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Abstract Neuroimaging stands to benefit from emerging ultrahigh- resolution 3D histological 
atlases of the human brain; the first of which is ‘BigBrain’. Here, we review recent methodological 
advances for the integration of BigBrain with multi- modal neuroimaging and introduce a toolbox, 
’BigBrainWarp’, that combines these developments. The aim of BigBrainWarp is to simplify work-
flows and support the adoption of best practices. This is accomplished with a simple wrapper func-
tion that allows users to easily map data between BigBrain and standard MRI spaces. The function 
automatically pulls specialised transformation procedures, based on ongoing research from a wide 
collaborative network of researchers. Additionally, the toolbox improves accessibility of histological 
information through dissemination of ready- to- use cytoarchitectural features. Finally, we demon-
strate the utility of BigBrainWarp with three tutorials and discuss the potential of the toolbox to 
support multi- scale investigations of brain organisation.

Introduction
Understanding brain anatomy requires a multi- scale perspective. Regional variations in cell types and 
distributions underlie macro- scale patterns, whether they are reflective of functional dynamics, age, 
or disease states. For over 150 years (von Gudden, 1886), histological analysis of post mortem tissue 
has helped to reveal the microscopic architecture of the brain. Neuroanatomists observed a distinctive 
layered organisation of cells within the cortex (Baillarger, 1840), identified differences in the cellular 
composition (Betz, 1874), and developed principles of cortical organisation, including the definition 
of cortical types (Meynert, 1867) and areas (Brodmann, 1908; Von Economo and Koskinas, 1925). 
More recently, digitisation of post mortem tissue has allowed automated characterisation of cytoarchi-
tecture and the definition of borders between areas (Schleicher et al., 1999).
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Evidence has been provided that cortical organisation goes beyond a segregation into areas. For 
example, large- scale gradients that span areas and cytoarchitectonic heterogeneity within a cortical 
area have been reported (Amunts and Zilles, 2015; Goulas et al., 2018; Wang, 2020). Such progress 
became feasible through integration of classical techniques with computational methods, supporting 
more observer- independent evaluation of architectonic principles (Amunts et  al., 2020; Paquola 
et al., 2019; Schiffer et al., 2020; Spitzer et al., 2018). This paves the way for novel investigations 
of the cellular landscape of the brain.

In vivo neuroimaging offers a complementary window into the structure and function of the brain. 
The non- invasive nature of magnetic resonance imaging (MRI) allows examination of large- scale, 
population- level variation, which is more limited in post mortem neuroanatomy. Human brain mapping 
research has furthermore established standard spaces, notably the MNI152 space for volumetric 
whole- brain analysis (Fonov et al., 2011b; Fonov et al., 2009; Mazziotta et al., 2001a; Mazziotta 
et al., 2001b) and ‘fsaverage’ and ‘fs_LR’ for surface- based cortical analyses (Fischl et al., 1999; Van 
Essen et al., 2012). Despite ongoing advances in attaining higher spatial resolution with higher field 
strength (Deistung et al., 2013; Holdsworth et al., 2019; Sitek et al., 2019; Trampel et al., 2019; 
Turner and De Haan, 2017), in vivo MRI researchers remain constrained by limited spatial resolution 
from making inferences on a cellular level. Establishing the relationship between macro- scale patterns 
and cellular architecture is crucial to substantiate physiological patterns observed with MRI and for 
further development of brain- inspired computational models.

BigBrain is a singular 3D volumetric reconstruction of a sliced and cell- body stained post mortem 
human brain (Amunts et al., 2013). This resource allows computational analysis of the entire organ 
in relation to cell staining at high resolutions (up to 20 µm). It is specially tailored for neuroimagers, 
as it is made available in common MRI formats (minc and NifTI), accompanied by cortical surface 
reconstructions (Lewis et al., 2014), and nonlinearly registered to standard MRI templates (ICBM152 
and MNI- ADNI) (Fonov et al., 2011a). Furthermore, recent studies have expanded the resource by 
offering improved registrations to standard spaces (Lewis et al., 2020; Xiao et al., 2019), nuanced 
intracortical surface models, and laminar approximations (Wagstyl et  al., 2018a; Wagstyl et  al., 
2020) as well as regional segmentations (DeKraker et al., 2019; Xiao et al., 2019). Several studies 
have already capitalised on this unique resource for integrative histological- neuroimaging analyses, 
including comparison of cytoarchitectural and functional gradients (Paquola et  al., 2019), cross- 
validation of in vivo defined microstructural gradients in the insula with histological measures (Royer 
et al., 2020), mapping variations in functional connectivity along the histological axis of the mesio-
temporal lobe (Paquola et al., 2020b), fMRI responses of the histologically defined auditory system 
(Sitek et al., 2019), comparison of cytoarchitectural similarity with MRI- derived estimates of structural 
connectivity (Wei et al., 2019), and analysis of the cytoarchitectural similarity of large- scale network 
hubs (Arnatkevičiute et al., 2020).

The present article introduces the BigBrainWarp toolbox. The aim of the toolbox is to facilitate 
integration of BigBrain with neuroimaging modalities, helping neuroscientists to utilise cytoarchitec-
tural information in conjunction with in vivo imaging. The toolbox is open and includes (1) histo-
logical features and pre- transformed maps in BigBrain and imaging spaces, (2) code for performing 
data transformations, and (3) extensive tutorials. Toolbox functions and tutorials are documented on 
http:// bigbrainwarp. readthedocs. io. Here, we introduce BigBrain to new users and demonstrate the 
utility of the BigBrainWarp toolbox. In the Materials and methods section, we overview the derivation 
of cytoarchitectural features from BigBrain and survey recent contributions to BigBrain- MRI integra-
tion. These include publication of histological cortical maps, regional segmentations, and registration 
efforts. Then, we detail the core functions of BigBrainWarp and the current contents of the toolbox. 
In the Results section, we share three tutorials to illustrate potential applications of BigBrainWarp.

Materials and methods
Overview of BigBrain
In brief, the reconstruction of BigBrain involved coronal slicing of a complete paraffin- embedded brain 
(65- year- old male) into 7404 sections at 20 μm thickness. Each section was stained for cell bodies 
(Merker, 1983), digitised, and subjected to manual and automatic artefact repair. The digitised 
sections were reconstructed into a contiguous 3D volume. The volumetric reconstruction is available 

https://doi.org/10.7554/eLife.70119
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online at 40 µm, 100 µm, 200 µm, 300 µm, 400 µm, and 1000 µm resolutions (http:// bigbrainproject. 
org). The 40 µm version is released as 125 individual blocks corresponding to five subdivisions in the 
x, y, and z directions, with overlap. 100 -1000 µm resolution volumes are provided as single files. The 
Merker staining labels cell bodies, similar to Nissl staining, with a high contrast between black cell 
bodies on a light background (Merker, 1983). In the digitised images, darker colouring is represented 
by lower numbers (8bit graphics: 0–28 = black- white). It is common practice to invert the values of the 
intensity, such that image intensity increases with staining intensity.

