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Abstract

Polycystic liver disease (PCLD) is an autosomal dominant disorder characterised by multiple fluid filled cysts in the liver. This
rare disease is caused by heterozygous germline mutations in PRKCSH and SEC63. We previously found that, in patients with
a PRKCSH mutation, over 76% of the cysts acquired a somatic ‘second-hit’ mutation in the wild type PRKCSH allele. We
hypothesise that somatic second-hit mutations are a general mechanism of cyst formation in PCLD which also plays a role in
PCLD patients carrying a SEC63 germline mutation. We collected cyst epithelial cells from 52 liver cysts from three different
SEC63 patients using laser microdissection. DNA samples were sequenced to identify loss of heterozygosity (LOH) mutations
and other somatic mutations in cyst epithelial DNA. We discovered somatic SEC63 mutations in patient 3 (1/14 cysts), but
not in patient 1 and 2 (38 cysts). Upon review we found that the germline mutation of patient 1 and 2 (SEC63
c.1703_1705delAAG) was present in the same frequency in DNA samples from healthy controls, suggesting that this variant
is not causative of PCLD. In conclusion, as somatic second-hit mutations also play a role in cyst formation in patients with
a SEC63 germline mutation, this appears to be a general mechanism of cyst formation in PCLD.
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Introduction

Polycystic liver disease (PCLD; MIM# 174050) is a rare,

dominantly inherited, disorder characterised by multiple fluid

filled cysts in the liver. The cysts, which develop from bile duct

epithelial cells (cholangiocytes), increase in size and number over

time and can lead to a massive increase in liver volume [1]. So far

two genes, PRKCSH (MIM# 177060) [2,3] and SEC63 (MIM#
608648) [4], have been associated with the development of PCLD.

A systematic sequencing effort demonstrated that PRKCSH

mutations account for 15% of the PCLD cases, whereas SEC63

mutations can be found in 6% [5].

In the case of a dominant disorder it is not always clear how

the heterozygous mutations can lead to disease and which

mechanisms are involved. The mutations can either lead to the

production of a mutated protein which disrupts the cell

function, or result in loss of functional gene product which

can lead to misregulation of dosage dependent genes. Often,

loss of a single allele will not have severe consequences for the

function of the cell and only after the remaining allele is lost

this will cause disease.

Recently, we demonstrated that in PCLD patients harbouring

a heterozygous PRKCSH mutation, over 76% of the cysts

acquired a somatic ‘second-hit’ mutation in PRKCSH [6]. These

mutations lead to total loss of functional PRKCSH in the cyst

epithelium suggesting that PCLD is recessive on a cellular level.

This finding is consistent with reports on other cystic diseases,

such as autosomal dominant polycystic kidney disease (ADPKD)

[7–12], where somatic second-hit mutations also are present in

cyst epithelia. We could also show that loss of the wild type

allele corresponded to loss of PRKCSH gene product hepato-

cystin in these cells [6,13]. Much less is known about how the

heterozygous mutations in SEC63 lead to cyst formation. On an

immunohistological level, cysts from PRKCSH and SEC63

patients show a different expression pattern for various proteins

including MUC1 and C-erbB-2. Furthermore, no loss of SEC63

protein has been reported in cysts form patients with a germline

mutation in this gene, which could reflect a different mechanism

of cyst development in cysts from SEC63 patients [14].

Although there is genetic and immunohistological heteroge-

neity among PCLD patients, the clinical presentation, the

presence of a normal bile duct system and the focal growth of

the cysts on the other hand, are features shared by all PCLD

patients [15]. This suggests that the mechanism of cyst

formation through second-hit mutations is similar among

different genetic forms of PCLD. We therefore hypothesise

that, similar to the situation in PRKCSH, somatic second-hit

mutations are also an important step in cyst formation in

patients with a SEC63 germline mutation.

To this end we analysed 52 cyst samples from 3 patients

carrying a SEC63 mutation. In one cyst sample we found loss of

heterozygosity (LOH), whereas we did not find any somatic

changes in 38 samples derived from the other two patients. After

reviewing the different germline mutations we found that somatic

inactivation only occurred against the background of the severe

truncating germline mutation.

