthy subjects and athletes. The subjects were
scanned using a 1.5T MR scanner (Philips Intera CV, Philips,
Best, The Netherlands) with a cardiac synergy coil. The
sequence used was a balanced steady state free precession
(bSSFP) sequence with retrospective ECG triggering. Typical
imaging parameters were repetition time 2.8ms, echo time
1.4ms, flip angle 60∘, SENSE factor of 2, spatial reconstructed
resolution of 1.4 × 1.4 × 8mm, and 30 reconstructed time
frames per cardiac cycle (acquired spatial resolution 2.3 ×
2.7 × 8mm and temporal resolution 50ms).

The subjects were divided into a training set (𝑛 = 40)
and a test set (𝑛 = 50). The training set was used for
the development and optimization of the algorithm, and the
test set was used to validate the algorithm. The training set
consists of 20 patients, 13 healthy volunteers, and 7 athletes.
The test set consists of 20 patients, 20 healthy volunteers,
and 10 athletes. Manual segmentation was performed for all
slices in end-diastole and end-systole in both the training
set and the test set by an experienced clinician (ErH with
14 years of CMR experience). The training set was reviewed
for consensus by another experienced clinician (HA with 20
years of CMR experience). A subset of 25 subjects from the

test set (10 patients, 10 healthy volunteers, and 5 athletes) was
used for second observer analysis, by another experienced
clinician (MC with 14 years of CMR experience).

Image quality was representative of images likely found
in daily clinical routine. Differences in clinical left ventricular
parameters EDV, ESV, EF, LVM, SV, andCO between patients
and healthy subjects in the test set were nonsignificant
for all parameters except SV. The training set and test set
with manual delineations are available upon request to the
corresponding author to enable direct comparison to other
methods.

2.2. Automatic Segmentation Algorithm. An automatic algo-
rithm was developed for time-resolved segmentation of the
endocardial and epicardial borders of the LV covering all
ventricular slices from themost basal slices with outflow tract
to the apex. The user input required by the algorithm is the
definition of slices to analyze as the most basal slice and most
apical slice containing any myocardium.The slices to analyze
were in this study automatically selected to be the same as
selected for the reference manual delineation. The algorithm
was implemented in the freely available cardiac image analy-
sis software Segment (http://segment.heiberg.se/) [9].

The algorithm is based on a deformable model frame-
work. Deformable model is a segmentation method based on
the idea of deforming a model to the location and shape of
minimal energy in a force field. The model to deform is in
this study a model of either the endocardial or the epicardial
border. The initialization of the model is based on the image
to segment and the initialization is further described in Step
3 of the algorithm. The force field which deforms the model
consists of a weighted sum of image-dependent and model-
dependent forces. The image-dependent forces are a balloon
force image, calculated from image intensities and an edge
force image, based on edge detection. The model-dependent
forces are based on the curvature within the slice, between
adjacent slices and between time frames of the cardiac cycle.
The weighting of the forces in the deformable model was
optimized based on the training set to obtain parameters
suitable for the image type and quality in the training set.
The optimization is further described in Deformable Model
Optimization section.

Step 1 of the automatic segmentation algorithm is to
define the center of the left ventricle, which is needed to
calculate the balloon images in Step 2 and to initialize the
deformable model in Step 3. Steps 4 and 5 use the deformable
model for endocardial and epicardial segmentation. In Steps
6–8 the segmentation resulting from the deformable model is
modified to account for the papillaries and the outflow tract.
All steps are further described below.

The steps of the algorithm are as follows:

(1) definition of the left ventricular center point,
(2) calculation of balloon image,
(3) initialization of segmentation,
(4) endocardial segmentation,
(5) epicardial segmentation,
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(6) exclusion of detached papillaries,

(7) detection of outflow tract,

(8) exclusion of attached papillaries.

Definition of the Left Ventricular Center Point (Step 1). First
the center of the whole heart is defined from the largest bright
region by smoothing and thresholding the image. The center
of the left ventricular cavity is then defined as the center of
gravity of the large, bright region closest to the right of the
whole heart center point.

