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Reweighting Randomized Controlled Trial 
Evidence to Better Reflect Real Life – A Case 
Study of the Innovative Medicines Initiative
Michael Happich1,*, Alan Brnabic2, Douglas Faries3, Keith Abrams4, Katherine B. Winfree3, Allicia Girvan3, 
Pall Jonsson5, Joseph Johnston3, Mark Belger1 and IMI GetReal Work Package 1

Evidence from randomized controlled trials available for timely health technology assessments of new 
pharmacological treatments and regulatory decision making may not be generalizable to local patient populations, 
often resulting in decisions being made under uncertainty. In recent years, several reweighting approaches have been 
explored to address this important question of generalizability to a target population. We present a case study of the 
Innovative Medicines Initiative to illustrate the inverse propensity score reweighting methodology, which may allow us 
to estimate the expected treatment benefit if a clinical trial had been run in a broader real-world target population. 
We learned that identifying treatment effect modifiers, understanding and managing differences between patient 
characteristic data sets, and balancing the closeness of trial and target patient populations with effective sample 
size are key to successfully using this methodology and potentially mitigating some of this uncertainty around local 
decision making.

The Innovative Medicines Initiative (IMI) is Europe’s largest 
public–private partnership and aims to improve the drug develop-
ment process by supporting more efficient discovery and develop-
ment of better and safer medicines for patients. The IMI supports 
a number of collaborative research projects, among them GetReal, 
which aims to show how new methods for real-world evidence 
(RWE) collection and synthesis could be incorporated earlier into 
pharmaceutical research and development and healthcare decision 
making processes.1

It is widely accepted that large randomized controlled trials 
(RCTs) and meta-analyses of RCTs top the hierarchy of evidence 
for the efficacy of new pharmacological treatments. However, 

RCTs may have limited “external validity” (i.e., results may not be 
generalizable to the full range of patients likely to be treated with 
the new drug in real-world clinical practice).2 An RCT is designed 
to evaluate the efficacy of a new treatment in a well-defined and 
controlled setting, where restrictive patient inclusion/exclusion 
criteria isolate the population in whom the benefit can most clearly 
be attributed to the treatment. This approach minimizes variabil-
ity, narrows the confidence interval (CI), and maximizes “internal 
validity” (i.e., the confidence we can place in the cause and effect 
relationship) due to selection bias. Conversely, although observa-
tional studies are generally less susceptible to selection bias, RWE 
is nonrandomized, so no causal inference can typically be made 
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Study Highlights

WHAT IS THE CURRENT KNOWLEDGE ON THE 
TOPIC?
 The limited external validity of randomized controlled trial 
(RCT) evidence poses a challenge for healthcare decision makers.
WHAT QUESTION DID THIS STUDY ADDRESS?
 Could an exploratory reweighting approach to generalizing 
RCT data to local real-world patient populations allow us to es-
timate the expected treatment benefit had the clinical trial been 
run in a broader real-world target population?
WHAT DOES THIS STUDY ADD TO OUR KNOW- 
LEDGE?
 Identifying important treatment effect modifiers, under-
standing and managing differences between definitions of these 

patient characteristics in available data sets, and balancing the 
closeness of RCTs and target patient populations with the asso-
ciated impact on the effective sample size available for analysis 
are key to successfully using this inverse propensity score re-
weighting methodology.
HOW MIGHT THIS CHANGE CLINICAL PHARMA-
COLOGY OR TRANSLATIONAL SCIENCE?
 Health technology assessment and regulatory decision mak-
ing at the time of market authorization is ultimately executed 
under conditions of uncertainty. In certain settings, this re-
weighting approach could help to mitigate this uncertainty 
with respect to estimating the benefit of new interventions in 
real-world clinical practice.
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based on RWE alone. Therefore, in order for healthcare decision 
makers to make early postmarketing authorization access and re-
imbursement decisions at the national and/or local level, evidence 
from both RCTs and real-world observational studies is needed to 
address concerns regarding external validity.3 However, RWE is 
rarely, if ever, available for new treatments at the time of regulatory 
approval/marketing authorization.

