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Abstract

Fraud is a pervasive problem and can occur as fabrication, falsification, plagiarism, or theft.

The scientific community is not exempt from this universal problem and several studies

have recently been caught manipulating or fabricating data. Current measures to prevent

and deter scientific misconduct come in the form of the peer-review process and on-site clin-

ical trial auditors. As recent advances in high-throughput omics technologies have moved

biology into the realm of big-data, fraud detection methods must be updated for sophisti-

cated computational fraud. In the financial sector, machine learning and digit-frequencies

are successfully used to detect fraud. Drawing from these sources, we develop methods of

fabrication detection in biomedical research and show that machine learning can be used to

detect fraud in large-scale omic experiments. Using the gene copy-number data as input,

machine learning models correctly predicted fraud with 58–100% accuracy. With digit fre-

quency as input features, the models detected fraud with 82%-100% accuracy. All of the

data and analysis scripts used in this project are available at https://github.com/

MSBradshaw/FakeData.

Introduction

Fraud is a pervasive problem and can occur as fabrication, falsification, plagiarism or theft.

Examples of fraud are found in virtually every field, such as: education, commerce, and tech-

nology. With the rise of electronic crimes, specific criminal justice and regulatory bodies have

been formed to detect sophisticated fraud, creating an arms-race between methods to deceive

and methods to detect deception. The scientific community is not exempt from the universal

problem of fraud, and several studies have recently been caught manipulating or fabricating

data [1, 2] or are suspected of it [3]. More than two million scientific articles are published

yearly and ~2% of authors admit to data fabrication [4]. When these same authors were asked

if they personally knew of colleagues that had fabricated, falsified, or modified data, positive

response rates rose 14–19% [4, 5]. Some domains or locales have somewhat higher rates of

data fabrication; in a recent survey of researchers at Chinese hospitals, 7.37% of researchers

admitted to fabricating data [6]. Overall, these rates of data fabrication potentially mean tens

to hundreds of thousands of articles are published each year with manipulated data.
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Data in the biological sciences is particularly vulnerable to fraud given its size—which

makes it easier to hide data manipulation—and researcher’s dependence on freely available

public data. Recent advances in high-throughput omics technologies have moved biology into

the realm of big-data. Many diseases are now characterized in populations, with thousands of

individuals characterized for cancer [7], diabetes [8], bone strength [9], and health care ser-

vices for the general populace [10]. Large-scale characterization studies are also done for cell

lines and drug responses [11, 12]. With the rise of importance of these large datasets, it

becomes imperative that they remain free of errors both unintentional and intentional [13].

Current methods for ensuring the validity of research is largely limited to the peer-review

process which, as of late, has proven to be insufficient at spotting blatant duplication of images

[14], let alone subtleties hidden in large scale data. Data for clinical trials can be subject to

reviews and central monitoring [15, 16]. However, the decision regarding oversight methodol-

ogy and frequency is not driven by empirical data, but rather is determined by clinics’ usual

practice [17]. The emerging data deluge challenges the effectiveness of traditional auditing

practices to detect fraud, and several studies have suggested addressing the issue with

improved centralized and independent statistical monitoring [5, 6, 16, 18]. However, these rec-

ommendations are given chiefly to help ensure the safety and efficacy of the study, not data

integrity.

In 1937, physicist Frank Benford observed in a compilation of 20,000 numbers that the first

digit did not follow a uniform distribution as one may anticipate [19]. Instead, what Benford

observed was that digit 1 occurred about 30% of the time, 2–18%, 3–13%, and that the pattern

continues decaying, ending with digit 9 occurring < 5% of the time. Why this numerical pat-

tern exists can be explained by looking at the relative change from lower vs higher first digit

numbers. For example, moving a value from 1,000 to 2,000 is a 100% increase, while changing

from 8,000 to 9,000 is an only increase of 12.5%. This pattern holds true in most large collec-

tions of numbers, including scientific data, where the upper and lower limits are not tightly

bound. Comparing a distribution of first digits to a Benford distribution can be used to iden-

tify deviations from the expected frequency, often because of fraud. Recently Benford’s law has

been used to identify fraud in financial records of international trade [20] and money launder-

ing [21]. It has also been used on a smaller scale to reaffirm suspicions of fraud in clinical trials

[3]. It should be noted that Benford’s Law, despite being called a law, it not always followed

and does have some limitations. If the upper and lower limits of a dataset are tightly bound

(the dataset cannot span orders of magnitudes of values), a Benford-law like digit distribution

may not be able to form.

