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The traditional view of the nuclear envelope (NE) was that it represented a relatively inert
physical barrier within the cell, whose main purpose was to separate the nucleoplasm
from the cytoplasm. However, recent research suggests that this is far from the case, with
new and important cellular functions being attributed to this organelle. In this review we
describe research suggesting an important contribution of the NE and its constituents in
regulating the functions of cells of the innate and adaptive immune system. One of the
standout properties of immune cells is their ability to migrate around the body, allowing
them to carry out their physiological/pathophysiology cellular role at the appropriate
location. This together with the physiological role of the tissue, changes in tissue matrix
composition due to disease and aging, and the activation status of the immune cell, all
result in immune cells being subjected to different mechanical forces. We report research
which suggests that the NE may be an important sensor/transducer of these mechanical
signals and propose that the NE is an integrator of both mechanical and chemical signals,
allowing the cells of the innate immune system to precisely regulate gene transcription and
functionality. By presenting this overview we hope to stimulate the interests of researchers
into this often-overlooked organelle and propose it should join the ranks of mitochondria
and phagosome, which are important organelles contributing to immune cell function.
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INTRODUCTION

The nucleus, one of the defining features of all eukaryotic cells, houses most of the genetic
information within the cell and is bounded by the nuclear envelope (NE). In the 1950s research
began to elucidate the NE structure and its function (1–3). The prevailing view of this early research
was that the NE was just a physical barrier separating nucleoplasm from cytoplasm; however
evidence now indicates that this is a too simplistic view of this organelle and that the NE
significantly contributes to cellular signalling and regulatory pathways (4–6).

The immune system is an integrated network of organs, cells and biochemical cascades which
provides the host with protection against pathogens, noxious exogenous stimuli and trauma. The
system also holds memory of pathogen components, allowing it to respond more efficiently when
the pathogen is encountered again. While the immune system is required for the continued well-
being of an individual, with increased susceptibility to microbial infections and cancers in
individuals with supressed immune system; inappropriate activation of the immune system can
lead to excessive inflammation, autoimmunity and host tissue destruction. To maintain a balance of
org June 2022 | Volume 13 | Article 8400691
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appropriate activation, while guarding against self-induced tissue
damage/pathology, the immune system employs numerous
cellular sensors, regulatory pathways and extra- and
intracellular signalling molecules to maintain a controlled
appropriate response (7, 8).

Over the last 40 years various organelles, including
lysosomes/phagosomes, mitochondria and endoplasmic
reticulum (ER), have been shown to be important in regulating
the activation and effector functions of both the innate and
adaptive immune cells (9). Here, we review the current
knowledge regarding the structure and function of NE in cells
of the innate and adaptive immune systems and discuss the
evidence which suggests the NE is an integrator of both
mechanical and chemical signals encountered by immune cells
during inflammation.
STRUCTURE AND FUNCTION OF NE

The structure of the NE (Figure 1) comprises two functionally
distinct lipid membranes, the outer nuclear membrane (ONM)
and the inner nuclear membrane (INM), which give rise to a
functional compartment between them, known as the
perinuclear space (1, 3). The ONM is continuous with the
endoplasmic reticulum (ER) making the perinuclear space
continuous with the ER lumen (4). The INM can directly
interact with proteins within the nucleoplasm, with
invaginations of INM reaching deep within the nucleoplasm,
forming a nucleoplasmic reticulum (10, 11). An important
interaction of the INM proteins is with type V intermediate
filament proteins (nuclear lamins) to form the nuclear lamina at
the nucleoplasmic surface of the INM (12). Divided into A/C-
type and B-type based on their gene sequence, nuclear lamins are
important for a number of nuclear functions (6, 13), including
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nuclear mechanical support and positioning (14, 15), chromatin
organisation (16, 17), gene expression (18, 19), nuclear pore
complex organisation (20, 21), NE breakdown/repair (22, 23),
DNA synthesis (24), intracellular signalling (25–27), cell
differentiation, polarisation and programmed cell death (28–30).