These results show that somatic second-hit mutations play a role

in cyst formation of both PRKCSH and SEC63 mutation carriers.
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Materials and Methods

Ethics Statement
Liver tissue and blood samples of patients were obtained and

stored in the course of treatment following the Dutch Code for the

proper secondary use of human tissue. Use of this tissue for

research was reviewed and approved by the regional ethics review

board ‘‘Commissie Mensgebonden Onderzoek (CMO) regio

Arnhem-Nijmegen’’.

DNA and Tissue Samples
We used the following strategy to obtain all known liver cyst

samples from SEC63 germline mutation carriers within the

Netherlands. Patients were selected based on sequencing results

from our molecular diagnostic laboratory, which routinely per-

forms diagnostic tests for PCLD. Each PCLD patient is tested for

PRKCSH as well as SEC63 and the database now holds 505

patients. Using this database we could readily identify 29 patients

with a SEC63 mutation. We cross checked these patients against

the Dutch National Pathology database to find those patients who

had undergone laparoscopic cyst fenestration because of severe

symptoms [16] and for whom cyst tissue samples would be

available. Following this strategy we identified 3 SEC63 germline

mutation carriers for whom blood and tissue samples were

available.

All patients were female, and age at the time of surgery varied

between 33 and 41 years-of-age. We used fresh tissue samples that

had been snap-frozen immediately after excision and stored at

280uC until analysis (n = 38; 2 patients), or formalin-fixed

paraffin-embedded liver tissue samples that had routinely been

collected for pathological examination (n= 14; 1 patient). All

samples were collected with appropriate ethics approval: written

informed consent for the use of secondary tissue was obtained from

all patients.

We collected whole blood from 1000 healthy controls (2000

chromosomes) which were recruited after advertisement in local

papers from the same geographical region as our patients.

Genotyping
We screened patient DNA from whole blood for germline

mutations in SEC63 and PRKCSH using direct sequencing as

described previously [6]. In brief, DNA from whole blood was

isolated using the PureGene DNA isolation kit (Gentra Systems,

Minneapolis, Minnesota, USA) and stored at 4uC. Exons and

flanking intronic sequences were amplified using polymerase chain

reaction (PCR) with specific primers. The amplified fragments

were purified (QIAEXII Gel Extraction Kit, Qiagen, Hilden,

Germany) and sequenced with the BigDye terminator kit and

ABI3730 capillary sequencer (Perkin Elmer Applied Biosystems,

Boston, MA, USA). Names of SEC63 mutations refer to the

NM_007214.4 transcript according to the HGVS guidelines.

We screened genomic DNA samples of 1000 healthy controls

for the SEC63 c.1703_1705delAAG mutation using PCR with the

forward primer 59-TAGTGAAATTGTCATCGAGTCAG-39

and the reverse primer 59-CGAGCAAGCAAACAAATGAA-39

followed by high resolution melting (HRM). Melting curves were

obtained from 65uC to 95uC with a ramp rate of 0.1uC/10
seconds in the CFX96TM Real-Time PCR Detection System

(Biorad Laboratories, Hercules, CA, USA) with EvaGreen

(Biotium, Hayward, CA, USA) as fluorescent dye. Melting curves

were analyzed using the Precision Melt software (Biorad).

Abnormal curves were then sent for sequencing.

Laser Microdissection
Tissue sections (10 mm), from frozen or formalin-fixed paraffin-

embedded liver samples, were mounted on cross-linked PEN-

membrane slides (Leica Microsystems GmbH, Wetzlar, Germany),

stained with Mayers Hematoxylin (1 min) and rinsed in tap water.

Paraffin embedded sections were deparaffinized using xylene and

ethanol prior to hematoxylin nuclear stain. Specific isolation of the

cyst epithelial cells (300 to 2000 cells/sample) was carried out

using a Leica Laser Microdissection system (LMD 6000) equipped

with an UV laser (Leica Microsystems GmbH) [17]. For each

patient we dissected liver cells (hepatocytes and other non-cyst

epithelial cells) to serve as a control sample.