The grey and white matter boundaries of the cortical surface released in 2014 contain 163,842 
vertices on each hemisphere, with vertices aligned between pial and white surfaces (Lewis et al., 
2014). Surfaces were generated using a modified version of CIVET (Kim et al., 2005; MacDonald 
et al., 2000). Since then, a number of additional surface reconstructions have been published from 
which we may attain a range of metrics (Table 1).

Staining intensity profiles and derived features
Sampling staining intensity from many cortical depths provides a profile of the cytoarchitecture, 
hereafter referred to as a staining intensity profile. This is achieved by constructing a set of surfaces 
within the cortex, then sampling intensity estimates at matched vertices across the surfaces. The 
current approach involves equivolumetric surface construction, whereby a set of intracortical surfaces 
are initialised at equidistant depths, then modulated by cortical curvature (Waehnert et al., 2014). 
This holds advantages for histological data because laminae vary in thickness depending on cortical 
folding (Bok, 1929). The procedure can be deployed using dedicated python scripts (Wagstyl et al., 
2018b) and is implemented in the BigBrainWarp toolbox ( sample_ intensity_ profiles. sh).

Smoothing can be employed in tangential and axial directions to ameliorate the effects of artefacts, 
blood vessels, and individual neuronal arrangement (Wagstyl et al., 2018a). Smoothing across depths 
is enacted for each profile independently. Here, we use an iterative piece- wise linear procedure that 
minimises curve shrinkage (Taubin, 1995). The degree of smoothing is modulated by the number of 
iterations. In contrast, surface- wise smoothing is performed at each depth independently and involves 
moving a Gaussian kernel across the surface mesh. We tested the impact of such pre- processing 
choices by generating the profiles with a range of parameters (number of surfaces: 50–100, iterations 
of depth- wise smoothing = 2–10, FWHM of surface- wise smoothing = 0–8) (Appendix  1—figure 
1A). Then, we examined how these parameters affected the shape of the staining intensity profiles, 
based on the number of peaks in the profile, and the spatial autocorrelation of staining intensity 
profiles (Appendix  1—figure 1B). Spatial autocorrelation was calculated as the average product- 
moment correlation of staining intensity profiles at various distances along the BigBrain surface mesh 
(distances: 1–50 steps). In this case, the number of steps represents the shortest path along the 
surface mesh, treating the edges of the surface mesh as a graph. Increasing the number of surfaces 
beyond 50 did not impact the spatial autocorrelation and led to small increases in the number of 
peaks in intensity profiles (Appendix  1—figure 1C). Depth- wise smoothing did not impact either 
outcome measure. As could be expected, surface- wise smoothing substantially increased spatial auto-
correlation. For the initial BigBrainWarp release, we selected 50 surfaces, 2 iterations of depth- wise 

Table 1. Surface constructions for BigBrain.

Surfaces Utility Reference

Grey and white Initialisation and visualisation Lewis et al., 2014

Layer 1/2 and layer 4 Boundary conditions Wagstyl et al., 2018a

Equivolumetric Staining intensity profiles Waehnert et al., 2014

Deep learning laminar Laminar thickness Wagstyl et al., 2020

Hippocampal Initialisation and visualisation DeKraker et al., 2019

Mesiotemporal confluence Initialisation and visualisation Paquola et al., 2020a

Note: Initialisation broadly refers to an input for feature generation, for example creation of staining intensity 
profiles or surface transformations.

https://doi.org/10.7554/eLife.70119
http://bigbrainproject.org
http://bigbrainproject.org
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smoothing and (a modest) 2 FWHM surface- wise smoothing. BigBrainWarp also provides a simple 
function for generating staining intensity profiles ( sample_ intensity_ profiles. sh).

Previous research has sought to characterise the laminar structure of the cortex using BigBrain 
staining intensity profiles (Paquola et al., 2019; Schleicher et al., 1999; Wagstyl et al., 2018a; Zilles 
et al., 2002). The isocortex contains six layers (Brodmann, 1909), certain features of which manifest 
on BigBrain staining intensity profiles. The transition from layer I to II exhibits a sharp increase in 
staining because layer I is only sparsely populated with cells, while the outer granular layer II has a 
higher density. Layer IV harbours a second, noticeable peak in cell staining, corresponding to dense 
packing of granule cells. The peak of layer IV corresponds to the division between supragranular and 
infragranular layers, which have markedly different roles in neural communication (Buffalo et al., 2011; 
Felleman and Van Essen, 1991; Rockland and Pandya, 1979). The relative depth of layer IV is also 
potentially informative, likely related to the propensity for feedforward vs feedback communication 
(Beul et al., 2017; Sanides, 1962; Wagstyl et al., 2018a), though the demarcation of feedforward 
and feedback projections is more multifactorial and complex (Rockland, 2015). A six- layered decom-
position of the BigBrain isocortex has also been produced by training a convolutional neural network 
on manual annotations in 51 regions, then extending the model to the whole isocortex (Wagstyl 
et  al., 2020; Figure  1E). Laminar thickness estimates aligned with prior histological studies (Von 
Economo and Koskinas, 1925), while increasing overall spatial precision. There remains difficulty in 
extending these approaches to cortex without clear laminar differentiation, however (i.e., anterior 
insula, mesiotemporal lobe).

Figure 1. Magnification of cytoarchitecture using BigBrain, from (A) whole brain 3D reconstruction (taken on https://atlases.ebrains.eu/viewer) to (B) 
a histological section at 20 µm resolution (available from bigbrainproject.org) to (C) an intracortical staining profile. The profile represents variations in 
cellular density and size across cortical depths. Distinctive features of laminar architecture are often observable i.e., a layer IV peak. Note, the presented 
profile was subjected to smoothing as described in the following section. BigBrainWarp also supports integration of previous research on BigBrain 
including (D–E) cytoarchitectural and (F–G) morphological models (DeKraker et al., 2019; Paquola et al., 2020a; Paquola et al., 2019; Wagstyl 
et al., 2020).