As a result, healthcare decision makers often question whether 
available RCT data reflect the patient population in their locality. 
In fact, many national health technology assessment (HTA) body 
guidance documents highlight the importance of and/or the need 
for the generalizability of data to local real-world patient popula-
tions.4–8 Several approaches have been explored in the literature 
to address this question of generalizability to a target population, 
including comparing characteristics of RCT patients with those 
of real-world patients likely to be considered for treatment2; RCT 
subpopulation analyses relating to the region or country of inter-
est; identification of treatment effect modifiers through subgroup 
analyses9,10; the confidence-profile method11; decision model-
ing12; graphical techniques to display the effect of population dif-
ferences13; use of principle stratification14; or pragmatic trials.15,16 
However, potential limitations, including insufficient power, use of 
only a univariate approach, and/or operational challenges during 
implementation, lessen their applicability. Therefore, social science 
and public health research has more recently explored reweight-
ing approaches to calibrate RCTs to be more reflective of target 
populations.17–21

In the context of regulatory decision making and HTA, we con-
sider reweighting as a novel exploratory approach to generalizing 
RCT data to local real-world patient populations. The inverse 
propensity score (IPS) methodology described in this case study 
is used to reweight available RCT data based on existing observa-
tional baseline patient characteristic data from a target population. 
This allowed us to estimate the expected treatment benefit had the 
clinical trial been run in a broader real-world target population. 
It should be noted that this IPS methodology is well-established 
for addressing issues of confounding and has been published else-
where.22 Using the same concept in this setting, RCT outcomes 
of patients who are more representative of clinical practice receive 
higher weights, whereas RCT outcomes of patients who are less 
representative are discounted. Therefore, a weighted estimate of 
expected treatment benefit more reflective of the makeup of the 
real-world target population is generated. The advantage of this 
approach is that it only requires observational baseline patient 
characteristic data, which are more likely to be available at the 
time of regulatory approval/marketing authorization, not observa-
tional outcome data. It potentially allows us to answer the question 
“Would the trial results likely have been different if the patients 
enrolled in the RCT were more like ‘local’ patients?” This would 
allow healthcare decision makers to make early postmarketing au-
thorization treatment access and reimbursement decisions based 
on what the results of an RCT might look like in the real-world 
population in their local area without having to wait for RWE or a 
trial in a local population.

Our objective is to illustrate this exploratory reweighting ap-
proach by applying this method to the JMDB trial, a pivotal phase 

III study that compared cisplatin plus pemetrexed with cisplatin 
plus gemcitabine as a first-line treatment for patients with advanced 
stage non-small cell lung cancer (NSCLC),23 against a targeted re-
al-world population derived using baseline characteristics from the 
FRAME observational study.24,25 This illustrative example is not 
meant to imply any clinical meaning.

MATERIALS AND METHODS
Trial population
The pivotal JMDB trial was a noninferiority, phase III, randomized study 
that enrolled 1,725 chemotherapy-naïve patients aged ≥  18  years with 
stage IIIB or IV NSCLC of any histology and an Eastern Cooperative 
Oncology Group (ECOG) performance status of 0 (fully active) or 1 
(restricted in physically strenuous activity).23 The primary objective was 
to compare the median overall survival (OS) of patients treated with 
pemetrexed plus cisplatin vs. gemcitabine plus cisplatin. Pemetrexed in 
combination with cisplatin is indicated for the first-line treatment of pa-
tients with predominantly nonsquamous NSCLC at a locally advanced 
or metastatic stage.26 Therefore, for this illustration to be reflective of 
the licensed indication for pemetrexed, the included JMDB trial popula-
tion was restricted by an additional eligibility criterion for this analysis: 
histologic or cytologic diagnosis of nonsquamous histology.

Target population
Observational baseline patient characteristic data for this illustrative case 
example were derived from the prospective, noninterventional, multi-
center, observational FRAME study in patients aged ≥ 18 years.24,25 The 
FRAME study was selected as the authors had access to patient-level data 
from the JMDB RCT and the real-world FRAME observational study, 
and both were Lilly-sponsored studies with consistent baseline patient 
characteristic variables available and defined. The FRAME target pop-
ulation included in this analysis was restricted by additional eligibility 
criteria to match the JMDB trial population in order for this illustration 
to be reflective of real-world patients with NSCLC to be treated with 
pemetrexed within the licensed indication: histologic or cytologic diag-
nosis of nonsquamous histology and ECOG performance status of 0 or 1.