The INM and the ONM are only permeable to small non-
polar molecules and sustain nucleoplasm membrane potential
approximately -15mV with respect to the cytoplasm (31, 32).
Polar molecules, ions and macromolecules are able to pass
between nucleoplasm and cytoplasm through the nuclear pore
complexes (NPCs), which are formed upon INM and ONM
fusion (33).

Approximately 1% of human proteins have been
experimentally demonstrated to be in the NE to date; and it is
known that these proteins, and the complexes they form, add to
the complexity of the NE structure and the signalling possibilities
(34). The NE-associated proteins that have been the most studied
in immune cells are the lamins.
LAMIN PROTEINS

Lamins A and C, which are created via alternative splicing of the
LMNA gene, are the major components of the nuclear lamina
(Figure 1). Cellular functions of lamin A/C, include regulation of
gene transcription, NPC formation, nuclear positioning and
stability; and have been studied in a number of cell types (35).
Several studies have demonstrated the important roles of NE
lamins in various immune cell functions.

Neutrophils are usually the first cells of the innate immune
system that migrate to sites of inflammation; and while they have
potent anti-microbial actions, inappropriate accumulation of
these active cells can contribute to immune paralysis and
organ failure in severe inflammation (36). Low lamin A/C
FIGURE 1 | Representation of the nuclear envelope components and their proposed functions in immune cells. INM, inner nuclear membrane; ONM, outer nuclear
membrane; PNS, perinuclear space; NR, nucleoplasmic reticulum; ER, endoplasmic reticulum; NPC, nuclear pore complex; LINC, linker of nucleoskeleton and
cytoskeleton complex; LBR, lamin B receptor; STING, stimulator of interferon genes. Bold text represents higher ion concentration. Created with BioRender.com.
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expression in neutrophils appears to contribute to a
characteristic nuclear lobulation, flexibility and the ability of
these cells to migrate through narrow spaces towards a site of
infection (37–39). Interestingly, neutrophil nuclear morphology
was reported to be of less significance than NE lamin content for
neutrophil mobility (40). Mechanistically, a low lamin A/C NE is
thought to reduce the prevalence of lamin-bound chromatin,
hence altering chromatin distribution and increasing its mobility
within the nucleus, facilitating chromatin flow in the direction of
nuclear movement (16, 41, 42). Reduced lamin A/C expression
was also suggested to facilitate NE rupture and nuclear protein
transport during the formation of neutrophil extracellular traps
(NETosis). There are also reports that low lamin A/C levels
account for the short lifespan of neutrophils (43). How
neutrophils control NE ruptures to facilitate NETosis requires
further study.

With regards to the other major cell type of the innate immune
system,monocytes/macrophages, it was reported that high levels of
laminA/C expression inducedNF-kB nuclear translocation via the
IKKb/IkBa/NF-kB pathway and increased the expression of
proinflammatory genes, such as Il6, Tnf, Ccl2, and Nos2, in
adipose tissue macrophages (44). This is in line with the
observa t ion tha t l amin A/C de le t ion reduced the
lipopolysaccharide-induced expression of these genes in
macrophages. Importantly, the study established that macrophage
lamin A/C levels are linked to adipose tissue inflammation and
obesity-induced insulin resistance seen in type two diabetes (44).
Lamins A/C levels were also suggested to affect tumour-associated
macrophage activity. The c-Fos protein, which influences
macrophage responses in cancer (45–47), was shown to interact
with and be regulated by lamin A/C (25). Another study
demonstrates that lamin A/C gene silencing reduces the number
of Leishmania parasites per sampled macrophage and reduces the
percentage of infected macrophages in Leishmaniasis (48).
Generally, macrophages express higher levels of lamin A/C
compared to some other immune cells, which may contribute to
macrophages’ proinflammatory actions and comparably longer life
span thanother innate immunecell types (49). The level of laminA/
C expression in dendritic cells was reported to fall between that of
macrophages and neutrophils (6, 50). The presence of functional
lamin A/C in mature dendritic cells was demonstrated to limit the
nuclear egress of viral capsids and the spread of infection in the case
of herpes simplex virus type 1 (51). The role of lamins in dendritic
cells, however, needs further investigation.