DNA Isolation from Dissected Cells
DNA from the dissected cells was isolated using the QIAamp

DNAMicro kit (Qiagen) according to instructions and with the use

of carrier RNA. To increase the DNA yield and quality from

formalin fixed tissue samples we made the following adjustments:

samples were digested at 56uC for two days with occasional

agitation; proteinase K solution (.600 mAU/ml) was added in

two steps (5 ml on day 1 and 5 ml on day 2); after digestion and

addition of buffer ATL, samples were incubated at 90uC for 1 hr

to promote reverse cross-linking of the DNA. To obtain enough

material for the SEC63 and PRKCSH sequencing, cyst epithelial

DNA was amplified using a commercially available whole genome

amplification kit (GenomePlex WGA, Sigma-Aldrich, Saint Louis,

MO, USA) and purified (GenElute PCR Clean-Up Kit, Sigma-

Aldrich) prior to analysis. Sample amplification was performed in

duplicate to control for any mutations resulting from the whole

genome amplification procedure.

Somatic Mutation Analysis
We conducted the following analyses on DNA isolated from

laser dissected samples:

(1) SEC63 LOH analysis. The region of the germline mutation was

amplified using specific primers for the SEC63 c.958G.T

mutation (forward 59-TGAAAATTCCTGAGACCCTTG-39

and reverse 59-TGCTGCTTTCATCCCACTAA-39) and the

SEC63 c.1703_1705delAAG mutation (forward 59-TAGT-

GAAATTGTCATCGAGTCAG-39 and reverse 59-CGAG-

CAAGCAAACAAATGAA-39) followed by sequencing to

determine the heterozygosity state of the germline mutation

in both cyst epithelia and control liver cell samples.

(2) SEC63 and PRKCSH sequencing. All SEC63 and PRKCSH coding

exons and flanking intronic sequences were sequenced (as

described for genotyping) on amplified DNA to detect somatic

mutations in the cysts. DNA isolated from whole blood of the

patient was used as reference sample.

LOH Region Analysis
We used 5 heterozygous SNPs across chromosome 6 to analyse

the heterozygosity state in cyst DNA using PCR with specific

primers: rs2012025 (foward 59-GGGCCAGCAGAAA-

TAACTTG-39, reverse 59-GCTGTCGTTCTCATCATCCA-

39), rs13220047 (forward 59-TGTAGGTAAGGGAGATGCAC-

39, reverse 59-CCTACTGGACTCAGTGGTTT-39), rs675117

(forward 59-AGCCACAAGCTTTGGAATTG-39, reverse 59-

TTTAAATGCACTCACCAGAATTG-39), rs12210583 (forward

59-GCCTCAGAACCCTGAGCTG-39, reverse 59-AC-

CAAGGCTGTATCGCAATC-39) and rs10946279 (forward 59-

GCCGTGAGACAGCAAGTGT-39, reverse 59-

GGTTCCATCCCCAAGTCTCT-39), followed by sequencing.

Somatic Mutations in Polycystic Liver Disease
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Immunohistochemistry
Tissue sections (4 mm) from formalin-fixed paraffin-embedded

PCLD liver tissue were obtained together with tissue sections for

laser micro dissection. Sections were mounted on SuperFrost

Plus glass slides (Thermo Scientific Waltham, MA, USA) using

a water bath and allowed to dry overnight at 37uC. Prior to the

staining the tissue sections were deparaffinised with xylene and

hydrated with alcohol and distilled water. Samples were

microwave heated and boiled for 10 min in Na-Citrate buffer

pH 6, cooled down to room temperature, washed in phosphate

buffered saline (PBS) and incubated for 30 min with 1%BSA/

PBS (Bovine Serum Albumin, Sigma-Aldrich). Endogenous

Avidin/Biotin was blocked (Vector laboratories, Burlingame,

CA, USA) followed by overnight incubation with 1:400 rabit

anti-SEC63 antibody (kind gift from Prof. Dr. Enno Hartmann,

University of Lübeck, Germany), 1:200 mouse anti-hepatocystin

antibody (sc10774, Santa Cruz, CA, USA) or 1:400 mouse anti-

Cytokeratin 19 (MU246-UC, BioGenex, San Ramon, CA) in

1%BSA/PBS. For each staining we included a negative control

in which the primary antibody was omitted. Endogenous

peroxidase was blocked in 0,3% H2O2/PBS for 10 min after

which samples were washed in PBS. Samples were incubated

for 1 hr with secondary antibody (biotinylated anti-mouse or

anti-rabit IgG, Vector laboratories), washed and bound to

Horse-Radish-Peroxidase using the ABC method (Vector

laboratories). Detection was carried out with the use of

diaminobenzidine tetrahydrochloride (DAB) as substrate and

enhanced with copper sulfate and nuclei were counterstained

with Mayers Hematoxylin. After the staining samples were

dehydrated with alcohol and xylol before mounting in

Permount.