The distinction between fraud and honest error is important to make; fraud is the intent to

cheat [5]. This is the definition used throughout this paper. An honest error might be for-

getting to include a few samples, while intentionally excluding samples would be fraud.

Incorrectly copying and pasting values from one table to another is an honest error, but inten-

tionally changing the values is fraud. In these examples the results may be the same but the

intent behind them differs wildly. In efforts to maintain data integrity, identifying the intent of

the misconduct may be impossible and is also a secondary consideration after suspect data has

been identified.

Data fabrication is “making up data or results and recording or reporting them” [5]. This

type of data manipulation when not documented for bonafide applications such as simulation

or imputation of missing values is free from the above ambiguity relating to the author’s intent.

Making up data “such that the research is not accurately represented in the research record”

[5] is always wrong. We explore methods of data fabrication and detection in molecular omics

data using supervised machine learning and Benford-like digit-frequencies. We do not attempt

to explain why someone may choose to fabricate their data as other study have done [6, 22];
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our only goal is to evaluate the utility of digit-frequencies to differentiate real from fake data.

The data used in this study comes from the Clinical Proteomic Tumor Analysis Consortium

(CPTAC) cohort for endometrial carcinoma, which contains copy number alteration (CNA)

measurements from 100 tumor samples [23, 24]. We created 50 additional fake samples for

these datasets. Three different methods of varying sophistication are used for fabrication: ran-

dom number generation, resampling with replacement, and imputation. We show that

machine learning and digit-frequencies can be used to detect fraud with near perfect accuracy.

Methods

Real data

The real data used in this publication originated from the genomic analysis of uterine endome-

trial cancer. As part of the Clinical Proteomics Tumor Analysis Consortium (CPTAC), 100

tumor samples underwent whole genome and whole exome sequencing and subsequent copy

number analysis. We used the results of the copy number analysis as is, which is stored in our

GitHub repository at https://github.com/MSBradshaw/FakeData.

Fake data

Fake data used in this study was generated using three different methods. In each method, we

created 50 fake samples which were combined with the 100 real samples to form a mixed data-

set. The first method to generate fake data was random number generation. For every gene

locus, we first find the maximum and minimum values observed in the original data. A new

sample is then fabricated by randomly picking a value within this gene specific range. The sec-

ond method to generate fake data was sampling with replacement. For this, we create lists of

all observed values across the cohort for each gene. A fake sample is created by randomly sam-

pling from these lists with replacement. The third method to generate fake data is imputation

performed using the R package missForrest [25], which we repurposed for data fabrication. A

fake sample was generated by first creating a copy of a real sample. Then we iteratively nullified

10% of the data in each sample and imputed these NAs with missForrest until every value had

been imputed and the fake sample no longer shared any data originally copied from the real

sample (S1 Fig).

Machine learning training

With a mixed dataset containing 100 real samples and 50 fake samples, we proceeded to create

and evaluate machine learning models which predict whether a sample is real or fabricated (S2

Fig). The 100 real and 50 fake samples were both randomly split in half, one portion added to a

training set and the other held out for testing. Given that simulations on biological data like

this have never, to our knowledge, been done, we did not have any expectation as to which

type of model would perform best at this task. Thus, we tried a wide variety of models, all

implementing fundamentally different algorithms. Sticking to models included in SciKit Learn

[26] with a common interface increased code reusability and allowed for quick and consistent

comparison. Using Python’s SciKitLearn library, we evaluated five machine learning models:

1. Gradient boosting (GBC): [27] an ensemble method based on the creation of many weak

decision trees (shallow trees, sometimes containing only 2 leaf nodes).