In the case of cells of the adaptive immune system, T
lymphocytes transiently increase their lamin A/C expression
upon antigen presentation, with none or weak lamin A/C
expression being detected in resting human or mouse T and B
lymphocytes (52–54). This demonstrates that NE protein
composition can change depending on the cellular activation
state. The T lymphocytes’ transient increase in lamin A/C
expression was suggested to accelerate the immunological
synapse formation between T lymphocytes and antigen
presenting cells. Another possible explanation suggested was
that transient increase in lamin A/C is related to the
lymphocytes’ need to migrate out of lymph nodes and into
Frontiers in Immunology | www.frontiersin.org 3
target tissues (55). Interestingly, the role of lamin A/C may be
more important in lymphocyte differentiation during infectious
and autoimmune responses (56, 57). Lamin A/C absence reduces
T helper 1 lymphocyte differentiation, but does not affect T
helper 2 differentiation; this is consistent with significantly
weakened lymphocyte responses to both viral and intracellular
parasite infections seen in lamin A/C deficiency (58). In
comparison, lamin A/C absence increased regulatory T
lymphocyte differentiation, reduced T helper 1 differentiation
and was protective in a model of inflammatory bowel disease (59,
60). However, exactly how T- lymphocytes regulate their lamin
A/C expression is not clear with possible mechanisms including
the AKT/protein kinase B signalling pathway (61, 62),
microRNA (63) and/or retinoic acid (39, 64) being proposed.

In addition to lamin A/C, lamin B1 has been demonstrated to
regulate lymphocyte somatic hypermutations and lymphoid
malignancy progression (65). The loss of lamin B1 has also
been suggested to contribute to increased inflammation seen
with aging (66, 67), although the relative contribution of the
innate immune cells in this observation requires further
investigation. The Lamin B receptor (LBR) (Figure 1) appears
critical for nuclear lobulation, rapid migration and normal
function of neutrophils (68). Emerin, an INM protein
(Figure 1), regulates nuclear polarity, a crucial feature of
migratory cells (69). Finally, a pool of stimulator of interferon
genes (STING), a DNA sensor and adaptor protein, was recently
confirmed in the NE (70), which will be discussed later.
NPC AND LINC COMPLEXES

After the lamins themost well studied protein assemblies in the NE
are the nuclear pore complexes (NPCs). The NPCs are multi-
protein complexes, each comprising around 500 to 1000 individual
proteinmolecules, ofwhich themain structural proteins are termed
nucleoporins (71, 72). There are around 40 different nucleoporins
with their nomenclature beingmostly based on theirmass (73). The
central channel of the NPC is located at sites of fused INM and
ONMand is linedbynucleoporins.Oneof themostwell-researched
functions of NPCs is to control the movement of polar molecules
and macromolecules across the NE. NPCs are also involved in
chromatin organization, regulation of gene expression and DNA
repair (33, 74).

Several studies have addressed the role of individual
nucleoporins, and therefore by implication NPCs, in immune
cells. Faria et al. (75) demonstrated that lower than normal levels
of nucleoporin 96, a core element which is essential for the NPC
assembly (71), resulted in altered immune responses, decreased
interferon-mediated expression of major histocompatibility
complexes, impaired antigen presentation by antigen
presenting cells, which consequently reduced T lymphocyte
proliferation and increased susceptibility to infection (75). Two
other nucleoporins, nucleoporin 88 and nucleoporin 214, were
shown to contribute to appropriate nuclear accumulation of
some key immune transcription factors including NF-kB, thus
regulating the relative strength and duration of immune
June 2022 | Volume 13 | Article 840069
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responses at the level of the NPC in Drosophila and mammalian
cells (76–78). Finally, nucleoporin 210 is critical for the survival
of circulating T lymphocytes, regulates T cell receptor signalling
and hence, adaptive immunity (79).