Statistics
Fisher’s exact test was used to compare the frequency of the

SEC63 c.1703_1705delAAG variant in DNA samples from PCLD

patients with healthy controls, and to compare the presence of

LOH and somatic point mutations in cyst between patients with

a PRKCSH or a SEC63 germline mutation. The 95% confidence

interval of the proportion of cysts with LOH was calculated with

the Newcombe-Wilson method for proportions without continuity

correction [18].

Results

Patient Tissue Samples
We obtained tissue samples from three patients with a known

SEC63 germline mutation (Table 1), these 3 patients are unrelated

and no affected family members are known. We also screened

genomic DNA for mutations in PRKCSH, the other gene involved

in PCLD, to exclude additional germline mutations.

Somatic Mutation Analysis
Using laser microdissection we collected epithelial cells from 52

cysts and found LOH to be present in one cyst from patient #3

(Table 1, Figure 1B). Next, we screened the coding sequence of

SEC63 and PRKCSH by Sanger sequencing in the remaining cysts

of patient#1 and patient #2, no somatic mutations were present.

Due to the formalin fixation in the samples of patient #3 we could

not sequence SEC63 and PRKCSH to detect other somatic

mutations in these samples.

LOH Region Analysis
We used 5 informative (heterozygous) single nucleotide poly-

morphisms (SNPs) across chromosome 6 to determine the extent

of the region with LOH (Figure 1A, B and C). This demonstrated

that the LOH region extends over 6 kb from the site of the

germline mutation SEC63 c.958G.T (in exon10) to exon 6 in the

same gene. The SNP (rs13220047) located at a distance of 82 kb

remains heterozygous indicating that a genomic breakpoint

occurred within this region. In tumour samples LOH regions

are often telomeric [19,20] and extent from one breakpoint

towards the end of the chromosome. This was not the case in our

sample, where the telomeric SNPs remained heterozygous

(Figure 1C).

Immunohistochemistry
Immunostaining of SEC63 and hepatocystin showed that the

hepatocystin staining was similar between cysts, whereas for

SEC63 the intensity of the staining was reduced in the cyst with

LOH but appears normal in the cysts without loss of heterozy-

gosity (Figure 1D).

Somatic Mutations Only Present in Patient with Severe
Germline Mutation
We found LOH in one of the 14 cysts of patient #3, while

somatic mutations were conspicuously absent from samples from

the other 2 patients (38 cysts). We reviewed the different

underlying SEC63 germline mutations and found that the germline

mutation of patient #3 is potentially much more severe than those

of the other 2 patients. Both patient #1 and #2 carry

a heterozygous SEC63 c.1703_1705delAAG mutation which will

lead to an in-frame deletion of a single amino acid: glutamate at

position 568 in the protein. In contrast, the germline mutation of

patient #3 (SEC63 c.958G.T) results in a premature stop codon

after 319 amino acids (p.Glu320X), which deletes 441 out of 760

amino acids.

To determine whether the SEC63 c.1703_1705delAAG muta-

tion is a true pathogenic mutation or represents a rare (benign)

polymorphism, we determined the frequency of this mutation in

the normal population by high resolution melting analysis of this

region in genomic DNA of 1000 healthy subjects. We found this

specific amino acid deletion in 6 out of 2000 normal chromosomes

Table 1. Somatic mutation analysis.

Age* Sex Tissue samples Heterozygous germline mutation
# of cysts
analyzed

Cysts with
LOH

Patient 1 38 F Frozen SEC63 c. 1703_1705delAAG 34 0 (0%)

Patient 2 41 F Frozen SEC63 c. 1703_1705delAAG 4 0 (0%)

Patient 3 33 F Formalin fixed SEC63 c. 958G.T 14 1 (7%)

*Age at time of surgery.
doi:10.1371/journal.pone.0050324.t001

Somatic Mutations in Polycystic Liver Disease
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(0,30%), which is similar to the frequency present in a sample of

373 PCLD patients (5/746 chromosomes, 0,67%) as depicted in

Figure 2. The difference between both groups was not statistical

different (p = 0.18). This suggest that the genomic variant SEC63

c.1703_1705delAAG is not a pathogenic mutation causing PCLD

which may explain the absence of any somatic mutations in this

gene.