2. Naïve Bayes (NB): [28] type of probabilistic classifier based on Bayes Theorem.
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3. Random Forest (RF): [29] ensemble method of many decision trees, differs from GBC in

that the decision trees are not weak, they are full trees working on slightly different subsets

of the training features.

4. K-Nearest Neighbor (KNN): [30] this does not perform any learning per-se, but classifies

based on proximity to labeled training data.

5. Support Vector Machine (SVM): [31] is a statistical based learning method that operates by

trying to maximize the size of the gap between classification categories.

Training validation was done using 10-fold cross validation. We note explicitly that the

training routine was never able to use testing data. After all training was complete, the held-

out test set was then fed to each model for prediction and scoring. We used simple accuracy

and F1 scores as evaluation metrics. For each sample in the test set, ML models would pre-

dict whether it was real or fabricated. Model accuracy was calculated as the number of cor-

rect predictions divided by the number of total predictions. To assess the amount of false

positives and false negatives we also compute the F1 score [32]. The entire process of fake

data generation and ML training/testing was repeated 50 times. Different random seeds

were used when generating each set of fake data. Thus, fake samples in all 50 iterations are

distinct from each other. Grid search parameter optimization was performed to select the

hyperparameter set for each model. The parameter search spaces used, and all of the data

and analysis scripts used in this project, are available at https://github.com/MSBradshaw/

FakeData. A full list of the final parameters used for each model-dataset pair can be found in

“S1 File”.

We compared two types of input to the machine learning models here. For the first we use

gene copy-number data from CPTAC as the features (17,156 training features/genes in total)

with added fabricated samples as the training and test data. In the second section, rather than

directly using the copy-number values, we use the proportional frequency of the digits 0–9 in

the first and second positions after the decimal place (digit-frequencies). This results in 20

training features in total, those features being: frequency of 0 in the first position, frequency of

1 in the first position . . . frequency of 9 in the first position, frequency of 0 in the second posi-

tion, frequency of 1 in the second position. . . frequency of 9 in the second position.

Benford-like digit frequencies

Benford’s Law or the first digit law has been instrumental at catching fraud in various financial

situations [20, 21] and in small scale clinical trials [3]. The distribution of digit frequencies in a

set of numbers conforming to Benford’s Law has a long right-tail; the lower the digit the

greater its frequency of occurrence. The CNA data used here follows a similar pattern (S3 Fig).

The method presented here is designed with the potential to generalize and be applied to mul-

tiple sets of data of varying types and configurations (i.e. different measured variables (fea-

tures) and different quantities of variables). Once trained, machine learning models are

restricted to data that conform to the model input specifications (i.e. the same number of

input features, for example). Converting all measured variables to digit frequencies circum-

vents this problem. Digit frequencies are calculated as the number of occurrences of a single

digit (0–9) divided by the total number of features. In the method described in this paper, a

sample’s features are all converted to digit frequencies of the first and second digit after the

decimal. Thus for each sample the features are converted from 17,156 copy number alterations

to 20 digit frequencies. Using this approach, whether a sample has 100 or 17,156 features it can

still be trained on and classified by the same model (though it’s effectiveness will still be depen-

dent on the existence of digit-frequency patterns).
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Computing environment

Data fabrication was performed using the R programming language version 3.6.1. For general

computing, data manipulation, and file input output we used several packages from the tidy-

verse: [33] readr, tibble, and dplyr. Most figures were generated using ggplot2 in R, with grid,

and gridExtra filling some gaps in plotting needs. Data fabricated with imputation was per-

formed using the missForest package [25].

The machine learning aspect of this study was performed in Python 3.8.5. All models and

methods for the evaluation used came from the package SciKit-Learn (sklearn) version 0.23.2

[26]. Pandas version 1.1.3 was used for all reading and writing of files [34]. The complete list of

parameters used for each model and dataset pair can be found in the supplemental material

online, “S1 File”.