https://doi.org/10.7554/eLife.70119
https://atlases.ebrains.eu/viewer
https://bigbrainproject.org/
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More detailed characterisation of cytoarchitecture is offered by moment- based parameterisation 
of staining intensity profiles. This technique, pioneered by the Jülich group (Schleicher et al., 1999; 
Zilles et al., 2002), involves calculating the central moments (i.e., mean, the center of gravity, standard 
deviation, skewness, and kurtosis) of each staining intensity profile and the derivative profile, resulting 
in a multidimensional feature vector for each cortical point. Each central moment may be interpreted 
in neurobiological terms (Zilles et  al., 2002). For example, the mean has been related to overall 
cellular density (Wree et al., 1982). It is higher in the primary visual cortex than in Brodmann area 45 
than in the primary motor cortex, Brodmann area 4. In contrast, skewness varies from sensory to limbic 
areas (i.e., sensory- fugal) and indexes the balance of cellular density in infra- vs supra- granular layers 
(Paquola et al., 2020b). Comparison of profiles can illuminate large- scale patterns of cortical organ-
isation. Observer- independent discrimination of cortical areas can be accomplished by comparing 
moment- based feature vectors between neighbouring vertices (Schleicher et al., 1999). The areal 
boundaries are defined where the feature vector exhibits a sudden shift. Over the past 20 years, this 
procedure has been employed in 23 post mortem brains, including BigBrain, resulting in a 3D prob-
abilistic atlas of the human brain (Amunts et al., 2020). While this work is based on a selection of 
histological sections of each brain, recent work investigates solutions for mapping each section in a 
stack with the help of deep learning, in order to produce gapless 3D maps at full detail (Schiffer et al., 
2020) and ultimately obtain a dense mapping of the BigBrain model.

Cortex- wide cytoarchitectural similarity may also be estimated by cross- correlating staining inten-
sity profiles between different cortical locations (Paquola et al., 2019). We recently applied diffu-
sion map embedding, a nonlinear manifold learning technique (Coifman and Lafon, 2006), to the 
profile cross- correlation matrix of BigBrain to identify principle axes of cytoarchitectural differentiation 
(Paquola et al., 2019; Figure 1D). Here, we replicated the approach with updated staining intensity 
profiles. Bearing in mind the high- dimensional matrix manipulation necessary for this procedure, we 
first decimated the BigBrain mesh from 327,684 to ~10,000 vertices. Mesh decimation involves selec-
tion of a subset of vertices that preserve the overall shape of the surface followed by retriangulation 
of the faces with only the selected vertices. We assigned non- selected vertices to the nearest selected 
vertex, based on shortest path on the mesh (ties were solved by shortest Euclidean distance). In this 
manner, all 327,684 vertices belong to one of ~10,000 parcels. Derivation of the cytoarchitectural 
gradients involved (1) averaging staining intensity profiles within each parcel, (2) pair- wise correla-
tion of parcel- average staining intensity profiles (controlling for the global- average staining intensity 
profile), (3) transformation to a normalised angle matrix, and (4) diffusion map embedding of this 
matrix. Each eigenvector captures an axis of cytoarchitectural variation and is accompanied by an 
eigenvalue that approximates the variance explained by that eigenvector. Here, the first two eigen-
vectors explain approximately 42% and 35% of variance, respectively, and describe anterior–posterior 
and sensory- fugal axes (further details in Tutorial 2).

Morphometric models in BigBrain
The high resolution of BigBrain allows for precise segmentation of anatomical structures. Manual 
segmentations of the putamen, caudate nucleus, globus pallidus pars externa, globus pallidus pars 
interna, nucleus accumbens, amygdala, thalamus, red nucleus, substantia nigra, subthalamic nucleus, 
and the hippocampus are available on Open Science Framework (https:// osf. io/ xkqb3/). Extending 
upon whole- structure segmentation, a recent study DeKraker et  al., 2019 used anatomical land-
marks to create an internal coordinate system of the hippocampus. The approach involved solving 
Laplace’s equation under three sets of boundary conditions: anterior–posterior, proximal–distal (rela-
tive to the subiculum), and inner–outer (DeKraker et  al., 2018). Subsequently, the hippocampus 
can be ’unfolded’, allowing examination of histological and morphometric features in a topologically 
continuous space (Figure 1F), in line with other surface- based studies of the hippocampus (Bernhardt 
et al., 2016; Caldairou et al., 2016; Kim et al., 2014; Vos de Wael et al., 2018). Furthermore, this 
3D coordinate system enabled the creation of a continuous surface model of the mesiotemporal 
cortex (Paquola et al., 2020b). The hippocampus is typically excluded from cortical surface models 
due to its complex folding and unusual cytoarchitectural makeup, with Cornu Ammonis subfields 
being allocortical and the dentate gyrus an interlocked terminus. Using the proximal–distal axis of the 
hippocampus, we were able to bridge the isocortical and hippocampal surface models recapitulating 
the smooth confluence of cortical types in the mesiotemporal lobe, i.e. mesiotemporal confluence 

https://doi.org/10.7554/eLife.70119
https://osf.io/xkqb3/
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(Figure 1G). The continuous surface model, defined by a pial/inner surface and a white/outer surface, 
can also be used to initialise equivolumetric surface constructions (Waehnert et al., 2014; Wagstyl 
et al., 2018b). We generated staining intensity profiles using 40 µm resolution blocks of BigBrain 
across the cortical confluence, which are released in BigBrainWarp with the matching surface model.

BigBrain–MRI transformations
BigBrain–MRI integration is pillared upon transformations between spaces. Spatial registration already 
exists as a fundamental component of most neuroimaging pipelines. As such, extensive research has 
focused on the creation of standard spaces, such as ICBM- MNI152 (Fonov et  al., 2011b; Fonov 
et al., 2009) and FreeSurfer’s fsaverage (Fischl et al., 1999). Many studies have advanced registration 
techniques over the years (Collins and Evans, 2011; Klein et al., 2009; Xiao et al., 2019). Regis-
tration of BigBrain to MRI templates involves additional challenges, however, including histological 
artefacts, differences in intensity contrasts and inter- individual variability.

For the initial BigBrain release (Amunts et al., 2013), full BigBrain volumes were resampled to 
ICBM2009sym (a symmetric MNI152 template) and MNI- ADNI (an older adult T1- weighted template) 
(Fonov et al., 2011a). Registration of BigBrain to ICBM2009sym, known as BigBrainSym, involved 
a linear then a nonlinear transformation (available on ftp:// bigbrain. loris. ca/ BigBrainRelease. 2015/). 
The nonlinear transformation was defined by a symmetric diffeomorphic optimiser (SyN algorithm; 
Avants et al., 2008) that maximised the cross- correlation of the BigBrain volume with inverted intensi-
ties and a population- averaged T1- weighted map in ICBM2009sym space. The Jacobian determinant 
of the deformation field illustrates the degree and direction of distortions on the BigBrain volume 
(Figure 2Ai, top).