One important interaction of NPCs is with linker of
nucleoskeleton and cytoskeleton (LINC) complexes. Evidence
suggests (80–85) that this interaction couples the cytoskeleton
and the nucleoskeleton, allowing cytoskeleton rearrangements
activated by mechanical stimuli to regulate nucleocytoplasmic
transport. LINC complexes comprise SUN proteins on the INM
andKASH/Nesprinproteins on theONM,which interactwith each
other across the perinuclear space (Figure 1). Mechanical stimuli
have beendemonstrated to propagate via a direct pathway fromcell
membrane integrins to SUN proteins on the NE, where SUN
proteins transmit the signals via mechanical connections to
NPCs, lamins and chromatin (80–83). The transmission of
mechanical stimuli significantly affects the NPC conformation via
the Nup153-SUN1 connection, the nucleocytoplasmic transport
through NPCs and the state of chromatin packing (84).
Important ly , di f ferent studies show that NPC and
LINC complexes coexist on the NE and have a number of
interdependent cellular functions. Firstly, LINC complexes
regulate NPC assembly and distribution in the NE. SUN1 was
shown to colocalize with NPCs and was suggested to reduce the
spacing between the INM and the ONM, thus promoting
membrane fusion at sites of NPC assembly (86–88). NPCs
control the trafficking of SUN proteins across the NE for INM
localization. For example, human SUN2 possesses a classical
nuclear localization signal, that binds to the importin-alpha-
importin-beta heterodimer and mediates transport through the
NPC (89). There are also reports that LINC complexes can affect
nucleocytoplasmic transport through NPCs, and a study by Li and
Noegel (90) reported that SUN1, via interaction with nucleoporin
153, regulates efficient nuclear export of mRNA in mammalian
cells (90).

While the significance of LINC complexes in immune cells is
yet to be fully investigated, SUN2 regulates T lymphocyte
proliferation, function and viability (91). In neutrophils, LINC
expression along with lamin and LBR relative expression
influence cell migration, which is critical for neutrophil
function (92). With increasing recognition that mechanical
stimuli can impact on immune cell function, see the following
sections, the relationship between NPC-LINC and immune cell
activation profiles merits further investigation.
NE ION CHANNELS

The vast majority of studies investigating ion channels have
focused on ion channels in plasma membranes and intracellular
double membrane systems of mitochondria and ER. In
comparison, the double membranes of the NE have received
relatively little attention. Nevertheless, the INM and ONM do
contain a range of ion channels (Figure 1) (34, 93–95).

The lack of permeability ofNEmembranes to ions togetherwith
the presence of ion channels and transporters in the NE allow ionic
Frontiers in Immunology | www.frontiersin.org 4
gradients across INMs and ONMs to be generated and maintained
irrespective of theNPCs’ activity. Various genetic, pharmacological
and electrophysiological approaches have identified a number of
ion channels present on INMs and ONMs of different cell types,
from liver to immune cells. These include calcium ion channels
which could contribute to the regulation of gene transcription, cell
cycle control and other nuclear processes (34, 96), potassium ion
channels which possibly regulate other NE voltage-sensitive
channels by setting the membrane potential (32, 94, 97, 98) and
chloride ion channels, potentially participating in osmotic volume
regulation of the nucleus (32, 34, 98).

Considering the NE of innate immune system cells, we have
recently reported the expressionof large conductance (~100-300pS)
voltage and calcium activated potassium ion channels (BK
channels; KCa1.1) (94). Importantly this study showed that
nuclear BK channels regulate cAMP response element binding
protein (CREB) phosphorylation in RAW264.7 macrophages.
CREB is an important transcription factor with major roles in
immune cells (99–101). Moreover, the study reported that nuclear
calcium and calmodulin dependent kinases II and IVwere involved
in regulationofCREBbynuclear BKchannels inmacrophages (94).
Similarfindingswere previously reported inhippocampal neurones
(102). Based on knowledge from other cell types, one can
hypothesise that blockade of nuclear BK channels in
macrophages influences the activity of other nuclear ion channels
or the Ca2+ filling state of the perinuclear space, possibly changing
theNEmembranepotential. This eventually could lead to increased
nuclear calcium, activation of calcium-dependent kinases and,
finally, activation of various transcription factors, including
CREB. BK channels have also been identified on the NE of
microglia, which are the resident macrophage-like cells of the
central nervous system (103). In this study it was hypothesised
that NE BK channels are involved in microglia response to stimuli,
facilitating nitric oxide and cytokine production, potentially by
regulating calcium and potassium fluxes in the nucleus (103).