Calculation of Balloon Image (Step 2). The balloon force,
which is the most important part of the deformable model, is
defined using an expectation maximization (EM) algorithm.
The balloon force drives the expansion and contraction of
the curve and thereby should be a distinction between what
to include and exclude in the endocardial and epicardial
segmentations.The balloon image is mapped from the image
intensities by estimating the distribution of intensities in the
images. For endocardial segmentation the intensity distribu-
tions for blood and myocardium are estimated. In addition
for epicardial segmentation, the intensity distribution of
tissues surrounding the left ventricle is estimated. An EM-
algorithm was utilized to estimate assumed Gaussian distri-
bution of intensities for blood,myocardium, and surrounding
tissues. As an initialization to the EM-algorithm, the mean
and standard deviation for the intensity of blood were
estimated in a cylinder with radius of 10mm placed at the
left ventricular center point. The endocardial balloon image
was calculated as the Gaussian distribution for blood divided
by the sum of the Gaussian distributions for blood and
myocardium. The epicardial balloon image was calculated as
theGaussian distribution formyocardiumdivided by the sum
of the Gaussian distributions for blood, myocardium, and
surrounding tissues.The balloon force is positive for intensity
values to include and negative for intensities to exclude and
the balloon force was rescaled to the interval −1 to 1. Figure 1
shows the results from calculation of the balloon image.

Initialization of Segmentation (Step 3). To initialize both the
endocardial and epicardial segmentations the endocardial
balloon image is used. The endocardium is initialized at
an estimated midmural center line and the epicardium
is initialized as an estimate of the epicardial border. The
initialization is divided into five substeps.

(1) Thresholding the endocardial balloon image at zero
to find regions representative of blood. Balloon
force zero is representative of the probability of
myocardium being equal to the probability of blood.

(2) Finding the left ventricular blood pool as a region
in the thresholded image which surrounds the left
ventricular center point.

(3) Estimating the endocardial border as the convex hull
of the left ventricular blood pool. The convex hull
is an estimation of the endocardial border excluding
papillaries.
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Figure 1: Calculation of balloon force (Step 2). A midventricular
slice of a short-axis stack (a) and the endocardial (b) and epicardial
(c) balloon force images calculated in Step 2 with the automatic
algorithm. The color scale indicates how the deformable model
should expand to include pixels with positive values (red) and
contract to exclude pixels with negative values (blue).

(4) Estimating the left ventricular wall thickness in each
time frame by finding the mean distance from the
initial curve to the right ventricular blood pool.

(5) (a) Expanding the endocardial border estimated in
Step 3 by a half wall thickness to get the endocardial
initialization.



4 BioMed Research International

(b) Expanding the endocardial border estimated in
Step 3 by one full wall thickness to get the epicardial
initialization.

Figure 2 shows the initialization of endocardium and epi-
cardium.

Endocardial Segmentation (Step 4). For endocardial segmen-
tation, the deformablemodel is used with endocardial initial-
ization, endocardial balloon force, andweighting of the forces
optimized for endocardial segmentation. The deformable
model formalism used has previously been described [10].
In short, in the deformable model, the node forces are
normalized and projected onto the curve normal and the
parameterization of the node points is kept equidistant.
The deformable model includes balloon force, edge force,
curvature force, temporal acceleration, and damping forces.

Epicardial Segmentation (Step 5). For epicardial segmenta-
tion, the deformable model is used with epicardial initial-
ization, epicardial balloon force, and weighting of the forces
optimized for epicardial segmentation.The epicardial balloon
force is negative for blood and other tissues surrounding the
myocardium and hence the deformable model will contract
to not include any blood. To get an epicardial segmentation
which expands outwards from the endocardial segmentation
the epicardial balloon force was modified to be zero for all
pixels inside the endocardium.