A prior study (Xiao et al., 2019) was able to further improve the accuracy of the transformation 
for subcortical structures and the hippocampus using a two- stage multi- contrast registration. The first 
stage involved nonlinear registration of BigBrainSym to a PD25 T1- T2* fusion atlas (Xiao et al., 2017; 
Xiao et al., 2015), using manual segmentations of the basal ganglia, red nucleus, thalamus, amyg-
dala, and hippocampus as additional shape priors. Notably, the PD25 T1- T2* fusion contrast is more 
similar to the BigBrainSym intensity contrast than a T1- weighted image. The second stage involved 
nonlinear registration of PD25 to ICBM2009sym and ICBM2009asym using multiple contrasts. The 
deformation fields were made available on Open Science Framework (https:// osf. io/ xkqb3/). The 
accuracy of the transformations was evaluated relative to overlap of region labels and alignment of 
anatomical fiducials (Lau et al., 2019). The two- stage procedure resulted in 0.86–0.97 DICE coef-
ficients for region labels, improving upon direct overlap of BigBrainSym with ICBM2009sym (0.55–
0.91 DICE) (Figure 2Aii,Aiv, top). Transformed anatomical fiducials exhibited 1.77 ± 1.25 mm errors, 
on par with direct overlap of BigBrainSym with ICBM2009sym (1.83 ± 1.47 mm) (Figure 2Aiii,Aiv, 
below). The maximum misregistration distance (BigBrainSym = 6.36 mm, Xiao = 5.29 mm) provides 
an approximation of the degree of uncertainty in the transformation. In line with this work, BigBrain-
Warp enables evaluation of novel deformation fields using anatomical fiducials and region labels ( 
evaluate_ warps. sh). The script accepts a nonlinear transformation file for registration of BigBrainSym 
to ICBM2009sym, or vice versa, and returns the Jacobian map, Dice coefficients for labelled regions 
and landmark misregistration distances for the anatomical fiducials.

The unique morphology of BigBrain also presents challenges for surface- based transformations. 
Idiosyncratic gyrification of certain regions of BigBrain, especially the anterior cingulate, cause misreg-
istration (Lewis et  al., 2020). Additionally, the areal midline representation of BigBrain, following 
inflation to a sphere, is disproportionately smaller than standard surface templates, which is related to 
differences in surface area, in hemisphere separation methods, and in tessellation methods. To over-
come these issues, ongoing work (Lewis et al., 2020) combines a specialised BigBrain surface mesh 
with multimodal surface matching (MSM; Robinson et al., 2018; Robinson et al., 2014) to co- register 
BigBrain to standard surface templates. In the first step, the BigBrain surface meshes were re- tessel-
lated as unstructured meshes with variable vertex density (Möbius and Kobbelt, 2010) to be more 
compatible with FreeSurfer generated meshes. Then, coarse- to- fine MSM registration was applied 
in three stages. An affine rotation was applied to the BigBrain sphere, with an additional ‘nudge’ 
based on an anterior cingulate landmark. Next, nonlinear/discrete alignment using sulcal depth maps 
(emphasising global scale, Figure  2Biii), followed by nonlinear/discrete alignment using curvature 
maps (emphasising finer detail, Figure 2Biii). The higher- order MSM procedure that was implemented 

https://doi.org/10.7554/eLife.70119
ftp://bigbrain.loris.ca/BigBrainRelease.2015/
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for BigBrain maximises concordance of these features while minimising surface deformations in a 
physically plausible manner, accounting for size and shape distortions (Figure 2Bi; Knutsen et al., 
2010; Robinson et al., 2018). This modified MSMsulc+curv pipeline improves the accuracy of trans-
formed cortical maps (4.38 ± 3.25 mm), compared to a standard MSMsulc approach (8.02 ± 7.53 mm) 
(Figure 2Bii–iii; Lewis et al., 2020).

Figure 2. Evaluating BigBrain–MRI transformations. (A) Volume- based transformations. (i) Jacobian determinant of deformation field shown with a 
sagittal slice and stratified by lobe. Subcortical+ includes the shape priors (as described in Materials and methods) and the+ connotes hippocampus, 
which is allocortical. Lobe labels were defined based on assignment of CerebrA atlas labels (Manera et al., 2020) to each lobe. (ii) Sagittal slices 
illustrate the overlap of native ICBM2009b and transformed subcortical+ labels. (iii) Superior view of anatomical fiducials (Lau et al., 2019). (iv) Violin 
plots show the Dice coefficient of regional overlap (ii) and landmark misregistration (iii) for the BigBrainSym and Xiao et al., approaches. Higher 
Dice coefficients shown improved registration of subcortical+ regions with Xiao et al., while distributions of landmark misregistration indicate similar 
performance for alignment of anatomical fiducials. (B) Surface- based transformations. (i) Inflated BigBrain surface projections and ridgeplots illustrate 
regional variation in the distortions of the mesh invoked by the modified MSMsulc+ curv pipeline. (ii) Eighteen anatomical landmarks shown on the 
inflated BigBrain surface (above) and inflated fsaverage (below). BigBrain landmarks were transformed to fsaverage using the modified MSMsulc+ curv 
pipeline. Accuracy of the transformation was calculated on fsaverage as the geodesic distance between landmarks transformed from BigBrain and the 
native fsaverage landmarks. (iii) Sulcal depth and curvature maps are shown on inflated BigBrain surface. Violin plots show the improved accuracy of the 
transformation using the modified MSMsulc+ curv pipeline, compared to a standard MSMsulc approach.

https://doi.org/10.7554/eLife.70119
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Compiling BigBrainWarp
For BigBrainWarp, a modular set of scripts maps between common BigBrain and MRI spaces. Users 
need only interact with the overarching bigbrainwarp function (see Table 2 for full functionality). The 
package automatically pulls state- of- the- art deformation fields and selects the appropriate transfor-
mation procedure, based on user inputs to bigbrainwarp (Figure 3). The bigbrainwarp function allows 
input and output of data that is aligned to the BigBrain volume, BigBrainSym volume, ICBM152 2009b 
symmetric volume, BigBrain surface (synonymous with BigBrainSym surface), fsaverage or fs_LR (164 k 
and 32 k versions). The type (i.e. volume or surface) is determined based on the input data. For volu-
metric input, the function is agnostic to voxel size, assuming an isomorphic resampling relative to the 
standard templates. For surface- based input, the data must contain a value for each vertex. By wrapping 
multiple forms of transformations into a single bash script (Figure 3B–C), we aim to reduce the onus on 
the user to have experience in the various software packages that are required by different registration 
procedures (e.g. minc- tools, FSL, HCP- workbench). Furthermore, containerisation of BigBrainWarp via 
Docker allows users to interact with the scripts without installing dependencies. This procedure ensures 
flexibility with ongoing developments in the field and simplifies procedures for new users.

