
Research Article
Federated Learning Optimization Algorithm for Automatic
Weight Optimal

Xi Yu ,1 Li Li,1 Xin He ,2 Shengbo Chen,1 and Lei Jiang2

1School of Computer and Information Engineering, Henan University, Kaifeng 475001, China
2School of Software, Henan University, Kaifeng 475001, China

Correspondence should be addressed to Xin He; hexin@vip.henu.edu.cn

Received 27 July 2022; Revised 15 September 2022; Accepted 29 September 2022; Published 9 November 2022

Academic Editor: Muhammad Fazal Ijaz

Copyright © 2022 Xi Yu et al. Tis is an open access article distributed under the Creative Commons Attribution License, which
permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Federated learning (FL), a distributed machine-learning framework, is poised to efectively protect data privacy and security, and
it also has been widely applied in variety of felds in recent years. However, the system heterogeneity and statistical heterogeneity
of FL pose serious obstacles to the global model’s quality. Tis study investigates server and client resource allocation in the
context of FL system resource efciency and ofers the FedAwo optimization algorithm.Tis approach combines adaptive learning
with federated learning, and makes full use of the computing resources of the server to calculate the optimal weight value
corresponding to each client. Tis approach aggregated the global model according to the optimal weight value, which sig-
nifcantly minimizes the detrimental efects of statistical and system heterogeneity. In the process of traditional FL, we found that a
large number of client trainings converge earlier than the specifed epoch. However, according to the provisions of traditional FL,
the client still needs to be trained for the specifed epoch, which leads to the meaningless of a large number of calculations in the
client. To further lower the training cost, the augmentation FedAwo ∗ algorithm is proposed. Te FedAwo ∗ algorithm takes into
account the heterogeneity of clients and sets the criteria for local convergence. When the local model of the client reaches the
criteria, it will be returned to the server immediately. In this way, the epoch of the client can dynamically be modifed adaptively. A
large number of experiments based on MNIST and Fashion-MNISTpublic datasets reveal that the global model converges faster
and has higher accuracy in FedAwo and FedAwo ∗ algorithms than FedAvg, FedProx, and FedAdp baseline algorithms.

1. Introduction

Federated learning, a distributed machine-learning frame-
work that can efectively protect the privacy and security of
user data, has received extensive attention from academia
and industry in recent years. Federated learning involves co-
training a machine-learning model by servers and clients.
Te server sends the global model to clients, receives local
models trained by clients, and aggregates them to generate a
new global model until the training of the global model ends.
Clients use local data to train the global model given by the
server and return the trained local model to the server [1].
Federated learning efectively protects the privacy and se-
curity of data by transmitting model parameters between the
server and the client (data do not leave the client) and is used
in many felds. Te most typical example is Google’s

keyboard input method, which uses a federated learning
platform to train a recurrent neural network (RNN) for next
word prediction. In addition, federated learning is also
widely used in clinical auxiliary diagnosis, new drug de-
velopment, and precision medicine in the medical industry,
portrait recognition, and voice print recognition in the
security industry. Although federated learning efectively
solves the problem of data privacy and security, it is diferent
from traditional distributed machine learning and brings
serious challenges to system heterogeneity and statistical
heterogeneity. Traditional distributed machine learning is
usually deployed in the same data center or in a network
with a good communication environment, and the clients
for model training have similar hardware conditions.
However, the clients of federated learning are often widely
distributed in geographical locations. Tere are great
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diferences among them in network conditions, hardware
environment, and computing power, and the time when
clients can participate in model training is also diferent. Te
above phenomenon is called system heterogeneity which
may lead to the problems of falling behind (nodes that
cannot complete the specifed training rounds within the
specifed time) and fault tolerance [2]. In addition, data
distribution and data volume of local data held by diferent
clients are also diferent, which is the statistical heterogeneity
of data. Both statistical heterogeneity and system hetero-
geneity have a negative impact on the convergence speed and
fnal accuracy of the global model [3].

At present, most researchers try to reduce the negative
impact of heterogeneity by sampling clients and modifying
clients’ loss function. Te sampling method is that the server
flters out the local models that are more conducive to the
global model convergence for aggregation. In sampling al-
gorithms [4, 5], the method of importance is widely used
[4, 6–8]. Tis method selects the “important” clients by
comparing client gradient information and aggregates their
local gradients.Temethod of modifying the loss function of
the client is more mainstream at present [2, 9, 10]. Its idea is
to modify the loss function of the client, such as adding a
near term [2] in the loss function or normalizing it with the
last round of the global model [11, 12]. However, the above
methods ignore a crucial phenomenon: the imbalance of
computing power between servers and clients in the fed-
erated learning system. We know that in the actual appli-
cation scenario, the computing power of clients is relatively
weak. Te method of modifying the client loss function
further increases the computing burden of the client. Servers
often have strong computing power and network conditions,
and they only undertake the task of aggregating local models
and generating global models.