Exclusion of Detached Papillaries (Step 6). For measurement
of ventricular volumes, the clinical standard is to exclude the
papillaries from themyocardium and therefore the algorithm
should also exclude the papillaries. Since papillary muscles
have the same intensity as myocardium and the main driving
force in the deformable model, the balloon force, is based on
intensity, the algorithm may have difficulties with excluding
the papillaries from the myocardium hence including the
papillaries within the endocardial segmentation. The exclu-
sion of papillaries is divided into two steps, this step and
Step 8. In this step, detached papillaries are included inside
the endocardial segmentation by taking the convex hull of
the endocardial segmentation and refining the segmentation.
The segmentation is refined by using the deformable model
with a modified endocardial balloon force. The endocardial
balloon force is modified by setting the balloon force to zero
for papillaries, which are detected as pixels inside the convex
hull with a negative balloon force.

Detection of Outflow Tract (Step 7). The deformable model
gives endocardial and epicardial segmentation in all selected
slices and time frames. Thereafter, long-axis motion and
outflow tract are detected and in the basal slices the segmen-
tation is adjusted accordingly. The detection of the long-axis
motion is based on detecting sectors in the basal slices for
which the intensities between the endocardial and epicardial
segmentation are not typical for myocardium and sectors
with a mean wall thickness of less than 2 millimeters. Basal
slices were for detection of outflow tract defined as the
most basal 40% of the ventricular length in end-diastole
and all slices were divided into 24 sectors circumferentially.

(a)

(b)

Figure 2: Initialization of segmentation (Step 3). The initializations
of endocardial (red) and epicardial (green) borders resulting from
Step 3 in the algorithm, shown in end-diastole (a) and end-systole
(b) in themidventricular slice also used for Figure 1.The endocardial
initialization is an estimation of themidmural line and the epicardial
initialization is an estimation of the epicardial border.

The intensities in basal slices are compared to intensities in
all slices. Sectors with a mean intensity 2 SD above the mean
are marked as sectors to remove. Sectors can only be marked
as sectors to remove if the sectors are also removed in a
more basal slice. Sectors to be removed are smoothed over
time and circumferentially in each slice and a morphological
opening is performed to get a cohesive region to remove.
To remove the marked sectors a straight line is drawn for
both endocardium and epicardium. Thereby a D-shaped
segmentation is obtained after adjustment for presence of
outflow tract. Figure 3 shows the segmentation in a basal slice
before and after the detection of outflow tract.

Exclusion of Attached Papillaries (Step 8). To exclude papil-
laries which are closely attached to the left ventricular wall
in the segmentation, it is not sufficient to take convex hull
and refine as in Step 6 since there is no blood volume which
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(a)
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Figure 3: Detection of outflow tract (Step 7). The endocardial
(red) and epicardial (green) segmentations are shown prior to the
detection of outflow tract in Step 7 (a) and after adjustment of
segmentation for presence of outflow tract (b) in the same basal slice
in end-diastole.

can guide the deformable model on where to expand the
segmentation. Therefore, in this step an expansion of the
endocardial segmentation is calculated based on a constant
papillary volume over time and a similar position of the
papillary muscles over time. Sectors with a lower papillary
volume inside the endocardial segmentation than in end-
diastole are expanded to include more papillary volume. The
long-axis displacement found when detecting the outflow
tract in Step 7 is used to map slices in end-diastole to the
corresponding slice in all other timeframes. Expansion of
the endocardial segmentation is restricted to slices below the
outflow tract in order to not falsely take the mitral valve into
account as papillary muscle.

2.3. DeformableModel Optimization. Weighting of the forces
in the deformable model was optimized with a steepest-
descent method in a 2-factorial design by using the images
in the training set with manual delineation as reference

standard. For the endocardial segmentation the error to min-
imize was the sum of the relative errors of the end-diastolic
volume, and the relative number of falsely segmented pixels
in end-diastole by comparing the automatic segmentation
to manual delineation. Only the end-diastolic errors were
included since the errors in end-systole are largely influenced
by the presence of papillary muscles which is not especially
accounted for within the deformable model.