Results

Our goal is to explore the ability of machine learning methods to identify fabricated data hid-

den within large datasets. Our results do not focus on the motivations to fabricate data, nor do

they explore in depth the infinite methodological ways to do so. Our study focuses on whether

machine learning can be trained to correctly identify fabricated data. Our general workflow is

to take real data and mix in fabricated data. When training, the machine learning model is

given access to the label (i.e. real or fabricated); the model is tested or evaluated by predicting

the label of data which was held back from training (see Methods).

Fake data

The real data used in this study comes from the Clinical Proteomic Tumor Analysis Consor-

tium (CPTAC) cohort for endometrial carcinoma, specifically the copy number alteration

(CNA) data. The form of this real data is a large table of floating point values. Rows represent

individual tumor samples and columns represent genes; values in the cells are thus the copy

number quantification for a single gene in an individual tumor sample. This real data was

paired with fabricated data and used as an input to machine learning classification models (see

Methods). Three different methods of data fabrication were used in this study: random num-

ber generation, resampling with replacement, and imputation (S1 Fig). The three methods rep-

resent three potential ways that an unscrupulous scientist might fabricate data. Each method

has benefits and disadvantages, with imputation being both the most sophisticated and also

the most computationally intense and complex. As seen in Fig 1, the random data clusters are

far from the real data. Both the resampled and imputed data cluster tightly with the real data in

a PCA plot, with the imputed data also generating a few reasonable outlier samples.

To look further into the fabricated data, we plotted the distribution of the first two digits

after the decimal place in the real and fake data (S3 Fig). While none of the fake have quite the

spread of digit distributions in terms of variation, data created via imputation matches the real

data the closest in terms of mean digit frequencies. We also examined whether fake data pre-

served correlative relationships present in the original data (S4 Fig). This is exemplified by two

pairs of genes. PLEKHN1 and HES4 are adjacent genes found on chromosome 1p36 separated

by ~30,000 bp. Because they are so closely located on the chromosome, it is expected that most

copy number events like large scale duplications and deletions would include both genes. As

expected, their CNA data has a Spearman correlation coefficient of 1.0 in the original data, a

perfect correlation. The second pair of genes, DFFB and OR4F5, are also on chromosome 1,

but are separated by 3.8 Mbp. As somewhat closely located genes, we would expect a modest

correlation between CNA measurements, but not as highly correlated as the adjacent gene

pair. Consistent with this expectation, their CNA data has a Spearman correlation coefficient
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of 0.27. Depending on the method of fabrication, fake data for these two gene pairs may pre-

serve these correlative relationships. When we look at the random and resampled data for

these two genes, all correlation is lost (S4C–S4F Fig). Imputation, however, produces data that

closely matches the original correlations, PLEKHN1 and HES4 R2 = 0.97; DFFB and OR4F5

R2 = 0.32 (S4G and S4H Fig).

Machine learning with quantitative data

We tested five different methods for machine learning to create a model capable of detecting

fabricated data: Gradient Boosting (GBC), Naïve Bayes (NB), Random Forest (RF), K-Nearest

Neighbor (KNN) and Support Vector Machine (SVM). Models were given as features the

quantitative data table containing copy number data on 75 labeled samples, 50 real and 25

fake. In the copy number data, each sample had measurements for 17,156 genes, meaning that

each sample had 17,156 features. After training, the model was asked to classify held-out test-

ing data containing 75 samples, 50 real and 25 fake. The classification task considers each sam-

ple separately, meaning that the declaration of real or fake is made only from data of a single

sample. We evaluated the models on accuracy (Fig 2A, 2C and 2E) to quantify true positive

and true negatives and F1 scores (Fig 2B, 2D and 2F) to assess false positives and false

Fig 1. Principal component analysis of real and fake samples. Copy number data for the real and fabricated samples are shown. The

fabricated data created via random number generation is clearly distinct from all other data. Fabricated data created via resampling or

imputation appears to cluster very closely with the real data.