Statistical methods
All variables common to and measured in the same way in both the 
JMDB RCT and the FRAME observational study data sets were in-
cluded in the propensity score model. The list of included variables was 
verified by expert clinical opinion to be clinically relevant and to include 
important treatment effect modifiers. Interaction testing assessed differ-
ences between data sets using the F-test or median test for continuous 
variables and Fisher’s exact test for categorical variables.

A singular numeric metric to simultaneously summarize all patient 
characteristics included in this analysis (i.e., a propensity score) was then 
used to denote the approximate probability of a patient being enrolled in 
the JMDB trial. First, patient data from the JMDB and FRAME studies 
were combined using identified common variables, creating an indicator 
to denote the membership of individual patients in each study (using 1 
and 0 to denote JMDB or FRAME, respectively). Then a main effects lo-
gistic regression model was constructed using the membership indicator as 
the dependent variable and the other identified covariates as independent 
variables. Each patient’s propensity score was calculated by applying the 
logistic model to the given covariates for the patient.

The propensity score distributions between patients in the JMDB and 
FRAME studies were then assessed. Histograms of the propensity scores 
from the two studies were plotted and the degree of overlap compared: 
the larger the overlapping region, the more evidence there was to support 
the generalizability of the JMDB trial. The propensity-adjusted balance 
between the two studies ( JMDB and FRAME) was examined using stan-
dardized differences27 (i.e., putting on a 0–1 scale to determine whether 
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the covariates in the JMDB RCT were similar to those in the FRAME 
observational study after reweighting). Differences were standardized by 
dividing them by their SD. Although there was no absolute rule to deter-
mine the magnitude of the standardized difference, differences between 
the cohorts were assumed if the standardized difference was large (i.e., 
> 0.1).

Each patient in the JMDB trial was then assigned a weight to attempt to 
match RCT patients with patients in the observational study. The weight 
for the ith patient was calculated using the formula wi= (1− p̂i∕p̂i), 
where p̂i is the propensity score for patient i in the RCT, as described 
above. This is known as the IPS-weighting approach. Randomization was 
not affected by the weighting as the weights were applied independent of 
treatment assignment. The hazard ratio (HR) of OS was computed based 
on the weighted values for each patient in JMDB using a Cox proportional 
hazards regression model comparing the pemetrexed and gemcitabine 
arms. Variability and CIs were assessed by a nonparametric bootstrap pro-
cedure. One thousand bootstrap samples with replacement were created 
for each data set (using sample size from original data sets).28 A distribu-
tion of HRs and associated CIs was obtained using the percentile approach 
(i.e., selecting the 2.5 and 97.5 percentiles of the bootstrap distribution). 
The effective sample size (ESS) after reweighting, which accounts for the 
number of patients actually contributing to the analysis based on the size 
of the weights, was also reported. The ESS was computed as the square of 
the summed weights divided by the sum of the squared weights to gauge 
the impact of reweighting on the available statistical information.29 For 
the ith patient this can be represented as follows:

All analyses were conducted using SAS version 9.4 (SAS Institute, Cary, 
NC).

Post hoc sensitivity analyses
Three post hoc sensitivity analyses were undertaken: (i) fixed value trim-
ming was performed to reduce the impact of patients with extreme 
weight values ≥  4 (e.g., patients who would inflate the variance in the 
analysis) on the final outcome, prior to computing the HR of OS as de-
scribed in Statistical methods; (ii) the critical covariate (i.e., main driver 

of difference between the JMDB RCT and FRAME observational study 
patient populations) was excluded as a baseline covariate from the orig-
inal logistic regression model to allow for the potential lack of complete 
overlap between the JMDB trial and FRAME target patient popula-
tions; (iii) an alternative entropy balancing weighting algorithm30 was 
applied to assess the robustness of the IPS-weighting results.

RESULTS
The number of patients in the JMDB trial (n  =  1,209) and the 
FRAME study (n = 948) target populations following application 
of the eligibility criteria for this case study illustration are outlined 
in Figure 1.