For the epicardial segmentation the error to minimize
in the optimization was the sum of the relative errors of
left ventricular mass, in end-diastole and end-systole, and
the relative number of falsely segmented pixels, in end-
diastole and end-systole. In order to not take into account
any volumetric errors in left ventricular mass given by
the automatic endocardial segmentation, the left ventricular
mass was during optimization calculated using the manual
delineation of endocardium.

2.4. Statistical Analyses. In the test set the difference between
manual delineation and automatic segmentation was com-
puted for the clinical parameters EDV, ESV, EF, LVM, SV, and
CO as well as the image processing error measurements dice
similarity coefficient (DSC) [11] and point to curve distance
(P2C).

The errors for clinical parameters are given both as abso-
lute errors and as percentage of the result from the manual
delineation. Paired 𝑡-test was performed with significance
level 𝑃 < 0.05 to test for difference compared to manual
delineations. A linear regression was performed for the clin-
ical parameters and a regression 𝑅-value and corresponding
𝑃-value were calculated. The DSC is calculated as two times
the volume of the intersection of two regions divided by
the sum of the volume for those regions [11]. The DSC is
therefore 0 if the regions do not overlap and 1 if the regions
overlap perfectly.TheP2C errorwas calculated as the distance
between two borders in each slice and time frame where both
borders were present. To calculate the distance both borders
were resampled to be represented by 80 points spaced at
every 4.5 degrees. The DSC and P2C errors were calculated
between automatic segmentation and manual delineation for
both endocardial and epicardial segmentation separately.The
DSC and P2C error were calculated as a mean over all slices
in both end-diastole and end-systole as well as separately
for end-diastole and end-systole and separately for basal,
midventricular, and apical slices. Basal, midventricular, and
apical slices were defined as one third each of the ventricular
length in both end-diastole and end-systole. All errors were
reported as mean ± SD.

In the subset for which second observer manual delin-
eation was performed the same error calculations as for
the full test set were performed for automatic segmentation
versus reference manual delineation and for second observer
manual delineation versus reference manual delineation.

3. Results

Automatic segmentation was performed and compared to
manual delineation in the test and compared to interob-
server variability in a second observer subset. In one patient
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Figure 4: Example of segmentation in end-diastole and end-systole. An example of automatic segmentation is shown in end-diastole (a)
and end-systole (b). Each panel shows the short axis stack covering the left ventricle from base to apex with endocardial (red) and epicardial
(green) segmentations. Note how the outflow tract has moved out of the two most basal slices in end-systole (b, images marked ∗), compared
to end-diastole (a) and that the algorithm has automatically corrected for this long-axis motion.

the automatic segmentation failed due to a severe bright fold-
in artifact connecting the right and left ventricle.This patient
was excluded from further analysis resulting in a test set
of 49 patients and a second observer subset of 24 patients.
Figure 4 shows an example of automatic segmentation in all
slices in end-diastole and end-systole. A comparison between
automatic segmentation and manual delineation can be seen
in Figure 5 for a basal, midventricular, and apical slice in
end-diastole and end-systole. In the additional file a time-
resolved 3D-rendering of left ventricle shows the long-axis
motion of the epicardial surface resulting from the automatic
segmentation algorithm. The differences between automatic
segmentation and manual delineation for clinical parameters
were EDV −11±11mL (𝑅 = 0.96), ESV 1±10mL (𝑅 = 0.95),
EF−3±4%(𝑅 = 0.86), LVM 4±15 g (𝑅 = 0.87), SV−12±8mL
(𝑅 = 0.92), and CO −0.7 ± 0.5 L/min (𝑅 = 0.94) (Table 1,
Figures 6 and 7). The image processing error measurements
were for endocardial segmentation DSC = 0.91 ± 0.03 and
P2C = 2.1 ± 0.5mm and for epicardial segmentation DSC =
0.93±0.02 and P2C = 2.1±0.5mmasmean over all slices and
both end-diastole and end-systole (Table 2). End-diastolic
image processing error measurements performed better than
end-systolic (Table 2).Midventricular slices performed better
than basal and apical slices (Table 3).