https://doi.org/10.1371/journal.pone.0260395.g001
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Fig 2. Classification accuracy using copy number data. Fabricated data was mixed with real data and given to four machine learning

models for classification. Data shown represents 50 trials for 50 different fabricated dataset mixes. Features in this dataset are the copy

number values for each sample. Outliers are shown as red asterisks; these same outliers are shown also as normally colored points in

jittered-point overlay. A. Results for data fabricated with the random method, mean classification accuracy: RF 97% (+/- 2.5%), SVM

98% (+/- 1.5%), GBC 92% (+/- 4.2%), NB 88% (+/- 3.5%), KNN 72% (+/- 3.4%). B. Results for data fabricated with the random method,
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negatives. To ensure that our results represent robust performance, model training and evalua-

tion was performed 50 times; each time a completely new set of 25 fabricated samples were

made (see Methods). Reported results represent the average accuracy of these 50 trials.

The five models overall performed relatively well on the classification task for data fabri-

cated with the random approach. The average accuracy scores of 50 trials was: RF 96%, SVM

98%, GBC 92%, NB 88%, and KNN 72% (Fig 2A). Mean classification accuracies were lower

for data created with the resampling method, with most models losing anywhere from 5–31%

accuracy (RF 70%, SVM 67%, GBC 74%, NB 58%, and KNN 67%) (Fig 2C). Since the resam-

pling method uses data values from the real data, it is possible that fake samples very closely

resemble real samples. Imputation classification accuracy results were quite high (RF100%,

SVM 100%, GBC 100%, NB 66%, KNN 100%). While RF, GBC and KNN all increased in accu-

racy compared to the resampled data, NB performed more or less at the expected baseline

accuracy (Fig 2E).

Machine learning with digit frequencies

We were unsatisfied with the classification accuracy of the above models. One challenge for

machine learning in our data is that the number of features (17,156) far exceeds the number of

samples (75). In situations similar to this with high dimensionality data, feature reduction

techniques can be used to reduce the number of features to increase performance and or

decrease training time an example of this is principal component analysis [35]. We therefore

explored ways to reduce or transform the feature set, and also to make the feature set more

general and broadly applicable. Intrigued by the success of digit frequency methods in the

identification of financial fraud [21], we evaluated whether this type of data representation

could work for bioinformatics data as well. Therefore, all copy number data was transformed

into 20 features, representing the digits 0–9 in the first and second place after the decimal of

each gene copy number value. While Benford’s Law describes the frequency of the first digit,

genomics and proteomics data are frequently normalized or scaled and so the first digit may

not be as characteristic. The shift to use the digits after the decimal point rather than the lead-

ing digit is necessary because of the constraint that Benford’s law works (best) for numbers

spanning several orders of magnitude. Because of the normalization present in the CNV data,

the true first digits are bounded, for this reason we use the first and second digits after the deci-

mal place, the first unbounded digits in the dataset. This is a data set specific adjustment and

variations on it may need to be considered prior to its application on future datasets. For

example in a dataset composed mainly of numbers between 0 and 0.09, you may need to use

the third and fourth decimal point digits. Due to this adjustment, our method may be accu-

rately referred to as Benford’s Law inspired or Benford-like. These digit frequency features

were tabulated for each sample to create a new data representation and fed into the exact same

machine learning training and testing routine described above. Each of these 20 new features

contain decimal values ranging from 0.0 to 1.0 representative of the proportional frequency

that digit occurs. For example, one sample’s value in the feature column for the digit 1 may

mean classification F1: RF 0.95 (+/- 0.03), SVM 0.98 (+/- 0.02), GBC 0.88 (+/- 0.07), NB 0.85 (+/- 0.04), KNN 0.25 (+/- 0.16) C. Results

for data fabricated with the resampling method, mean classification accuracy: RF 70% (+/- 2.6%), SVM 67% (+/- 2.7%), GBC 74% (+/-

6%), NB 58% (+/- 15.2%), KNN 67% (+/- 0%). D. Results for data fabricated with the resampled method, mean classification F1: RF