To date only a few papers have addressed the role of NE ion
channels in lymphocytes. Franco-Obregon et al. (95) reported that
chloride channels (105pS) predominated on the ONM of T
lymphocytes, while channels on the ONM of B lymphocytes were
primarily cation selective (52pS) (95). Although only anion
channels were detected in T lymphocyte ONM, both anion and
cation channels were observed in B lymphocyte ONM (95).
Generally, INMs are considered to have a different ion channel
composition compared to ONMs (95, 104). On the INM of T-
lymphocytes the presence of both large conductance anion selective
channels (370pS) and cation selective (152pS) channels was
reported (93). However further studies are required to fully
characterise the ion channels present in the NE of lymphocytes. It
will be interesting to see if NE ion channels in lymphocytes regulate
aspects of T-lymphocyte physiology such as gene transcription,
proliferation, differentiation and apoptosis.

Evidence is now beginning to accumulate that suggests NE
ion channels are important in immune cell functions and
activation. However, this is a complex system with ion channel
type, location (INM or OMN), and subunit composition all
impacting the functional significance of the NE ion channels.
June 2022 | Volume 13 | Article 840069
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PERINUCLEAR ION STORE

As already mentioned, the two membranes of the NE form a
lumen, referred to as the perinuclear space (Figure 1). The
selective permeability of INM and ONM to ions contributes to
ion concentration gradients across the two membranes and
allows the perinuclear space to act as a cellular ion store. It is
not unreasonable to assume that changes in ion concentration
within the perinuclear space might have significant effects on
nuclear/cellular functions. The idea that the nucleus possesses an
autonomous calcium store and signalling system, which
generates its own calcium transients independent of
cytoplasmic calcium changes, has been debated for years.
Supporting this idea several studies suggest that nuclear
calcium is independent of cytoplasmic calcium and NPC-
mediated calcium transport (102, 105–109). In liver cells, Leite
et al. (105) showed that upon ATP stimulation nucleoplasmic
calcium signalling preceded the cytoplasmic calcium signal, thus
leading to the suggestion of an autonomous nuclear calcium
signalling system (105). Similarly, in hippocampal neurones, Li
et al. (102) reported that nuclear BK channel block induced
nucleoplasmic calcium elevation without changing cytoplasmic
calcium concentration (102). Other studies identified the
nucleoplasmic reticulum, formed from INM invaginations, as a
nuclear calcium store and regulator. The presence of calcium
storage proteins, calreticulins (110), calcium releasing inositol-
1,4,5-trisphosphate receptors (105) and calcium pumps (111,
112) in the NE and its invaginations further supports the idea of
a fairly autonomous NE calcium store (107, 108). There are also
calcium-mobilizing ryanodine receptors in lymphocyte nuclei,
while in monocytes and neutrophils their localization is reported
to be extranuclear (113). Perinuclear calcium, when released into
the nucleoplasm, is thought to regulate nuclear calcium-sensitive
gene expression through regulation of calcium-dependent
enzymes and transcription factors (94, 102). In relation to cells
of the immune system, nuclear calcium was found to control T
lymphocyte fate decision between active proliferation and a
hyporesponsive state (114). Moreover, it has been debated if
the Ca2+ filling state of the perinuclear space influences NPC size
and permeability. Several contradictory reports exist. Some show
that NE calcium depletion significantly increases the proportion
of NPCs blocked by a central plug and attenuates the nuclear
influx of proteins, while others argue that depletion of calcium
from the NE lumen does not significantly alter the movement of
the green fluorescent protein across the NE (115–122).
IS THE NE AN INTEGRATOR OF
MECHANICAL AND CHEMICAL
SIGNALLING PATHWAYS IN
INFLAMMATION?