We used BigBrainWarp to map histological gradients, discussed above, to fsaverage, fs_LR and 
ICBM152. Conversely, we used BigBrainWarp to transform in vivo derived microstructural and func-
tional gradients, as well as intrinsic functional communities (Yeo et al., 2011), to the BigBrain surface. 
For the initial release of BigBrainWarp, we selected the multi- scale imaging connectomics (MICs) 
dataset, which contains group- level features on standard surface templates from 50 healthy adults 
(Royer et  al., 2021). In particular, we adopted cortical gradients derived from qT1 mapping and 
resting- state functional connectivity. The current contents of the toolbox are shown in Table 3.

Table 2. Input parameters for the bigbrainwarp function.

Parameter Description Conditions Options

in_space Space of input data Required
bigbrain, bigbrainsym, icbm, 
fsaverage, fs_LR

out_space Space of output data Required
bigbrain, bigbrainsym, icbm, 
fsaverage, fs_LR

wd Path to working directory Required   

desc Prefix for output files Required   

in_vol
Full path to input data, 
whole brain volume.

Requires either in_vol, or in_lh and 
in_rh

Permitted formats: mnc, nii or 
nii.gz

ih_lh
Full path to input data, left 
hemisphere surface

Permitted formats: label.gii, 
annot, shape.gii, curv or txtih_rh

Full path to input data, right 
hemisphere surface

interp Interpolation method

Required for in_vol. Optional for 
txt input. Not permitted for other 
surface inputs.

For in_vol, can be trilinear 
(default), tricubic, nearest or sinc.
For txt, can be linear or nearest

out_type
Specifies whether output in 
surface or volume space

Optional function for bigbrain, 
bigbrainsym and icbm output. 
Defaults to the same type as the 
input. surface, volume

out_res
Resolution of output 
volume

Optional where out_type is 
volume. Default is 1 Value provided in mm

out_den Density of output mesh
Optional where out_type is 
surface. Default is 164 For fs_LR out_space, 164 or 32

Note: the options are subject to change as the toolbox is expanded. Updates will be posted on https://
bigbrainwarp.readthedocs.io/en/latest/pages/updates.html.

https://doi.org/10.7554/eLife.70119
https://bigbrainwarp.readthedocs.io/en/latest/pages/updates.html
https://bigbrainwarp.readthedocs.io/en/latest/pages/updates.html
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Results
The BigBrainWarp toolbox supports a range of integrative BigBrain–MRI analyses. The following 

tutorials outline three BigBrain–MRI analyses with unique types of transformations, specifically (1) 

BigBrain volume to ICBM2009sym, (2) BigBrain surface to fsaverage, and (3) fsaverage to BigBrain 

surface. Neither the forms nor the motivations are exhaustive but illustrate applications (see 

Figure 3 for all possible transformations). Code for each tutorial is available in the BigBrainWarp 

toolbox.

Figure 3. Overview of spaces and transformations included within BigBrainWarp. (A) The flow chart illustrates the extant transformation procedures that 
are wrapped in by the bigbrainwarp function. (B) Arrows indicate the transformations possible using the bigbrainwarp function. The colours, matched 
to C, reflect distinct functions called within BigBrainWarp. (C) The combination of input type, input template, and output type determines the function 
called by BigBrainWarp.

https://doi.org/10.7554/eLife.70119
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Tutorial 1: BigBrain → ICBM2009sym MNI152 space
Motivation: Despite MRI acquisitions at high and ultra- high fields reaching submillimeter resolutions 
with ongoing technical advances, certain brain structures and subregions remain difficult to identify 
(Kulaga- Yoskovitz et al., 2015; Wisse et al., 2017; Yushkevich et al., 2015). For example, there 
are challenges in reliably defining the subthalamic nucleus (not yet released for BigBrain) or hippo-
campal Cornu Ammonis subfields (manual segmentation available on BigBrain, https:// osf. io/ bqus3/; 
DeKraker et al., 2019). BigBrain- defined labels can be transformed to a standard imaging space for 
further investigation. Thus, this approach can support exploration of the functional architecture of 
histologically defined regions of interest.

Approach: (1) Create volumetric label in BigBrain space. (2) Perform nonlinear transformation to 
ICBM2009sym space using BigBrainWarp. (3) Transform individual resting- state functional MRI data 
to ICBM2009sym MNI152 space. (4) Sample timeseries from labelled voxels in this standard space.

Example: The mesiotemporal lobe plays important roles in multiple cognitive processes (Mosco-
vitch et al., 2005; Squire et al., 2004; Vos de Wael et al., 2018) and is affected by multiple neurolog-
ical and neuropsychiatric conditions (Ball et al., 1985; Bernhardt et al., 2016; Bernhardt et al., 2015; 
Calabresi et  al., 2013). Increasing research suggests that this region shows complex subregional 
structural and functional organisation. Here, we illustrate how we can track resting- state functional 
connectivity changes along the latero- medial axis of the mesiotemporal lobe, from parahippo-
campal isocortex toward hippocampal allocortex, hereafter referred to as the iso- to- allocortical axis. 
For further details and additional motivation, please see Paquola et al., 2020a: (1) Our volumetric 
label represents the iso- to- allocortical axis of the mesiotemporal lobe. We constructed this axis by 
joining the isocortical (Lewis et al., 2014) and hippocampal (DeKraker et al., 2019) surface meshes 
in BigBrain histological space, creating the mesiotemporal confluence (available in BigBrainWarp, 
Figure 1G). Then, we calculated the distance of each vertex in the new surface model to the inter-
section of isocortical and hippocampal meshes, defining the iso- to- allocortical axis (Figure 4A). Next, 
we filled voxels in cortical ribbon according to the position of the iso- to- allocortical axis, producing a 

Table 3. BigBrainWarp contents.

Data Definition Original space Transformed spaces

Profiles
Staining intensity profiles, sampled at each 
vertex and across 50 equivolumetric surfaces BigBrain

fsaverage, fs_LR (164 k 
and 32 k)

White Grey/white matter boundary
BigBrain, 
fsaverage, fs_LR   

Sphere Spherical representation of surface mesh
BigBrain, 
fsaverage, fs_LR   

Confluence

Continuous surface that includes isocortex and 
allocortex (hippocampus) from Paquola et al., 
2020a BigBrain   

Histological 
gradients

First two eigenvectors of cytoarchitectural 
differentiation derived from BigBrain BigBrain

fsaverage, fs_LR (164 k 
and 32 k), icbm

Microstructural 
gradients

First two eigenvector of microstructural 
differentiation derived from quantitative in- vivo 
T1 imaging fsaverage BigBrain,

Functional gradients
First three eigenvectors of functional 
differentiation derived from rs- fMRI fsaverage BigBrain

Seven functional 
networks

Seven functional networks from Yeo et al., 
2011 fsaverage BigBrain

17 Functional 
networks 17 Functional networks from Yeo et al., 2011 fsaverage BigBrain, icbm

Layer thickness
Layer thicknesses estimated from Wagstyl 
et al., 2020 BigBrain

fsaverage, fs_LR (164 k 
and 32 k)