0.21 (+/- 0.12), SVC 0.38 (+/- 0.09), GBC 0.53 (+/- 0.12), NB 0.19 (+/- 0.23), KNN 0 (+/- 0). E. Results for data fabricated with the

imputation method, mean classification accuracy: RF 100% (+/- 0%), SVM 100% (+/- 0%), GBC 100% (+/- 0%), NB 66% (+/- 6.7%),

KNN 100% (+/- 0%). F. Results for data fabricated with the imputation method, mean classification F1: RF 1 (+/- 0), SVM 1 (+/- 0),

GBC 1 (+/- 0), NB 0.62 (+/- 0.05), KNN 1 (+/- 0).

https://doi.org/10.1371/journal.pone.0260395.g002
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contain the value 0.3. This means that in this sample’s original data the digit 1 occured in the

first position after the decimal place 30% of the time.

In sharp contrast to the models built on the quantitative copy number data with random

and resampled data, machine learning models which utilized the digit frequencies were highly

accurate and showed less variation over the 50 trials (Fig 3). When examining the results of the

data fabricated via imputation, the models achieved impressively high accuracy despite using

drastically less information than those trained with the quantitative copy number values. As an

average, accuracy for the 50 trials on the imputed data, RF, SVM, and the GBC models

achieved 100% accuracy. The NB and KNN models were highly successful with a mean classifi-

cation accuracy 98% and 96% respectively.

Machine learning with limited data

With 17,156 CNA gene measurements, the digit frequencies represent a well sampled distribu-

tion. Theoretically, we realize that if one had an extremely limited dataset with CNA measure-

ments for only 10 genes, the sampling of the frequencies for the 10 digits will be poor. To

understand how much data is required for a good sampling of the digit-frequencies, using the

imputed data, we iteratively downsampled our measurements from 17,000 to 10, (1700 was

used instead of the full 17,156 since there is would be no way to do multiple unique permuta-

tions selecting 17,156 features from a set of 17,156 features). With the gene-features remaining

in each downsample, the digit frequencies were re-calculated. Downsampling was performed

uniformly at random without replacement. For each measurement size 50 replicates were run,

all with different permutations of the downsamples. Results from this experiment can be seen

in Fig 4. The number of gene-features used to calculate digit frequencies does not appear to

make a difference at n > 500. In the 100 gene-feature trial, both NB and KNN have a drastic

drop in performance, while the RF and GBC model remained relatively unaffected down to

approximately 40 features. Surprisingly, these top performing models (GBC and RF) do not

drop below 95% accuracy until they have less than 20 gene-features.

One hesitation for using machine learning with smaller datasets (i.e. fewer gene-features

per sample) is the perceived susceptibility to large variation in performance. As noted, these

downsampling experiments were performed 50 times, and error bars representing the stan-

dard error are shown in Fig 4. We note that even for the smallest datasets, performance does

not drastically vary between the 50 trials. In fact the standard error for small datasets (e.g. 20

or 30 gene-features) is lower than when there were thousands. Thus we believe that the digit-

frequency based models will perform well on both large-scale omics data and also on smaller

‘targeted’ data acquisition paradigms like multiplexed PCR or MRM proteomics.

Discussion

We present here a proof of concept method for detecting fabrication in biomedical data. Just

as has been previously shown in the financial sector, digit frequencies are a powerful data

representation when used in combination with machine learning to predict the authenticity of

data. Although the data used herein is copy number variation from a cancer cohort, we believe

that the Benford-like digit frequency method can be generalized to any tabular numeric data.

While multiple methods of fabrication were used, we acknowledge there are more subtle or

sophisticated methods. We believe that fraud detection methods, like the models presented

herein, could be refined and generalized for broad use in monitoring and oversight.