Obviously, in the federated learning system, the com-
puting power and network environment of clients are poor,
but they are responsible for heavy work of model training.
Te server with the strong computing power and network
environment undertakes light work, which does not match
its ability. In order to make better use of system resources
and improve performance, this paper studies how to use
server resources to solve the problems of statistical het-
erogeneity and system heterogeneity without increasing the
load of clients. Tis paper proposes the federated learning
algorithm for automatic weight optimization (FedAwo) and
its enhancement algorithm (FedAwo ∗) and verifes the
feasibility of the methods from both theoretical and ex-
perimental aspects. Our main contributions in this paper are
as follows:

(1) We design a federated learning algorithm for au-
tomatic weight optimization (FedAwo). In this al-
gorithm, the server calculates the optimal weight for
the local model through the machine-learning al-
gorithm to solve the problem of statistical hetero-
geneity and system heterogeneity in federated
learning. Te FedAwo algorithm efectively utilizes
server resources and does not increase the burden on
clients.

(2) We prove the convergence of FedAwo and propose
the enhancement algorithm FedAwo ∗ for FedAwo
to further reduce the training cost. Te algorithm of
FedAwo is based on the heterogeneity of clients, and
FedAwo ∗ reduces the training cost by dynamically
adjusting the training epoch times of local model
training.

(3) We use the MNIST and Fashion-MNIST public
datasets as test datasets and use FedAvg and FedProx
as baseline algorithms to compare the performance
of them with that of FedAwo and FedAwo ∗ under
IID and non-IID conditions. Te analysis results
show that the FedAwo and FedAwo ∗ algorithms can
converge faster and obtain a better global model. Te
experimental code of this article has been uploaded
to Github (https://github.com/amazing.yx/
FedAwo).

Te rest of this paper is organized as follows: Te second
section introduces the related work of federated learning in
solving heterogeneity. Te third section introduces the
federated learning algorithm for automatic weight optimi-
zation (FedAwo) in detail. In the fourth section, we prove the
convergence of the FedAwo algorithm. In the ffth section,
we propose the optimization algorithm FedAwo ∗. In the
sixth section, we verify the performance of FedAwo and
FedAwo ∗ through experiments. Finally, we summarize this
paper.

1.1. Related Work. Te research studies on the convergence
of federated learning [2, 9, 11, 13] show that the system
heterogeneity and statistical heterogeneity in federated
learning have a great negative impact on the convergence
speed and accuracy of the global model.

Te optimization methods of heterogeneous problems
mainly focus on modifying the loss function of clients or
sampling clients. For modifying the loss function of the
client, literature [2] proposed the FedProx algorithm, which
aims to add a proximal term (μ/2)‖x − x(t,0)‖2 to help
improve the stability of federated learning. At the same time,
the FedProx algorithm would dynamically adjust the
number of client-training epochs to solve the straggler
problem caused by system heterogeneity. Te efect of this
method is more obvious in the environment with stronger
heterogeneity. However, the original intention of the Fed-
Prox algorithm is to solve the problem of straggler. Due to
the introduction of the proximal term, the computing
overhead of the client increases instead. In some cases, the
problem of client struggling is even more serious. Literature
[11] proposes the SCAFFOLD algorithm, which corrected
the client-drift phenomenon that occurs in the FedAvg
algorithm by introducing the correction term (c − ci). Lit-
erature [10] proposed the FedNova algorithm, which
eliminated objective inconsistencies and maintained fast
convergence by normalizing local models. Te SCAFFOLD
algorithm and the FedNova algorithm are the same as the
FedProx algorithm. Although the communication overhead
has been further optimized and the model quality has been
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improved, it still increases the computing overhead of the
client. Literature [14] proposed the FedDyn algorithm to
keep the local model and global model distribution ap-
proximately consistent by assigning a dynamic regulariza-
tion optimizer to each client in each round. All of these
methods can reduce the infuence of heterogeneity on the
convergence speed and model accuracy, but they all increase
the computational overhead of clients. Te computing
power of the server is better than that of the client. In
practice, most clients are always busy, but the server is often
idle.

For the samplingmethod, the authors in [4] established a
general sampling-federated learning system and obtained an
unbiased optimal sampling probability to alleviate the in-
fuence of heterogeneity on the global model. Literature [15]
proposed the FedL algorithm, which was a graph con-
volutional network (GCN)-based sampling method that
maximized the accuracy of the global model by learning the
relationship between network attributes, sampling nodes,
and generated ofoads. Literature [16] classifed local models
according to the importancê of each round of clients, ag-
gregated the “important” local models, and proposed an
approximate unbiased sampling optimization algorithm.
Literature [17] proposed the FOLB algorithm by estimating
the gradient information of the local model, which inferred
the performance of the client and performed weighted
sampling based on it. Tis method could cope with system
heterogeneity and made the global model converge quickly.
Although the sampling method can promote the global
model to converge quickly, the quality of the fnal global
model is poor.