It is now apparent that along with the diverse array of
extracellular chemical signals that immune cells respond to,
such as pathogen-associated molecular patterns (PAMPs) and
Frontiers in Immunology | www.frontiersin.org 5
damage-associated molecular patterns (DAMPs), these cells can
also respond to their phys ica l environment . This
mechanosensing may be of particular relevance during an
inflammatory response where the leukocytes of the innate
immune system need to essentially “travel and deform” to
perform their function. During inflammation leukocytes can be
subjected to changes in mechanical and compressive forces, such
as those experienced during cell migration and cell extravasation;
osmotic forces, which can occur during cell swelling and tissue
damage; and forces associated with phagocytosis such as
deformation of the leukocytes and engagement with targets of
different shape and orientation. Tissue composition such as
extracellular matrix stiffness, hydrostatic pressure and cell
crowding can also provide mechanical signals to leukocytes. A
complete map of the cellular pathways activated by
mechanosensing in immune cells is yet to be fully elucidated
but appears to involve plasma membrane ion channels such as
PIEZO1 (123) and TRPV4 (124), adhesion molecules and
cytoskeleton rearrangement, and the reader is pointed towards
several recent reviews on the subject (125–127). The NE and its
associated proteins are also involved in the signal transduction
mechanisms activated by changes in mechanical forces through
interactions between the cytoskeleton, LINC protein complexes
and the lamin network which attaches the INM to lamin-
associated-domains (LADs) within chromatin and thus
influences chromatin dynamics (128, 129). Along with
evidence that the NE represents a core component of
mechanical signal transduction, a number of seminal studies
have now also demonstrated that the NE itself is a sensor of
mechanical forces (130–132), a function it may be well suited for
(133). However, to date only a few reports have investigated the
role of NE components in immune cells in response to
mechanical forces (134).

As discussed above, the NE-associated proteins have effects
on the cellular functions of immune cells and the NE is involved
in the transduction pathways of many mechanical stimuli
encountered by immune cells during an inflammatory
response. In addition, the NE contains and interacts with a
variety of structural proteins, ion channels, pore proteins and
transporters, which suggests the NE may be important in cell
signalling cascades which regulate nuclear functions such as
heterochromatin formation, gene expression, nuclear
morphology and nuclear repair. For example, ion channels
within the NE could regulate Ca2+ levels in the perinuclear
space which can regulate gene transcription (135), see the
above section. But is there evidence that mechanosensing by
NE can regulate cell signalling cascades and, therefore, immune
cell function during an inflammatory event?

Yes-associated protein (YAP) is a transcription cofactor that
regulates macrophage innate inflammatory pathways (136).
Importantly, YAP activation and translocation into nucleus has
been demonstrated to be regulated by NE flattening and nuclear
pore opening caused by mechanical forces and extracellular
matrix (ECM) stiffness (137, 138). The NE protein Emerin,
which appears to be an important component in
mechanotransduction pathways in the NE (139), binds and
June 2022 | Volume 13 | Article 840069

https://www.frontiersin.org/journals/immunology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/immunology#articles


Selezneva et al. NE Function in Immune Cells
activates histone deacetylase 3 (HDAC3) (140), an important
regulator of autoimmunity and inflammatory gene expression
(141, 142). Finally, osmotic cell swelling, which causes increased
NE tension, results in cPLA2 localisation to the INM of zebrafish
leukocytes. This mechanism in the dying cells appeared to
facilitate the mobilization of other leukocytes to clear necrotic
debris, presumably by the release of eicosanoids (134). It will be
interesting if these final observations can be extended to
mammalian leukocytes and lymphocytes.