Discussion

Our data show that somatic second-hit mutations do occur in

SEC63 mutation carriers with PCLD, which is in line with the

second-hit model for disease pathogenesis.

We did not detect somatic mutations in two out of three patients

and we hypothesised this was related to the nature of the germline

mutation. After reviewing the germline mutations we found that

Figure 1. Cyst with loss of heterozygosity. Electropherograms showing the heterozygous germline mutation SEC63 c.958G.T and two
neighbouring SNPs in control liver tissue (A) and in the homozygous liver cyst (B) of patient 3, indicating loss of heterozygosity at SEC63 c.958G.T
and SNP rs675117 in the cyst. The relative locations of the different SNPs are shown, with a close up of the genomic region surrounding the germline
mutation (C). The SNPs which remain heterozygous in the cyst with LOH are depicted in blue, SNPs with LOH are depicted in red on the chromosome
(C). Immunohistochemical analysis shows the expression of SEC63 and hepatocystin in a normal bile duct, a heterozygous liver cysts and the
homozygous liver cyst with LOH at SEC63, in a paraffin-embedded formalin-fixed tissue section of patient #3 (D).
doi:10.1371/journal.pone.0050324.g001

Somatic Mutations in Polycystic Liver Disease
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the allele frequency of the SEC63 c.1703_1705delAAG mutation

did not differ between our PCLD patients and the healthy

population. This indicates this variant is a (rare) polymorphism

which is not associated with PCLD. The literature reports this

mutation several times in relation to PCLD [4,5] but segregation

in a family with PCLD has never been shown. Davila et al.

reported that they did not find this variant in 360 healthy

chromosomes [4], which can be explained by the low allele

frequency of this variant. We therefore believe that patients 1 and

2 do not have a pathogenic SEC63 mutation, but belong to the

cohort of PCLD patients in which the genetic cause is still

unknown. This is important to know as currently patients with

PCLD are being screened, classified and advised based on wrong

information.

As PRKCSH and SEC63 are ubiquitously expressed in the

human body, it remains unclear why germline mutations would

lead to a liver specific disorder. The gene product of SEC63,

SEC63, is thought to play a role in protein transport across the

endoplasmic reticulum (ER) membrane, whereas PRKCSH codes

for hepatocystin and is part of a heterodimer complex involved in

folding of glycoproteins in the ER [21,22]. However, targeted

inactivation of both PRKCSH and SEC63 in an ADPKD mouse

model leads to a synergistic increase in disease severity, which

suggests that these genes share a biological pathway [23].

Although the frequency of somatic second-hit mutations varies

between different genes and genetic disorders, the difference in

somatic mutations between cysts from PRKCSH patients and this

SEC63 patient is remarkable. We found LOH in only 7% (1/14) of

SEC63 mutated cysts, whereas in PRKCSH germline carriers the

majority of cysts (76%) acquired LOH [6]. Although the numbers

are low, this difference is statistically significant (p,0,00001) and

could indicate that these two genes have a different susceptibility to

somatic LOH. The immunohistochemical data confirmed loss of

SEC63 protein in the cysts with LOH, which indicates that the

truncated gene transcript from the mutated SEC63 c.958G.T

allele may no longer be translated into protein or is not recognised

by the antibody.

Our study was restricted by the limited amount of available

patient tissue. However, we identified and collected all known

PCLD liver tissue samples that had been stored within the

Netherlands. We obtained samples from three patients, but only

one patient carried a bonafide pathogenic SEC63 germline

mutation. Furthermore, the available tissue was formalin fixed

which was not a problem for the laser microdissection

procedure, but did reduce the yield of the DNA isolation. We

were able to get a clear read on the LOH status of all samples,

but the sequence efficiency was affected in material derived

from formalin-fixed paraffin-embedded tissue. Therefore there

may still be presence of, yet unidentified, somatic mutations in

these samples.