Note: Datasets Are Named According to BIDS and Align with Recommendations From TemplateFlow (Ciric et al., 
2021).

https://doi.org/10.7554/eLife.70119
https://osf.io/bqus3/
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volumetric representation of the iso- to- allocortical axis in BigBrain histological space (Figure 4Bii). (2) 
We transform the volume from the BigBrain histological space to ICBM2009sym (Figure 4Biii).

bigbrainwarp --in_space bigbrain --out_space icbm --wd/project/ --desc 
confluence_axis --in_vol  tpl-  bigbrain_ desc-  confluence_ axis. nii --interp linear

(3) aboveTo explore the functional architecture of this histologically defined axis, we obtained 
multi- modal MRI in 50 healthy adults from the MICs dataset (Royer et al., 2021). For each participant, 
we constructed an individualised transformation from ICBM2009sym to their native functional space, 
based on the inverse of the within- subject co- registration to the native T1- weighted imaging concate-
nated to the nonlinear between- subject registration to ICBM2009sym. (4) For each participant, BOLD 
timeseries were extracted from non- zero voxels of the transformed iso- to- allocortical axis, which are 
classified as grey matter (>50% probability) and collated in a 3D matrix (voxel × time × subject). Then, 

Figure 4. Intrinsic functional connectivity of the iso- to- allocortical axis of the mesiotemporal lobe. (A) i. BigBrain 
surface models of the isocortex and hippocampal subfields are projected on a 40 µm resolution coronal slice of 
BigBrain. (ii–iii) The continuous surface model bridges the inner hippocampal vertices with pial mesiotemporal 
vertices (entorhinal, parahippocampal or fusiform cortex). Vertices at the medial aspect of the subiculum were 
identified as bridgeheads and used to bridge between the two surface constructions. Geodesic distance from 
the nearest bridgehead was used as the iso- to- allocortical axis. (B) Iso- to- allocortical axis values were projected 
from the surface into the BigBrain volume, then transformed to ICBM2009sym using BigBrainWarp. (C) Intrinsic 
functional connectivity was calculated between each voxel of the iso- to- allocortical axis and 1000 isocortical 
parcels. For each parcel, we calculated the product- moment correlation (r) of rsFC strength with iso- to- allocortical 
axis position. Thus, positive values (red) indicates that rsFC of that isocortical parcel with the mesiotemporal lobe 
increases along the iso- to- allocortex axis, whereas negative values (blue) indicate decrease in rsFC along the iso- 
to- allocortex axis.

https://doi.org/10.7554/eLife.70119
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we sorted and analysed this matrix using the voxel- wise values of the iso- to- allocortical axis. For 
each subject, we averaged voxel- wise BOLD timeseries within 100 bins of the iso- to- allocortical axis 
and within 1000 isocortical parcels (Schaefer et al., 2018) and estimated the resting state functional 
connectivity of each iso- to- allocortical bin with each isocortical parcel. Then, we averaged resting 
state functional connectivity measures across subjects and performed product- moment correla-
tions between the strength of resting state functional connectivity and bin position along the iso- to- 
allocortical axis. This analysis illustrates how functional connectivity varies along the histological axis 
for different areas of the isocortex (Figure 4C).

Tutorial 2: BigBrain → fsaverage
Motivation: In vivo brain imaging reveals regionally variable effects of many demographic and clinical 
factors on brain structure and function. For example, prior studies of lifespan processes presented 
spatially variable patterns of cortical atrophy with advancing age, together with increased deposi-
tion of pathological aggregates, such as amyloid beta (Aβ) (Bilgel et al., 2018; Jansen et al., 2015; 
Knopman et al., 2018; Rodrigue et al., 2012; Sperling et al., 2011). Histological data provides a 
window into the cytoarchitectural features that align with imaging- derived phenotypes and that, in 
this instance, may predispose an area to specific aging- related processes. Essentially, we can eval-
uate whether regions with a certain cytoarchitecture overlap with those showing more marked aging 
effects. Furthermore, large- scale cytoarchitectural gradients can provide a unified framework to 
describe topographies, simplifying and standardising the reporting of imaging- derived phenotypes.

Approach: (1) Construct histological gradients using BigBrain and (2) transform to standard neuro-
imaging surface template using BigBrainWarp. (3) Plot the imaging- derived map against each histo-
logical gradient to understand the algebraic form of the relationship. Note, if imaging features are 
volumetric, one may use registration fusion to resample the data from ICBM2009sym to fsaverage 
(Wu et al., 2018). (4) Fit a statistical model to evaluate the relationship between the cytoarchitectural 
gradients and the imaging- derived map. For research questions with a more restricted region of 
interest, the cytoarchitectural gradient could be reconstructed within that field of view and the same 
procedure could be utilised. The optimal number of cytoarchitectural gradients should be evaluated.

Example: Cytoarchitectural correlates of age- related increases in Aβ deposition in a healthy lifespan 
cohort (Lowe et al., 2019; Park, 2018). (1–2) First, we obtained histological gradients on fsaverage 
from BigBrainWarp. The construction of histological gradients is detailed in Materials and methods 
(Figure 5A). The transformation from BigBrain to fsaverage was performed for the toolbox, like so,

bigbrainwarp --in_space bigbrain --out_space fsaverage --wd/project/ 
--desc Hist_G1 --in_lh  Hist_ G1_ lh. txt --in_rh  Hist_ G1_ rh. txt

For this analysis, we additionally smoothed the histological gradients on fsaverage (6 mm FWHM) 
to approximately match the smoothing kernel of the resting- state fMRI data. (3) We previously esti-
mated the association of age with Aβ deposition across the cortical surface by combining positron 
emission tomography with MRI data in 102 adults (30–89 years), and assessed correspondence to 
functional connectivity gradients (Lowe et al., 2019). Here, we plot the vertex- wise t- statistics against 
Hist- G1 and Hist- G2 (Figure 5B). (4) We determine the optimal model via the Bayesian Information 
Criterion in univariate and multivariate regressions between the t- statistics and histological gradients 
(Figure 5C). The optimal model included only Hist- G2, indicating that Aβ preferentially accumulates 
towards the more agranular anchor of the sensory- fugal gradient.