In total, 15 variables were available, considered informative 
for balancing patient characteristics between the JMDB trial 
and FRAME target populations, and included in the propen-
sity score weighting: (i) age (mean (SD) years and ≥ 70 years vs. 
<  70  years); (ii) sex (female vs. male); (iii) race (non-Asian vs. 
Asian); (iv) smoking status (current smoker vs. ex-smoker, cur-
rent smoker vs. never smoker); (v) basis for diagnosis (cytologic 
or histopathologic); (vi) time since diagnosis of NSCLC at study 
entry (mean (SD) months and ≤ 1 month vs. > 1 month); (vii) di-
agnosis subtype (adenocarcinoma vs. large cell carcinoma); (viii) 
stage of disease at study entry (IIIB vs. IV); (ix) ECOG perfor-
mance status (0 vs. 1); (x) number of metastatic sites (0–1, 2, or 
≥ 3); (xi) prior surgery (yes or no); (xii) prior radiotherapy (yes or 
no); (xiii) presence of cardiovascular condition (yes or no); (xiv) 
presence of lung condition (yes or no); and (xv) diabetes (yes or 
no). However, definitions of “number of metastatic sites” differed 
between the two target populations: the JMDB RCT categorized 
patients as having 1, 2, 3, 4, or ≥ 5 metastatic sites, whereas the 
FRAME observational study categorized patients as having 0, 1, 
2, or 3 metastatic sites. To maximize the comparability on this 
variable between JMDB RCT and FRAME observational study 
patients, data were organized into three categories for each popu-
lation: 0–1, 2, and ≥ 3 metastatic sites.
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Figure 1  Flowcharts for JMDB randomized controlled trial and FRAME observational study patient populations following application of eligibility 
criteria for this case study illustration. ECOG, Eastern Cooperative Oncology Group.
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Table 1 compares the identified baseline characteristics of JMDB 
RCT and FRAME observational study patients included in this 
case study illustration. Baseline characteristics were statistically sig-
nificantly different (P < 0.05) between studies except for sex, time 
since diagnosis of NSCLC at study entry > 1 month, stage of dis-
ease at study entry, and prior surgery. The majority of patients in 
the FRAME observational study had 0–1 metastatic sites; whereas 
> 50% of patients in the JMDB RCT were sicker, with ≥ 3 metastatic 
sites.

Figure 2 shows the distribution of propensity scores for patients 
in both the JMDB RCT and the FRAME observational study. 
Although the JMDB and FRAME propensity score distributions 

clearly overlapped, it is apparent the populations were substantially 
different (i.e., many patients in the RCT with few equivalents in 
the real-world observational study and vice versa), with scores for 
JMDB trial patients skewed toward higher propensity scores, likely 
driven by pronounced differences in the number of metastatic sites 
between studies (Table 1).

Figure 3 shows the propensity-adjusted balance between the 
two studies ( JMDB and FRAME) in a standardized difference 
plot for differences between studies before and after IPS weighting. 
Following reweighting, standardized differences of the baseline 
characteristics are below or close to 0.1, indicating that the weights 
allow for balance between the baseline characteristics of patients 

Table 1  Baseline characteristics of JMDB randomized controlled trial (N = 1,209) and FRAME observational study (N = 948) 
patients included in this case study illustration

  JMDB (N = 1209) FRAME (N = 948) P valuea

Age in years, mean (SD) 59.7 (9.3) 62.3 (9.9) < 0.001

Age ≥ 70 years, n (%) 166 (14) 243 (26) < 0.001

Female, n (%) 405 (34) 293 (31) 0.211

Non-Asian, n (%) 997 (83) 930 (98) < 0.001

Smoking status, n (%)     < 0.001

Current smoker 277 (23) 297 (31)  

Ex-smoker 585 (48) 484 (51)  

Never smoker 195 (16) 121 (13)  

Unknown 152 (13) 46 (5)  

Basis for diagnosis, n (%)     < 0.001

Cytologic 453 (38) 242 (26)  

Histopathologic 756 (63) 706 (75)  

Time since diagnosis of NSCLC at study entry in months, mean (SD) 1.9 (7.8) 2.8 (12.6) < 0.001

Time since diagnosis of NSCLC at study entry, > 1 month, n (%) 403 (33) 342 (36) 0.186

Diagnosis subtype, n (%)     0.005

Adenocarcinoma 861 (71) 725 (77)  

Large-cell carcinoma 145 (12) 77 (8)  

Other 203 (17) 146 (15)  

Stage of disease at study entry, n (%)     0.676

IIIB 272 (23) 206 (22)  

IV 937 (78) 742 (78)  

ECOG performance status, n (%)     < 0.001

0 446 (37) 275 (29)  

1 763 (63) 673 (71)  