An important emerging principal is that the magnitude of NE
perturbations will determine the cellular pathways activated
(143), with the most severe mechanical stressors, or possibly a
milder mechanical stressor but in a permissive cellular
environment, leading to NE rupture. This does not necessarily
lead to cell death as NE ruptures can be repaired. However, NE
ruptures can cause the mixing of material from the nucleoplasm
with the cytoplasm and this may be an important mechanism of
leukocyte activation. The DNA sensing cGAS-STING and AIM-
2 pathways are part of the innate immune response to viruses,
whereby cells are activated by inappropriate cellular localisation
of viral DNA which results in the production of type I interferons
(144). However, these pathways can be activated by endogenous
DNA spilling from the nucleus, and this may contribute to
inflammatory diseases including Aicardi-Goutières Syndrome
(145–148). NE rupture may also contribute to the low-grade
chronic inflammation associated with old age, referred to as
inflammaging. NE instability increases in senescent cells and is
believed to contribute to the establishment of the senescence-
associated secretory phenotype (SASP) (149, 150). SASP, which
is also associated with ER stress, is proposed to be one of the
main contributors to inflammaging (151). It will be important to
investigate the effects of NE perturbations caused by mechanical
stimuli in inflammatory environments. Taken together, it would
appear that the NE is important in multiple immune functions
of leukocytes.
FUTURE PROSPECTIVE

When studying the role of the NE in immune cells a number of
considerations need to be taken into account. As well as studying
the NE in the setting of the whole cell it is also possible to carry
out studies on isolated nuclei, NE preparations and reconstituted
systems involving nuclei being placed is cytosolic preparations
(94, 152, 153). The choice of experimental system employed will
depend on the cellular process to be investigated and when using
isolated nuclei or NE it is important to check for sample
contamination with membrane material from other organelles.

Most modern cellular and biochemical techniques, for
example immunofluorescence, Western blot analysis and
electrophysiology, can be applied directly to isolated nuclei and
NE, although determining if a protein is located within the inner
or outer nuclear membrane still requires careful consideration.
While nuclei isolation gives a direct access to the NE, it limits our
understanding of how nuclei and the NE integrate within a
functioning cell. Therefore, there is a need to develop
Frontiers in Immunology | www.frontiersin.org 6
methodologies which specifically target proteins in the nuclei
and NE when investigating in whole cells. The reason for this is
that many proteins in the nuclei and NE are not exclusive to
these sites and can be found in other organelles and membranes
within the cell. Most current pharmacological and genetic tools
used to investigate protein function will not discriminate
between the same protein found at different cellular locations,
thus attributing specific cellular functions to NE located proteins
is problematic. It will be important to develop pharmacological
and genetic tools which specifically target the constituents of the
nuclear membrane, both to facilitate basic research and hopefully
future therapeutic development.

Considering the role of the NE in immune cells outstanding
questions to be addressed are:

What are the differences and changes in NE composition
between immune cell types and their various activation states?

Can selective targeting of NE components be achieved in a
functioning immune cell and therefore help elucidate the role of
these components in immune cells?

Can NE proteins influence gene transcription in immune
cells, either by regulating transcription factor activation or by
epigenetic mechanisms? And is this specific to certain genes?

Do NE components represent possible therapeutic targets for
the treatment of autoimmune and inflammatory diseases?
CONCLUSION

The nucleus is sometimes referred to as “a cell within a cell”, and
one would expect such an emotive phrase to be the focus of much
research. It is surprising that the membrane which delineates this
structure has received relatively little research attention. This
may stem from the traditional view that the NE plays only a
minor role in cellular physiology. One aim of this review is to
increase the awareness of the roles that the NE may play in the
cell and in particular in immune cell function.

The NE, through its various components such as lamins, NPC
and LINC complexes, cation and anion channels has been shown
to act as a regulator of immune cell function summarised in
Figure 1. In the immune system the NE’s influences range from
macrophage polarization and lymphocyte differentiation to cell
migration and lifespan (Figure 1). In addition, the NE can also
act as a sensor of intracellular and extracellular environments
and physical stresses on the cell. However, the investigation of
the NE in immune cells is still in its infancy. Today mitochondria
and the ER are considered crucially important organelles in
shaping the actions of cells of the immune system. Time will tell
if the NE and its associated structures become the 3rd member of
this trinity.
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Hoyo G, Chevre R, et al. Lamin A/C Augments Th1 Differentiation and
Response Against Vaccinia Virus and Leishmania Major Article. Cell Death
Dis (2018) 9(1):1–15. doi: 10.1038/s41419-017-0007-6

59. Toribio-Fernández R, Herrero-Fernandez B, Zorita V, López JA, Vázquez J,
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