In the subset for second observer analysis the differences
between second observer manual delineation and reference
manual delineation were EDV 10 ± 4mL, ESV 5 ± 5mL, EF
0 ± 2%, LVM −7 ± 9 g, SV 5 ± 6mL, and CO 0.3 ± 0.4 L/min
compared to the differences between automatic segmentation
and the reference manual delineation which were EDV −9 ±
10mL, ESV 3 ± 8, EF −3 ± 3%, LVM 2 ± 16 g, SV −12 ± 8mL,
and CO −0.7 ± 0.4 L/min (Table 4). The results for the image
processing error measurements DSC and P2C for the second
observer subset are given in Tables 5 and 6.

Table 1: Clinical parameters in test set. Results for clinical param-
eters in the full test set (𝑛 = 49) as differences between automatic
segmentation and manual delineation.

Absolute
difference

Relative
difference 𝑃 value

EDV −11 ± 11mL −6 ± 6% <0.01
ESV 1 ± 10mL 1 ± 13% 0.57
EF −3 ± 4% −5 ± 7% <0.01
LVM 4 ± 15 g 4 ± 14% 0.07
SV −12 ± 8mL −11 ± 8% <0.01
CO −0.7 ± 0.5 L/min −11 ± 8% <0.01
Absolute and relative values are expressed asmean± SD. EDV=end-diastolic
volume, ESV = end-systolic volume, EF = ejection fraction, and LVM = left
ventricular mass.

Table 2: Image processing error measurement in test set. Image
processing error measurements in the full test set (𝑛 = 49) as
dice similarity coefficient (DSC) and point to curve (P2C) between
automatic segmentation and manual delineation.

Dice similarity
coefficient
(DSC)

Point to curve
(P2C)

Endocardium overall 0.91 ± 0.03 2.1 ± 0.5mm
Endocardium ED 0.93 ± 0.03 1.9 ± 0.6mm
Endocardium ES 0.85 ± 0.04 2.3 ± 0.5mm
Epicardium overall 0.93 ± 0.02 2.1 ± 0.5mm
Epicardium ED 0.94 ± 0.02 2.1 ± 0.6mm
Epicardium ES 0.91 ± 0.03 2.2 ± 0.7mm
Differences are expressed as mean ± SD. For a perfect overlap between the
regions DSC should be 1 and P2C should be 0. ED = end diastole, ES = end
systole.
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Figure 5: Automatic segmentation compared to manual delineation in a basal, midventricular and apical slice. Automatic segmentation
(endocardium in red and epicardium in green) and manual delineation (endocardium in pink and epicardium in light blue) shown in end-
diastole ((a), (b), and (c)) and end-systole ((d) (e), and (f)) for the most basal slice with outflow tract moving out of the imaging plane ((a),
(d)), a midventricular slice with papillaries ((b), (e)) and an apical slice with minimal lumen in end-systole ((c), (f)).

Table 3: Image processing error measurements in test set divided
into slice sections. Image processing error measurements in the
full test set (𝑛 = 49) as dice similarity coefficient (DSC) and
point to curve (P2C) between automatic segmentation and manual
delineation.

Dice similarity
coefficient
(DSC)

Point to curve
(P2C)

Endocardium basal 0.88 ± 0.06 2.7 ± 1.0mm
Endocardium midventricular 0.94 ± 0.02 1.6 ± 0.4mm
Endocardium apical 0.89 ± 0.03 2.1 ± 0.7mm
Epicardium basal 0.89 ± 0.05 3.3 ± 1.2mm
Epicardium midventricular 0.96 ± 0.02 1.3 ± 0.5mm
Epicardium apical 0.92 ± 0.03 2.2 ± 0.8mm
Differences are expressed as mean ± SD. For a perfect overlap between the
regions DSC should be 1 and P2C should be 0. Basal, midventricular, and
apical sections are defined as 1/3 each of the ventricular length in end diastole
and end systole separately.