Number of metastatic sites, n (%)     < 0.001

0–1 288 (24) 771 (81)  

2 296 (25) 157 (17)  

≥ 3 625 (52) 20 (2)  

Prior surgery, n (%), yes 94 (8) 92 (10) 0.122

Prior radiotherapy, n (%), yes 63 (5) 111 (12) < 0.001

Presence of cardiovascular condition, n (%), yes 723 (60) 390 (41) < 0.001

Presence of lung condition, n (%), yes 738 (61) 117 (12) < 0.001

Diabetes, n (%), yes 78 (7) 107 (11) < 0.001

ECOG, European Cooperative Oncology Group; NSCLC, non-small cell lung cancer.
aF-test or median test for continuous variables; Fisher’s exact test for categorical variables.
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 (Continued)

Figure 2  Distribution of propensity scores for patients in JMDB randomized controlled trial and FRAME observational study (unstandardized 
untrimmed primary analysis).
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Figure 3  Standardized difference plot for original unweighted and inverse propensity score-weighted differences between studies (JMDB 
randomized controlled trial vs. FRAME observational study). Standardized difference plot ordered by magnitude of difference between JMDB 
randomized controlled trial vs. FRAME observational study before and after inverse propensity score weighting. ECOG, Eastern Cooperative 
Oncology Group; NSCLC, non-small cell lung cancer.
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in the two studies. IPS-weighted differences between studies were 
vastly improved for some variables, such as number of metastatic 
sites, presence of lung condition, non-Asian, and presence of car-
diovascular condition, compared with original unweighted differ-
ences between studies.

Table 2 displays the original unweighted HR of OS results for 
the pemetrexed arm of the JMDB trial population included in this 
case study illustration compared with the gemcitabine arm, along-
side the corresponding IPS-weighted results. The IPS-weighting 
method resulted in a slightly smaller effect for pemetrexed com-
pared with gemcitabine (HR of OS 0.91; 95% CI 0.62–1.31) than 
the original unweighted analysis (HR of OS 0.85; 95% CI 0.75–
0.97) with greater associated uncertainty (indicated by a wider CI), 
which was not statistically significant. The IPS-weighted ESS was 
only 10% of the original unweighted sample size, which explains 
why the HR estimate was no longer statistically significant after 
reweighting.

Figure 4 shows the original unweighted Kaplan–Meier curves 
for the pemetrexed and gemcitabine arms of the JMDB trial pop-
ulation included in this case study illustration (Figure 4a) along-
side the original unweighted and corresponding IPS-weighted 
predicted Cox proportional hazards model survivor functions 
(Figure 4b,c, respectively).

Post hoc sensitivity analyses
Results of the first two post hoc sensitivity analyses are shown in 
Table 3. In the first sensitivity analysis, trimming weights ≥ 4 to 
avoid giving large weight to one or two outlying individuals re-
sulted in a slightly less uncertain IPS-weighted HR of OS than 
for the primary analysis (indicated by a narrower CI), as trimming 
increased the ESS by removing extreme weights.

In the second sensitivity analysis, number of metastatic sites 
was identified as the main driver of difference between the JMDB 
RCT and FRAME observational study patient populations on the 
basis of differences in baseline characteristic definitions between 
the two data sets (as described above); and limited overlap on this 
variable between the JMDB RCT and FRAME observational 
study patients (as observed in Figure 3). Excluding the number of 

Table 2  Original unweighted and corresponding inverse 
propensity score-weighted HR of overall survival results 
for pemetrexed arm (relative to gemcitabine arm) of JMDB 
randomized controlled trial population included in this case 
study illustration

Primary analysis HR
Bootstrap 

2.5 percentile
Bootstrap 

97.5 percentile

Original unweighted 
analysisa (n = 1,222)

0.85 0.75 0.97

Inverse propensity 
score-weighted  
analysis (ESS = 126)

0.91 0.62 1.31

ESS, effective sample size; HR, hazard ratio (pemetrexed [n = 608] vs. 
gemcitabine [n = 614]).
aDifferences compared with Scagliotti et al.23 are because a slightly different 
patient population was included in this case study illustration as a result of 
eligibility criteria being applied.