The model described here is trained to operate specifically on CNA data. However, using

digit frequencies as the feature transformation creates the option to train a model on multiple

data sources with different numbers of features. Here we used the copy number measurements
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Fig 3. Classifications accuracy using digit frequency data. Fabricated data was mixed with real data and given to four machine

learning models for classification. Data shown represents 50 trials for 50 different fabricated dataset mixes. Features in this dataset are

the digit frequencies for each sample. The red asterisk represents outliers in the boxplot; these same outliers are shown as normally

colored points in jittered-point overlay. A. Results for data fabricated with the random method, mean classification accuracy: RF 100%

(+/- 0%), SVM 100% (+/- 0%), GBC 100% (+/- 0%), NB 100% (+/- 0%), KNN 97% (+/- 1.3%). B. Results for data fabricated with the
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for 17,156 genes, but since these measurements are transformed into 20 features representing

digit frequencies, theoretically, various CNA datasets with any number of measures could be

used for training or testing. Just as Benford demonstrated that diverse, entirely unrelated data-

sets followed the same distribution of first digit, we are hopeful the same stands true for large

biological datasets. However, further research would be needed to determine if a model trained

on digit-frequencies of one type of omics data could be generalized and be used on another.

The generalizability to such situations would likely depend on the digit distributions of the

other datasets. One way to circumvent this dataset specific dependency may be to create statis-

tical tests or use unsupervised clustering algorithms that operate within a single dataset. More-

over, future work on feature selection could potentially simplify the classification further and

avoid machine learning.

A logical and exciting next step is to use this model on real published data and search for

cases of fraud. There are several challenges standing in the way of doing this quickly and

random method, mean classification F1: RF 1 (+/- 0), SVM 1 (+/- 0), GBC 1 (+/- 0), NB 1 (+/- 0), KNN 0.96 (+/- 0.02) C. Results for

data fabricated with the resampling method, mean classification accuracy: RF 99% (+/- 0.8%), SVM 95% (+/- 2.3%), GBC 99% (+/-

1.7%), NB 96% (+/- 2.1%), KNN 85% (+/- 4.4%). D. Results for data fabricated with the resampled method, mean classification F1: RF

0.99 (+/- 0.01), SVM 0.94 (+/- 0.03), GBC 0.98 (+/- 0.02), NB 0.95 (+/- 0.03), KNN 0.82 (+/- 0.04) E. Results for data fabricated with the

imputation method, mean classification accuracy: RF 100% (+/- 0%), SVM 100% (+/- 0.7%), GBC 100% (+/- 0%), NB 98% (+/- 0.7%),

KNN 96% (+/- 1.5%). F. Results for data fabricated with the imputation method, mean classification F1: RF 1 (+/- 0), SVM 0.99 (+/-

0.01), GBC 1 (+/- 0), NB 0.97 (+/- 0.01), KNN 0.94 (+/- 0.02).

https://doi.org/10.1371/journal.pone.0260395.g003

Fig 4. Classification accuracy vs number of features. The original 17,156 CNA measurements in the imputed dataset were randomly downsampled

incrementally from 17,000 to 10 and converted to digit-frequency training and test features for machine learning models. When 1,000+ measurements

are used in the creation of digit-frequencies features, there appears to be little to no effect on mean accuracy. Once the number of features drops below

300 all models begin to lose accuracy rapidly. RF remained above 97.5% accuracy until less than 30 measurements were included.

https://doi.org/10.1371/journal.pone.0260395.g004
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effectively. First, is the access to data. Not all journals require that data associated with a publi-

cation be made accessible and some journals that do require data accessibility count a state-

ment to the effect of “data will be made available upon request to the authors” as sufficient—

which we would argue does not constitute accessible data. Second, is the format of data. Here

we used tabular CNA data generated from a large sequencing experiment, but there are

numerous complex steps separating the original fastq files from nice tabular CNA data, which

brings us to a third challenge. Third, reproducibility of data. Unless the study provides the tab-

ulated form of the data or has perfectly reproducible methods for processing the rawest data, it

would be difficult to know if the data being fed into the model is the exact same as that used in

a study’s analysis.