4. Discussion

We have developed an automatic algorithm for time-resolved
LV segmentation inmagnetic resonance cine balanced steady

state free precession (MRSSFP) images. The segmentation
is performed in all time frames and all ventricular slices
including the slices in which the mitral valve plane and
outflow tract move in and out of the slice during a heartbeat.
The onlymanual user input is definition of themost basal and
most apical slices including any myocardium in end-diastole.
This study brings a state-of-the-art left ventricle segmentation
tool to applied clinical research, as the software and source
code are provided in open access to researchers. Furthermore,
both algorithm and images with ground truth manual delin-
eations are made available for benchmark against future LV
segmentation algorithms.

The major algorithmic contributions towards a clinically
applicable automatic segmentation method in this study is
(1) the use of an EM-algorithm to calculate the distinction
between blood, myocardium, and tissues surrounding the
heart, (2) removal of papillary muscles by convex hull
expansion and expansion to get constant papillary volume,
(3) the detection of the outflow tract whenmoving in and out
of the imaging plane, and (4) usage of an optimization step to
tune otherwise arbitrary set parameters to the images used.

The algorithmwas validated in a test set of 49 subjects and
both the clinical parameters, EDV, ESV, EF, and LVM, and the
image processing error measurements, DSC and P2C, were



8 BioMed Research International

0 50 100 150 200 250 300 350
0

50

100

150

200

250

300

350

EDV by manual segmentation (mL)

ED
V

 b
y 

au
to

m
at

ic
 se

gm
en

ta
tio

n 
(m

L)

End-diastolic volume

R = 0.96, P < 0.01

(a)

0 50 100 150 200 250 300 350
0

50

100

150

200

250

300

350

ESV by manual segmentation (mL)

ES
V

 b
y 

au
to

m
at

ic
 se

gm
en

ta
tio

n 
(m

L)

End-systolic volume

R = 0.95, P < 0.01

(b)

0 20 40 60 80 100
0

10

20

30

40

50

60

70

80

90

100
Ejection fraction

EF by manual segmentation (%)

EF
 b

y 
au

to
m

at
ic

 se
gm

en
ta

tio
n 

(%
)

R = 0.86, P < 0.01

(c)

0 50 100 150 200 250
0

50

100

150

200

250

LVM by manual segmentation (g)

LV
M

 b
y 

au
to

m
at

ic
 se

gm
en

ta
tio

n 
(g

)
Left ventricular mass

R = 0.87, P < 0.01

(d)

0 50 100 150 200 250 300
0

50

100

150

200

250

300

SV by manual segmentation (mL)

SV
 b

y 
au

to
m

at
ic

 se
gm

en
ta

tio
n 

(m
L)

Stroke volume
R = 0.92, P < 0.01

(e)

0 5 10 15 20
0

2

4

6

8

10

12

14

16

18

20

CO by manual segmentation (L/min)

CO
 b

y 
au

to
m

at
ic

 se
gm

en
ta

tio
n 

(L
/m

in
)

Cardiac output
R = 0.94, P < 0.01

(f)

Figure 6: Correlations between automatic segmentation and manual delineation in the test set. Automatic segmentation plotted against
manual delineation for end-diastolic volume (EDV, (a)), end-systolic volume (ESV, (b)), ejection fraction (EF, (c)), left ventricular mass
(LVM, (d)), stroke volume (SV, (e)) and cardiac output (CO, (f)). The line indicates the line of identity.
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Figure 7: Bias between automatic segmentation and manual delineation in the test set. Differences between automatic segmentation and
manual delineation plotted against manual delineation for end-diastolic volume (EDV, (a)), end-systolic volume (ESV, (b)), ejection fraction
(EF, (c)), left ventricular mass (LVM, (d)), stroke volume (SV, (e)) and cardiac output (CO, (f)). Solid line indicates mean and dashed lines
indicate mean ± 2SD.
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Table 4: Clinical parameters in second observer subset. Differences for clinical parameters in the second observer subset (𝑛 = 24) for second
observer manual delineation versus manual reference delineation and for automatic segmentation versus manual reference delineation.