  

Tutorial 3: fsaverage → BigBrain
Motivation: A core aim of fMRI research is to map functional specialisation in the brain (Bassett et al., 
2008; Eickhoff et al., 2018; Gordon et al., 2017; Raichle, 2015; Shine et al., 2019; Yeo et al., 2011). 
On the one hand, this work follows a long legacy of defining cortical areas, and on the other hand, 
it extends beyond the possibilities of post mortem research by capturing patterns of coordinated 
activity. For instance, clustering resting- state fMRI connectivity reveals a robust set of intrinsic func-
tional networks (Beckmann and Smith, 2004; Gordon et al., 2017; Yeo et al., 2011). Nonetheless, 
there exists a gap in the literature between these well- characterised functional networks and their 
cytoarchitecture. BigBrain offers the opportunity to characterise and evaluate differences of cytoar-
chitecture for functionally defined atlases.

https://doi.org/10.7554/eLife.70119
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Approach: (1) Transform functionally- defined regions from a standard neuroimaging surface 
template to the BigBrain surface. Note, if the functional- defined regions are volumetric, one may 
use registration fusion to resample the data from ICBM2009sym to fsaverage (Wu et al., 2018). (2) 
Compile staining intensity profiles by functional class. (3) Assess discriminability of functional classes 
by staining intensity profiles.

Example: Cytoarchitectural differences of intrinsic functional networks. (1) Transform the 17- network 
functional atlas (Yeo et al., 2011) to the BigBrain surface.

bigbrainwarp --in_space fsaverage --out_space bigbrain --wd /project/ 
--desc Yeo2011_17Networks_1000 --in_lh  lh. Yeo2011_ 17Networks_ 1000. annot 
--in_rh  lh. Yeo2011_ 17Networks_ 1000. annot

Figure 5. Concordance of imaging- derived effects with histological gradients. (A) Four stages of histological gradient construction. (i) Vertex- wise 
staining intensity profiles (dotted lines) are averaged within parcels (solid lines). Colours represent different parcels. (ii) Pair- wise partial correlation 
of parcel- average staining intensity profiles produces a cortex- wide matrix of cytoarchitectural similarity. (iii) The correlation matrix is subjected to 
dimensionality reduction, in this case diffusion map embedding, to extract the eigenvectors of cytoarchitectural variation. (iv) The eigenvectors capture 
histological gradients (Hist- G) and are projected onto the BigBrain cortical surface for inspection. (B) The t- statistic cortical map illustrates regional 
variations in the effect of age on Aβ deposition (Lowe et al., 2019), which was calculated vertex- wise on fsaverage5. To allow comparison, histological 
gradients were transformed to fsaverage5 using BigBrainWarp. Scatterplots show the association of the t- statistic map with the histological gradients. 
(C) Bar plot shows the Bayesian Information Criterion of univariate and multivariate regression models, using histological gradients to prediction 
regional variation in effect of age on Aβ deposition. The univariate Hist- G2 regression had the lowest Bayesian Information Criterion, representing the 
optimal model of those tested.

https://doi.org/10.7554/eLife.70119
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(2) Stratify staining intensity profiles by network (Figure 6A). (3) Parameterise staining intensity 
profiles by the central moments and assess variation across functional networks (Figure  6B). For 
example, the mean and skewness illustrate distinct patterns of cytoarchitectural differentiation across 
the functional networks. Visual networks have the highest mean and lowest skewness. Somatomotor, 
dorsal attention and fronto- parietal networks contain most variable mean and skewness values. 
Ventral attention, limbic, and fronto- parietal networks harbour the lowest mean and highest skewness, 
whereas the default mode networks occupy an intermediary position. Notably, all the networks exhibit 
broad distribution of the moments, signifying substantial cytoarchitectural heterogeneity, as well as 
overlapping values. To quantify discriminability of functional networks by cytoarchitecture, we can 
attempt to classify the functional networks using the central moments. For this example, we z- stan-
dardised the central moments and split the vertices into five folds, each with an equal representation 
of the 17 functional networks. Then, we trained a one vs one linear support vector classification on 
50 % of each fold and tested the model on the remaining 50 % of that fold. Functional networks were 
equally stratified across training and testing. Finally, for each fold, we generated a confusion matrix, 
showing the accurate predictions on the diagonal and the incorrect classification off the diagonal. 
Predictive ability provides insight into distinctiveness and homogeneity of functional networks. Visual 
networks harbour distinctive cytoarchitecture, reflected by relatively high accuracy and few incorrect 

Figure 6. Prediction of functional network by cytoarchitecture. (A) Surface- based transformation of 17- network functional atlas to the BigBrain surface, 
operationalised with BigBrainWarp, allows staining intensity profiles to be stratified by functional network. (B) Ridgeplots show the moment- based 
parameterisation of staining intensity profiles within each functional network. The confusion matrix illustrates the outcome of mutli- class classification of 
the functional networks, using the central moment of the staining intensity profiles.

https://doi.org/10.7554/eLife.70119
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predictions. Ventral attention, limbic, and temporo- parietal networks are relatively homogenous in 
cytoarchitecture, likely related to their restricted spatial distribution. The predictive accuracy did not 
appear to be negatively impacted by minor misalignments of the atlas, as the predictive accuracy was 
similar when excluding vertices within approximately 6 mm of the network boundaries (accuracy mean 
± SD [%], original = 12.4 ± 15.4, excluding boundaries = 12.1 ± 13.3).

Discussion
Beyond cartography, a major aim of neuroanatomical research has been to understand the func-
tioning of the human brain. Throughout the 20th century, cytoarchitectural studies were instrumental 
in demonstrating functional specialisation across the cortex, as well as the uniqueness of the human 
brain amongst mammals (Brodmann, 1909; Campbell et  al., 1905; Sanides, 1962; Smith, 1907; 
Vogt and Vogt, 1919; Vogt, 1911). Fine- grained anatomical resolution maintains an important role in 
understanding brain function in the modern era, helping to bridge between microcircuit organisation 
and macroscale findings obtained with in vivo neuroimaging. BigBrain is the first ultra- high- resolution 
3D histological dataset that can be readily integrated with in vivo neuroimaging. In this report, we 
presented BigBrainWarp, a simple and accessible toolbox comprising histological data, previously 
developed transformation functions between BigBrain and standard imaging spaces, and ready- 
to- use transformed cortical maps. The toolbox is containerised to eliminate software dependencies 
and to ensure reproducibility. An expandable documentation is available, alongside several tutorials, 
at http:// bigbrainwarp. readthedocs. io.