Figure 4  Survival curves for pemetrexed and gemcitabine arms 
of JMDB randomized controlled trial population included in this 
case study illustration: (a) original unweighted Kaplan–Meier 
curves; (b) original unweighted predicted Cox proportional hazards 
model survivor functions; and (c) corresponding inverse propensity 
score-weighted predicted Cox proportional hazards model survivor 
functions (unstandardized untrimmed primary analysis). Panels b and 
c show survivor functions with 95% confidence limits.
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metastatic sites as a baseline covariate from the logistic regression 
model resulted in a slight increase in the effect of pemetrexed vs. 
gemcitabine (indicated by a smaller IPS-weighted HR of OS) com-
pared with the primary analysis.

The results of the third sensitivity analysis using an entropy bal-
ancing reweighting approach were broadly similar to the results of 
the primary IPS-weighted analysis (data not shown). Considering 
the three primary and sensitivity IPS-weighted analyses reported 
here, closer matching to the target FRAME population seemed to 
come at the expense of higher variability.

DISCUSSION
We presented a case study as part of the IMI GetReal program, ap-
plying and illustrating a novel exploratory approach to generalizing 
RCT data to real-world clinical practice in the context of HTA and 
regulatory decision making. This approach reweights RCT data 
based on real-world observational study baseline data to attempt 
to mirror real-life patient characteristics in a clinical trial setting. 
It offers a way to address questions commonly raised by healthcare 
decision makers regarding the applicability of RCT results to the 
full range of real-world patients who may receive care in their lo-
cality postmarketing authorization. However, it is important to 
note that this method provides an indication of what RCT results 
would look like if a trial were to be carried out in a real-world tar-
get population but does not suggest that these are the results that 
would be observed outside the RCT setting (i.e., in the real world). 
Therefore, this approach is proposed only as a decision-making 
tool and not as an alternative to gathering important RWE once it 
becomes feasible to do so or to conducting further RCTs.

The main benefit of IPS weighting, as explored in this case 
study illustration, is that it only requires a cross-sectional obser-
vational sample of an indicated target population to simulate 
clinical trial outcomes for real-world patients. Therefore, this 
method can address generalizability concerns at the time of reg-
ulatory approval/marketing authorization. If it is necessary to 
assess and reweight data from multiple RCTs (as may be required 
for multiple RCT-based marketing authorization applications), 
this reweighting method could be applied to each RCT indi-
vidually, against the same target population. A meta-analysis of 
the RCTs could then be conducted using the reweighted results, 
rather than the original unweighted RCT results. Furthermore, 
IPS weighting has the flexibility to be applied to multiple dif-
ferent real-world target patient populations depending on the 
requirements of the decision maker, if data sets for analysis are 
available. This could also be important for application areas, 
such as payer access schemes, which link outcomes to payments. 

IPS weighting is an intuitive approach to tackling the issue of 
limited external validity associated with RCTs in that it mim-
ics real-world target patient populations while operating within 
the framework of gold standard RCTs and without necessarily 
undermining the important randomization concept required for 
causal inference. In case of a possible reduction in ESS, closer 
matching to a real-world population needs to be balanced against 
increased uncertainty. Early scientific advice consultation with 
regulatory or HTA authorities could help to determine a priori 
what an acceptable threshold of uncertainty is.

As with all approaches to generalizing evidence from RCTs to 
target populations, the IPS-weighting method is associated with 
some limitations, such as availability of data, consistent definitions 
of variables between data sets, overlap in patient characteristics be-
tween data sets, balancing the closeness of RCT and target patient 
populations with ESS, and the potential for breaching underlying 
model assumptions.

The IPS-weighting method requires patient-level RCT and 
baseline target population data, although other reweighting ap-
proaches, such as entropy balancing,30,31 can be used if only sum-
mary data are available. There are also alternative methods of 
generating propensity scores to the one used in this analysis (e.g., 
penalized logistic regression).32 We would suggest a sensitivity anal-
ysis using an alternative weighting method to assess the robustness 
of any results. Furthermore, the availability of clinically relevant 
variables may constrain IPS-weighting analyses as clinical relevance 
should guide the inclusion of variables. In the current analysis, a 
relatively large number of clinically relevant variables (15) were 
available and identified for inclusion as a result of the similarities 
between the Lilly-sponsored FRAME observational study and 
the JMDB RCT; however, existing registries may not have suffi-
cient variable overlap to cover and control for critical treatment 
effect-modifying variables. Moreover, caution is warranted in cases 
where variable definitions vary between data sets. Nonoverlapping 
definitions of variables to be included in an IPS-weighting analysis 
should be considered and managed on a case-by-case basis, and the 
influence of the individual covariates on the results of the overall 
analysis should be assessed. Although this method requires at least 
some overlap in terms of available defined variables between RCT 
and observational data sets, it is not an all or nothing approach. 
If only a handful of clinically relevant variables are available with 
overlapping definitions in both the RCT and observational data 
sets, a population that is more like the target observational study 
population than the starting RCT population can still be achieved. 
Generally, justification of an appropriate population is necessary in 
any submission to decision makers.