Automatic segmentation versus manual reference Second observer versus manual reference
Absolute difference Relative difference 𝑃 value Absolute difference Relative difference 𝑃 value

EDV −9 ± 10mL −5 ± 5% <0.01 10 ± 4mL 6 ± 2% <0.01
ESV 3 ± 8mL 4 ± 12% 0.1 5 ± 5mL 6 ± 6% <0.01
EF −3 ± 3% −6 ± 6% <0.01 0 ± 2% −1 ± 4% 0.44
LVM 2 ± 16 g 3 ± 13% 0.55 −7 ± 9 g −7 ± 8% <0.01
SV −12 ± 8mL −10 ± 6% <0.01 5 ± 6mL 5 ± 5% <0.01
CO −0.7 ± 0.4 L/min −10 ± 6% <0.01 0.3 ± 0.4 L/min 5 ± 5% <0.01
Absolute and relative difference expressed as mean ± SD. EDV = end-diastolic volume, ESV = end-systolic volume, EF = ejection fraction, and LVM = left
ventricular mass.

Table 5: Image processing error measurements in second observer subset. Image processing error measurements in the second observer
subset (𝑛 = 24) as dice similarity coefficient (DSC) and point to curve (P2C) for second observer manual delineation versus manual reference
delineation and for automatic segmentation versus manual reference delineation.

Automatic segmentation versus manual reference Second observer versus manual reference
DSC P2C DSC P2C

Endocardium overall 0.91 ± 0.02 2.0 ± 0.4mm 0.95 ± 0.01 1.2 ± 0.2mm
Endocardium ED 0.93 ± 0.02 1.8 ± 0.5mm 0.96 ± 0.01 1.1 ± 0.3mm
Endocardium ES 0.85 ± 0.04 2.4 ± 0.5mm 0.92 ± 0.03 1.4 ± 0.3mm
Epicardium overall 0.93 ± 0.01 2.2 ± 0.4mm 0.96 ± 0.01 1.2 ± 0.33mm
Epicardium ED 0.94 ± 0.01 2.0 ± 0.5mm 0.97 ± 0.01 1.1 ± 0.4mm
Epicardium ES 0.91 ± 0.02 2.4 ± 0.6mm 0.95 ± 0.01 1.4 ± 0.4mm
Difference are expressed as mean ± SD. For a perfect overlap between the regions DSC should be 1 and P2C should be 0. ED = end diastole, ES = end systole.

Table 6: Image processing error measurements in second observer set divided into slice sections. Image processing error measurements in
the second observer subset (𝑛 = 24) as dice similarity coefficient (DSC) and point to curve (P2C) for second observer manual delineation
versus manual reference delineation and for automatic segmentation versus manual reference delineation.

Automatic segmentation versus manual reference Second observer versus manual reference
DSC P2C DSC P2C

Endocardium basal 0.88 ± 0.06 2.7 ± 1.1mm 0.94 ± 0.02 1.5 ± 0.4mm
Endocardium midventricular 0.94 ± 0.01 1.6 ± 0.4mm 0.96 ± 0.01 1.1 ± 0.3mm
Endocardium apical 0.90 ± 0.03 2.0 ± 0.7mm 0.94 ± 0.01 1.1 ± 0.3mm
Epicardium basal 0.89 ± 0.05 3.3 ± 1.2mm 0.95 ± 0.02 1.5 ± 0.6mm
Epicardium midventricular 0.96 ± 0.01 1.3 ± 0.4mm 0.97 ± 0.01 0.8 ± 0.2mm
Epicardium apical 0.92 ± 0.02 2.3 ± 0.7mm 0.95 ± 0.01 1.4 ± 0.5mm
Difference are expressed as mean ± SD. For a perfect overlap between the regions DSC should be 1 and P2C should be 0. Basal, midventricular, and apical
sections are defined as 1/3 each of the ventricular length in end diastole and end systole separately.