Multimodal registrations are core to integrating BigBrain with in vivo neuroimaging data. Identi-
fying optimal solutions is more difficult than intra- and inter- subject co- registrations of neuroimaging 
data, owing to histological artefacts, differences in intensity contrasts and morphological distortions. 
These challenges have been addressed by recent studies, which improved integration of BigBrain 
with standardised MRI spaces. An automated repair algorithm was specially devised for BigBrain, 
which involved nonlinear alignment of neighbouring sections, intensity normalisation, outlier detec-
tion using block averaging then artefact repair using the block averages (Lepage et al., 2010; Lewis 
et al., 2014). Following initial transformation of BigBrain to ICBM2009b, which was part of the initial 
BigBrain release (Amunts et al., 2013), a recent study optimised subcortical registrations by gener-
ating a T1- T2* fusion contrast that is more similar to the BigBrain intensity contrast than a T1- weighted 
image (Xiao et al., 2019). Additionally, that study involved manual segmentation of subcortical nuclei 
to use as shape priors in the registration, which benefits the alignment of subcortical structures 
between BigBrain and standard neuroimaging templates. Finally, inspired by advances in the align-
ment of surface- based MRI data (Robinson et al., 2018; Robinson et al., 2014), the BigBrain team has 
recently developed a multi- modal surface matching pipeline for BigBrain that involved re- tessellation 
of the BigBrain surface at a higher resolution, followed by alignment to standard surface templates 
using coordinate, sulcal depth and curvature maps (Lewis et al., 2020). The procedure significantly 
improves upon previous techniques, resulting in geometric distortions comparable to those seen for 
registrations between neuroimaging datasets of different individuals (Lewis et al., 2020). Cortical 
folding is variably associated with cytoarchitecture, however. The correspondence of morphology 
with cytoarchitectonic boundaries is stronger in primary sensory than association cortex (Fischl et al., 
2008; Rajkowska and Goldman- Rakic, 1995a; Rajkowska and Goldman- Rakic, 1995b). Incorpo-
rating more anatomical information in the alignment algorithm, such as intracortical myelin or connec-
tivity, may benefit registration, as has been shown in neuroimaging (Orasanu et al., 2016; Robinson 
et al., 2018; Tardif et al., 2015). Overall, evaluating the accuracy of volume- and surface- based trans-
formations is important for selecting the optimal procedure given a specific research question and to 
gauge the degree of uncertainty in a registration.

Practically, 3D histological models provide an unrivalled level of precision and lend novel opportu-
nities to cross- validate and contextualise findings from human neuroimaging. BigBrainWarp is partic-
ularly well- suited for investigations on the fundamental relationships between cytoarchitecture and 
function, which remains an elusive aspect of brain organisation. Our tutorials illustrate a range of use 
cases of BigBrain- MRI integration. In tutorial 1, we show how BigBrain can be used to initialise region 
of interest analyses, such as mapping resting- state functional connectivity along the iso- to- allocortical 
axis (Paquola et al., 2020b), enabling delineation of regions that are difficult to identify with in vivo 
imaging and functional interrogation of histological axes. In tutorial 2, we show how cytoarchitectural 

https://doi.org/10.7554/eLife.70119
http://bigbrainwarp.readthedocs.io
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gradients can help to characterise large- scale cortical patterns, such as the association of aging with 
Aβ deposition (Lowe et al., 2019). This approach complements the tradition of reporting the cortical 
areas of significant clusters by offering a simplified topographical description of the spatial pattern. 
Furthermore, by comparing predictive power of various cytoarchitectural gradients, we may build 
towards hypotheses on the relationship between microcircuit properties and demographic or clinical 
factors. In tutorial 3, we discuss more specific histological features, namely moment- based parameter-
isation of staining intensity profiles (Schleicher et al., 1999; Zilles et al., 2002). These features depict 
the vast cytoarchitectural heterogeneity of the cortex and enable evaluation of homogeneity within 
imaging- based parcellations, for example macroscale functional communities (Yeo et al., 2011). The 
present analysis showed limited predictability of functional communities by cytoarchitectural profiles, 
even when accounting for uncertainty at the boundaries (Gordon et al., 2016). Together, these tuto-
rials showcase how we can easily and robustly use BigBrain with BigBrainWarp to deepen our under-
standing of the human brain.

Despite all its promises, the singular nature of BigBrain currently prohibits replication and does 
not capture important inter- individual variation. While large- scale cytoarchitectural patterns are 
conserved across individuals, the position of areal boundaries relative to sulci vary, especially in asso-
ciation cortex (Amunts et al., 2020; Fischl et al., 2008; Zilles and Amunts, 2013). This can affect 
interpretation of BigBrain–MRI comparisons. For instance, in tutorial 3, low predictive accuracy of 
functional communities by cytoarchitecture may be attributable to the subject- specific topographies, 
which are well established in functional imaging (Benkarim et al., 2020; Braga and Buckner, 2017; 
Gordon et al., 2017; Kong et al., 2019). Future studies should consider the influence of inter- subject 
variability in concert with the precision of transformations, as these two elements of uncertainty can 
impact our interpretations, especially at higher granularity. Fortunately, the BigBrain team is working 
on new histology- based 3D models in the context of the HIBALL project (https:// bigbrainproject. org/ 
hiball. html). System neuroscience has dramatically benefitted from the availability of open resources 
(Di Martino et al., 2014; Milham et al., 2018; Poldrack et al., 2017; Van Essen et al., 2013). This 
path, together with ongoing refinements in multimodal data integration and efforts to make tools 
accessible, promises to further advance multi- scale neuroscience in the years to come.
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Data availability
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Appendix 1

Appendix 1—figure 1. Influence of sampling parameters on staining intensity profiles. (A) Line plots 
show how the shape of an exemplar profile is changed by various sampling parameters. Far left is the 
raw profile constructed with 50 surfaces. Centre left are raw profiles constructed with 50–100 surfaces. 
Centre right are profiles (constructed with 50 surfaces) and subjected to varied levels of depth- 
wise smoothing. Far right are profiles (constructed with 50 surfaces and subjected to 10 iterations 
of depthwise smoothing) with varied levels of surface- wise smoothing. (B) Influence of sampling 
parameters was evaluated based on spatial autocorrelation and number of peaks. (i–ii) The spatial 
autocorrelation was defined by the number of steps between two vertices on the mesh, as depicted 
for an example vertex in (i). Then, we calculated the product- moment correlation between all staining 
intensity profiles and averaged these values based on the relative distance between vertices. The line 
plot show a decrease in correlation with increasing distance, attributable to spatial autocorrelation. 
(iii) The number of peaks was calculated to assess the jaggedness the staining intensity profile. (C) 
Using the lowest iteration of a sampling parameter as a baseline, we 31 calculated the product- 
moment correlation of profile features (spatial autocorrelation or number of peaks) with increases in 
the sampling parameter. In other words, the graph shows the similarity of solutions to the baseline 
sampling parameters. We found that the surface- wise smoothing impacts the spatial autocorrelation 
and number of peaks, while the number of surfaces and depthwise smoothing have little- to- no 
Appendix 1—figure 1 continued on next page
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effect on spatial autocorrelation and a small effect on number of peaks. (D) For varying degrees of 
depth- wise (rows) and surface- wise (columns) smoothing, line plots show spatial autocorrelation and 
histograms show the distribution of number of peaks across profiles.

Appendix 1—figure 1 continued
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