In order to test this method on real data, we attempted to find retracted papers known to

have committed fraud. Retraction Watch (www.retractionwatch.com) maintains a large

searchable database of retracted papers which aided in this task. Unfortunately, once retracted,

an article and it’s associated supplemental material is typically no longer available from the

journal. We were able to locate some retracted papers in their original form through Sci-Hub,

and within a few of these papers we were able to get URLs that were still active and pointing to

where their paper’s data was deposited. This however presented more challenges in the form

of inconsistent formats, incomplete records (data provided for some but not all of the analy-

ses), conversion from PDF file format to tables, and an enormous amount of manual curation.

In order for methods like this to be used broadly for data monitoring, it would require all

data to be truly publicly available, in usable formats, and/or with readily reproducible methods.

Even if this mass testing and monitoring of data with methods as presented was possible at this

time, it should not be used as the sole determinant of trueness or falseness of a dataset; we have

shown this method to be very accurate, but not perfect. The possibility of false-positives and

false-negatives still exists.

A consideration in choosing to publish a method like this is the possibility it could be used

for its opposite purpose and aid those attempting to commit fraud by providing a means of

evaluating the quality of their data fabrication. If we had built a ready to use, easy to install and

run tool, for this purpose, we would not publicly publish it. The methods we present here are a

proof of concept, not a complete product. Despite being completely open source and transpar-

ent, we anticipate it would still require a great deal of time, effort, and talent to repurpose our

code for something other than simply reproducing our results. We expect anyone with the

required amount of time and talent could instead produce their own real data and research. To

those in the future that build upon and further this type of work, we encourage you to also con-

sider if you should publish it or not.

There is an increasing call for improved oversight and review of scientific data [5, 6, 16, 18],

and various regulatory bodies or funding agencies could enforce scientific integrity through

the application of these or similar methods. For example, the government bodies charged with

evaluating the efficacy of new medicine could employ such techniques to screen large datasets

that are submitted as evidence for the approval of new drugs. For fundamental research, pub-

lishers could mandate the submission of all data to fraud monitoring. Although journals com-

monly use software tools to detect plagiarism in the written text, a generalized computational

tool focused on data could make data fraud detection equally simple.

Supporting information

S1 Fig. Methods of data fabrication. (A) The random method of data fabrication identifies

the range of observation for a specific locus and then randomly chooses a number in that

range. (B) The resampling method chooses values present in the original data. (C) The
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imputation method iteratively nullifies and then imputes data points from a real sample.

(TIF)

S2 Fig. Training and testing overview. After creating 50 fake samples using any one of the

three methods of fabrication, the 100 real samples and 50 fake samples were randomly split

into a train and test set of equal size and proportions (50 real and 25 fake in each set). The

training sets were then used to train various machine learning models using 10-fold cross vali-

dation. Next, trained models were used to make predictions on the testing data. Predictions

were then scored with total accuracy.

(TIF)

S3 Fig. Distribution of first digits. Distribution of normalized first-digit after the decimal fre-

quencies in 75 real copy-number samples (A) and 50 fake samples generated by the random

(B), resampled (C) and imputed (D) methods of fabrication. The x-axes represents each digit

in the first position after the decimal place. The y-axes represents the normal frequency of the

digit. Black lines represent the mean and diamonds represent outliers. Similar to what is seen

in a distribution of first digits conforming to Benford’s Law, the CNA data also exhibits a long-

right tail.

(TIF)

S4 Fig. Data relationships in fabricated data. The correlation between pairs of genes is evalu-

ated to determine whether fabrication methods can replicate inter-gene patterns. Plots on the

left hand side (A,C,E, and G) display data from two correlated genes PLEKHN1 and HES4,

adjacent genes found on 1p36. Plots on the right hand side (B,D,F, and H) display genes DFFB

and OR4F5 gene with marginal Spearman correlation in the real data (.27). The plots reveal

that random and resample data have little to no correlation between related genes. Imputation

produces data with correlation values that are similar to the original data (.97 and.35, respec-

tively).

(TIF)

S1 File. Parameters for models. Contains the hyperparameters used for all machine learning

models depending on the type of data used.

(TXT)
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