There is a body of evidence emanating from recent studies

supporting the concept of somatic mutations as part of the

genetic pathogenesis of benign and malignant disorders. It was

recently shown that hamartomata that are part of the Proteus

syndrome arise from somatic activating mutations in oncogene

AKT1 [24]. In patients with acute lymphoblastic leukemia and

cervical cancer somatic mutations play an important role in the

development and prognosis of the disease [25,26]. Lastly,

recurrent somatically acquired mutations of the SF3B1 gene

can be demonstrated in subtypes of myelodysplastic syndromes

in which ring sideroblasts are a prominent feature [27].

Collectively, these data demonstrate that genetic inactivation

through somatically acquired mutations help to understand the

tissue specificity of certain malignant but also non-malignant

disorders.

In conclusion, we have now shown that in both PRKCSH and

SEC63 somatic second-hit mutations can occur which supports the

notion that somatic second-hit mutations are part of the genetic

mechanism in cyst formation in PCLD.
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kindly sharing the SEC63 antibody.

Figure 2. Allele frequency of SEC63 c.1703_1705delAAG. Allele frequency and confidence interval of the SEC63 c.1703_1705delAAG gene
variant in genomic DNA from PCLD patients and healthy controls.
doi:10.1371/journal.pone.0050324.g002

Somatic Mutations in Polycystic Liver Disease

PLOS ONE | www.plosone.org 5 November 2012 | Volume 7 | Issue 11 | e50324



Author Contributions

Conceived and designed the experiments: MJJ JS RHMM JPHD.

Performed the experiments: MJJ JS RHMM. Analyzed the data: MJJ JS

RHMM JPHD. Contributed reagents/materials/analysis tools: JPHD.

Wrote the paper: MJJ JPHD. Revised the article critically for important

intellectual content: MJJ JS RHMM JPHD.

References

1. Van Keimpema L, de Koning DB, van Hoek B, van den Berg AP, van Oijen

MG, et al. (2011) Patients with isolated polycystic liver disease referred to liver
centres: clinical characterization of 137 cases. Liver Int 31: 92–98.

2. Drenth JPH, te Morsche RH, Smink R, Bonifacino JS, Jansen JB (2003)
Germline mutations in PRKCSH are associated with autosomal dominant

polycystic liver disease. Nat Genet 33: 345–347.

3. Li A, Davila S, Furu L, Qian Q, Tian X, et al. (2003) Mutations in PRKCSH
cause isolated autosomal dominant polycystic liver disease. Am J Hum Genet 72:

691–703.
4. Davila S, Furu L, Gharavi AG, Tian X, Onoe T, et al. (2004) Mutations in

SEC63 cause autosomal dominant polycystic liver disease. Nat Genet 36: 575–

577.
5. Waanders E, Venselaar H, te Morsche RH, de Koning DB, Kamath PS, et al.

(2010) Secondary and tertiary structure modeling reveals effects of novel
mutations in polycystic liver disease genes PRKCSH and SEC63. Clin Genet 78:

47–56.
6. Janssen MJ, Waanders E, te Morsche RH, Xing R, Dijkman HB, et al. (2011)

Secondary, somatic mutations might promote cyst formation in patients with

autosomal dominant polycystic liver disease. Gastroenterology 141: 2056–2063.
7. Brasier JL, Henske EP (1997) Loss of the polycystic kidney disease (PKD1)

region of chromosome 16p13 in renal cyst cells supports a loss-of-function model
for cyst pathogenesis. J Clin Invest 99: 194–199.

8. Koptides M, Constantinides R, Kyriakides G, Hadjigavriel M, Patsalis PC, et al.

(1998) Loss of heterozygosity in polycystic kidney disease with a missense
mutation in the repeated region of PKD1. Hum Genet 103: 709–717.

9. Qian F, Watnick TJ, Onuchic LF, Germino GG (1996) The molecular basis of
focal cyst formation in human autosomal dominant polycystic kidney disease

type I. Cell 87: 979–987.

10. Watnick TJ, Torres VE, Gandolph MA, Qian F, Onuchic LF, et al. (1998)
Somatic mutation in individual liver cysts supports a two-hit model of

cystogenesis in autosomal dominant polycystic kidney disease. Mol Cell 2:
247–251.