Table 3  HR of overall survival sensitivity analysis results for pemetrexed arm (relative to gemcitabine arm) of JMDB 
randomized controlled trial population included in this case study illustration: (1) trimmed weights ≥ 4; (2) excluding number 
of metastatic sites as a baseline covariate

Sensitivity analysis HR
Bootstrap 

2.5 percentile
Bootstrap 

97.5 percentile

Inverse propensity score-weighted analysis – trimmed weights ≥ 4 (ESS = 265) 1.00 0.74 1.34

Inverse propensity score-weighted analysis – excluding number of metastatic sites 
(ESS = 384)

0.80 0.62 1.02

ESS, effective sample size; HR, hazard ratio (pemetrexed vs. gemcitabine).
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The IPS-weighting method assumes there is enough overlap be-
tween the RCT and the observational study populations to make 
inference (i.e., real-world patients who are not represented in the 
RCT at all cannot be mapped) and that the only differences that 
matter are those measured and adjusted for. In the current anal-
ysis, the JMDB RCT did not include patients with zero meta-
static sites, whereas the FRAME observational study did allow 
for them. Therefore, we categorized these patients together with 
patients with one metastatic site. Sensitivity analysis showed that 
excluding the number of metastatic sites as a covariate did not alter 
the overall results. Although patients’ number of metastatic sites 
is certainly associated with clinical outcomes in advanced stage 
NSCLC, it did not seem to considerably impact the reweighted 
comparative outcomes between the treatment arms (i.e., the IPS-
weighted HR of OS remained fairly stable). With this method, 
extreme weight is reflective of significant difference between two 
populations in a specific variable (i.e., selection bias). However, 
extreme weight without an effect on the HR estimate is reflective 
of no treatment effect of that variable (i.e., no treatment hetero-
geneity). Those variables most strongly associated with both pop-
ulation differences (i.e., selection bias) and treatment effects (i.e., 
treatment heterogeneity) would be expected to have the greatest 
effect on the HR estimate.

Integral to the IPS-weighting approach is balancing the 
closeness of the RCT and target patient populations with the 
associated impact on the ESS available for the analysis. After 
reweighting, if the ESS is smaller than the original sample size, 
then the standard error of the estimate (and subsequent 95% 
CIs) will be larger in the reweighted analysis. Therefore, it is im-
portant that the ESS, a key metric in this approach, is assessed 
and a balance is achieved between the number of covariates in-
cluded and the number of patients contributing to the analysis. 
It is recommended to only include covariates that are considered 
as potential treatment effect modifiers when generating the 
weights. Conversely, if an influential covariate is not included 
then the reweighting will be biased. Furthermore, if there is min-
imal overlap in the propensity scores, resulting in some extreme 
weights, then trimming is recommended as a sensitivity analysis 
(i.e., excess weights are down-weighted to avoid a minority of pa-
tients contributing to most of the weights). Although we applied 
only one illustrative example, the decision to trim the weights is 
related to the ESS and trimming in itself can introduce bias, thus 
varying trimming cutoff points can serve as additional sensitivity 
analyses to demonstrate the robustness of the results. Finally, as 
with any reweighting approach, caution is warranted with the 
IPS-weighting approach if the underlying assumptions of the 
model are not met.

Whereas more case studies in different disease areas are needed 
to assess the acceptability of this approach as well as its limitations, 
the IPS-weighting methodology provides an innovative approach 
to bridging real-world and clinical trial evidence in the context of 
HTA and regulatory decision making. Insights from such explor-
atory analyses (e.g., increased/decreased efficacy in under-repre-
sented subgroups) could highlight the importance of additional 
RCTs or of generating RWE sooner rather than later to comple-
ment findings from existing RCTs.
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