reported to allow comparison to errors reported in previous
studies. The proposed algorithm has a DSC and P2C error
similar to the ones reported in previous studies [3, 4, 12–14].
However, direct comparison between studies is difficult due
to differences in methodology. In previous studies it is not
defined either how the basal sliceswere selected, or if the basal
slices were excluded or defined separately for end-diastole
and end-systole thereby not including the long-axis motion.
Furthermore, results may not be directly comparable due
to differences in patient population and sequences used for
imaging. For instance the test set in theMICCAI challenge [3]
was acquired without parallel acquisition techniques which
is now clinical standard. In the sequel challenge STACOM
[14] not all results were derived using manual delineation as

ground truth. A new test set and training set were therefore
acquired for this study in order to have images with parallel
acquisition, covering all slices andwithmanual delineation as
ground truth. In comparison to the present study, Codella et
al. [8, 15] reported better results for all clinical parameters,
which is expected with the higher level of user input used
in their algorithm LV-METRIC. The present study has a
low level of user input with only a selection of slices to
include in segmentation. Hu et al. [7] developed a detection
of the outflow tract and reported DSC and P2C similar to
the present study. However, their method description does
not define detection of the outflow tract moving out of
the imaging plane. Since the long-axis motion is a major
contributor to cardiac pumping [5] it is important to include
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the basal slices and account for the contraction along the
long-axis. Segmentation of the most basal slices with outflow
tract becomes more difficult when the myocardium moves
in and out of the imaging plane. The proposed algorithm
includes all slices with results similar to previous studies not
including all basal slices, which brings the algorithm one
step closer to automatic LV segmentation applicable for the
clinical routine.

The proposed algorithm was compared to interobserver
variability of manual delineation in a subset as a major goal
of automatic segmentation methods is to reduce observer
dependency. The proposed method showed a bias compa-
rable to interobserver variability by manual delineation for
the clinical parameters, lower or similar bias for EDV, ESV,
and LVM and higher bias for EF, SV, and CO. The SD for the
clinical parameters was approximately twice the value found
for interobserver variability. The interobserver variability
measured as P2C error was overall 1.2mm compared to 2mm
reported in a previous study [16]. The interobserver variabil-
ity measured as clinical parameters was overall comparable
to those reported in previous studies [17–19]. The standard
deviation of LVM for interobserver variability was in this
study 7 gwhich fallswithin the range of published values from
5 g in a normal material for gradient echo images [20] to 14 g
in a studywhere bSSFP short axis delineationswere compared
to long-axis delineations [21].The large range in interobserver
variability measurements reported in the literature can most
likely be explained by differences in methodology used in
the basal regions, differences in image quality, and amount
of consensus training. Again many of the studies report
differences differently and direct comparisons are difficult.

In order for the algorithm to reach results fully compa-
rable to interobserver variability between two experienced
observers, further improvement is needed. By improving the
use of the EM-algorithm and by improving the detection
of papillary muscles and outflow tract both the accuracy
and precision may be reduced. The algorithm might also be
further improved to have a smoother segmentation over the
cardiac cycle by using more than two time frames in the
optimization of parameters and hence possibly get a higher
weight on the time dependent parameter. As for all automatic
segmentation algorithms a manual approval and possibly
manual corrections are needed in a clinical setting.

A limitation to the study is that the training and test set
used only patients with coronary artery disease. Other patient
categories with, for example, left ventricular dyssynchrony or
pronounced trabeculationsmayneed special consideration in
the algorithm and further validation.

5. Conclusion

We have developed an automatic algorithm for time-resolved
segmentation of all LV slices containing any myocardium
in magnetic resonance balanced steady state free precession
images. The algorithm was quantitatively validated in 49
subjects and both algorithm and images with reference
manual delineations are available for benchmark against
future LV segmentation algorithms. The algorithm showed
a bias comparable to interobserver variability between two

experienced observers for the clinical parameters EDV, ESV,
EF, LVM, SV, and CO. With a dice and P2C error similar to
previous studies the proposed algorithm is favorable due to
low level of user input and automatic correction for long-
axis motion.The algorithm is one step closer to an automatic
segmentation applicable for clinical routine.
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