11. Koptides M, Hadjimichael C, Koupepidou P, Pierides A, Deltas CC (1999)
Germinal and somatic mutations in the PKD2 gene of renal cysts in autosomal

dominant polycystic kidney disease. Hum Mol Genet 8: 509–513.

12. Pei Y, Watnick T, He N, Wang K, Liang Y, et al. (1999) Somatic PKD2
mutations in individual kidney and liver cysts support a ‘‘two-hit’’ model of

cystogenesis in type 2 autosomal dominant polycystic kidney disease. J Am Soc
Nephrol 10: 1524–1529.

13. Waanders E, Croes HJ, Maass CN, te Morsche RH, van Geffen HJ, et al. (2008)

Cysts of PRKCSH mutated polycystic liver disease patients lack hepatocystin but
express Sec63p. Histochem Cell Biol 129: 301–310.

14. Waanders E, Van Krieken JH, Lameris AL, Drenth JP (2008) Disrupted cell
adhesion but not proliferation mediates cyst formation in polycystic liver disease.

Mod Pathol 21: 1293–1302.

15. Waanders E, te Morsche RH, de Man RA, Jansen JB, Drenth JP (2006)

Extensive mutational analysis of PRKCSH and SEC63 broadens the spectrum

of polycystic liver disease. Hum Mutat 27: 830.

16. Van Keimpema L, Ruurda JP, Ernst MF, van Geffen HJ, Drenth JP (2008)

Laparoscopic fenestration of liver cysts in polycystic liver disease results in

a median volume reduction of 12.5%. J Gastrointest Surg 12: 477–482.

17. van Dijk MCRF, Rombout PDM, Dijkman HBPM, Ruiter DJ, Bernsen MR

(2003) Improved resolution by mounting of tissue sections for laser microdis-

section. Mol Pathol 56: 240–243.

18. Newcombe RG (1998) Two-sided confidence intervals for the single proportion:

comparison of seven methods. Stat Med 17: 857–872.

19. Gaasenbeek M, Howarth K, Rowan AJ, Gorman PA, Jones A, et al. (2006)

Combined array-comparative genomic hybridization and single-nucleotide

polymorphism-loss of heterozygosity analysis reveals complex changes and

multiple forms of chromosomal instability in colorectal cancers. Cancer Res 66:

3471–3479.

20. Burnichon N, Briere JJ, Libe R, Vescovo L, Riviere J, et al. (2010) SDHA is

a tumor suppressor gene causing paraganglioma. Hum Mol Genet 19: 3011–

3020.

21. Drenth JPH, Martina JA, van de Kerkhof R, Bonifacino JS, Jansen JB (2005)

Polycystic liver disease is a disorder of cotranslational protein processing. Trends

Mol Med 11: 37–42.

22. Janssen MJ, Waanders E, Woudenberg J, Lefeber DJ, Drenth JPH (2010)

Congenital disorders of glycosylation in hepatology: The example of polycystic

liver disease. J Hepatol 52: 432–440.

23. Fedeles SV, Tian X, Gallagher AR, Mitobe M, Nishio S, et al. (2011) A genetic

interaction network of five genes for human polycystic kidney and liver diseases

defines polycystin-1 as the central determinant of cyst formation. Nat Genet 43:

639–647.

24. Lindhurst MJ, Sapp JC, Teer JK, Johnston JJ, Finn EM, et al. (2011) A mosaic

activatingmutation in AKT1 associated with the Proteus syndrome. N Engl JMed

365: 611–619.

25. Wingo SN, Gallardo TD, Akbay EA, Liang MC, Contreras CM, et al. (2009)

Somatic LKB1 mutations promote cervical cancer progression. PLoS One 4:

e5137.

26. Diouf B, Cheng Q, Krynetskaia NF, Yang W, Cheok M, et al. (2011) Somatic

deletions of genes regulating MSH2 protein stability cause DNA mismatch

repair deficiency and drug resistance in human leukemia cells. Nat Med 17:

1298–1303.

27. Papaemmanuil E, Cazzola M, Boultwood J, Malcovati L, Vyas P, et al. (2011)

Somatic SF3B1 mutation in myelodysplasia with ring sideroblasts. N Engl J Med

365: 1384–1395.

Somatic Mutations in Polycystic Liver Disease

PLOS ONE | www.plosone.org 6 November 2012 | Volume 7 | Issue 11 | e50324