In addition, literature [18] proposed the FedHQ algo-
rithm to solve the system heterogeneity by minimizing the
upper limit of the convergence speed as a function of the
heterogeneous quantization error of all clients and assigning
diferent aggregation weights to diferent clients. In order to
address heterogeneity, literature [19] proposed an algorithm
with periodic compressed communication, which intro-
duced a local gradient tracking scheme and obtained fast
convergence speed matching communication complexity.
Literature [20] analyzed the convergence bound of gradient
descent-based federated learning from a theoretical per-
spective and obtained a novel convergence bound. Using the
above theoretical convergence bound, literature [20] pro-
posed a control algorithm that learns data distribution,
system dynamics, and model characteristics, and based on
which, it dynamically adapts the frequency of global ag-
gregation in real time to minimize the learning loss under a
fxed resource budget. Literature [18–20] solved the system
heterogeneity caused by external environment such as
system confguration and hardware conditions, but do not
pay attention to the statistical heterogeneity caused by local
data diferences.

Due to the limitations of the above two methods, this
paper hopes to solve the problem of heterogeneity by in-
troducing adaptive learning. Before that, literature
[13, 21, 22] tried to combine adaptive learning with federated
learning. Literature [21] proposed a federated learning
optimization scheme with an adaptive gradient descent

function. Tis algorithm improved the privacy performance
of the local training process by diferential privacy and the
scaling of update volume. Tis algorithm can enhance the
privacy security of each client in the process of joint learning,
but it cannot efectively suppress the negative impact of
heterogeneity. Literature [22] proposed an adaptive-per-
sonalized federated learning (APFL) algorithm, where each
client would train their local models while contributing to
the global model. Te APFL algorithm adaptively learns the
model by leveraging relatedness between local and global
models as learning proceeds, which efectively improves the
convergence speed of the global model. Literature [13]
proposed federated adaptive weighting (FedAdp) that as-
signs diferent weights to nodes for global model aggregation
in each round of communication. Te FedAdp algorithm
allocates the weight of the client by calculating the intercept
between the global model and the local model. However,
when the performance of the local model is due to the global
model, FedAdp will still assign a lower weight to the local
model according to the intercept value, which is obviously
unreasonable. We summarize the limitations of the above
methods in Table 1.

Terefore, the method of modifying the client loss
function increases the computational overhead of the client,
and the sampling method has the problem of low accuracy of
the fnal global model. However, the current federated
learning algorithm combined with adaptive learning does
not focus on solving the problem of heterogeneity. Tis
paper is diferent from the above methods. From the per-
spective of resource allocation of the federated learning
system, this paper makes full use of the advantageous re-
sources of servers and combines adaptive learning to reduce
the negative impact of heterogeneity. As far as we know, this
paper is the frst work aimed at using server-computing
resources to solve the optimal weight allocation value.

2. Federated Learning Algorithm for Automatic
Weight Optimization (FedAwo)

In this section, we establish the system architecture and
propose the automatic weight optimization algorithm
FedAwo. Finally, we introduce the specifc process of it in
detail.

2.1. System Model. A federated learning system generally
includes one server and K clients.Te server plays the role of
coordinating the training for each client, aggregating, and
distributing the global model. Clients hold their own local
dataset D1, D2, . . . , DK􏼈 􏼉, and the total amount of data of all
clients is 􏽐

K
k�1 |Dk| [23–27]. Clients perform a local learning

operation under the coordination of servers. We frst defne
f(θ) as a loss function, where θ is the model parameter.
Tus, the global loss function of clients can be defned as

minθ∈Rd f(θ) �
de f

􏽘

K

k�1
pk · fk(θ)

⎧⎨

⎩

⎫⎬

⎭. (1)

Te local loss function for each client is defned as
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fk(θ) �
de f 1

Dk

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌

􏽘
x∈Dk

lk(θ, x), (2)

where lk(θ, x) is the loss function evaluated at the data
sample x, and the model θ.pk represents the training data
weight value of the k-th client

pk �
Dk

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌

􏽐
K
k�1 Dk

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌

. (3)

Te global model aggregation mode is defned as

θt+1
� 􏽘

K

k�1
pk · θt

k. (4)

Te purpose of federated learning is to fnd the optimal
value in (1), and the FedAvg algorithm is to repeat the
process of (3) and (4) until the global model converges. Te
most popular and de facto optimization algorithm to solve
(1) is FedAvg [1]. Here, denoting t as the index of a federated
learning round, we describe one round (e.g., t-th) of the
FedAvg algorithm as follows:

(1) Te server uniformly broadcasts the global model θ t

to each client.
(2) Each client uses local data to perform local SGD to

calculate the updated model θk
t. Ten, the client

sends the updated model back to the server.
(3) Te server aggregates (with a weight pk ) the clients’

updated model and computes a new global model
θ t+1.

Te above process repeats for many rounds until the
global loss converges.

At present, the research on the negative efects of het-
erogeneity mostly uses the sampling method or modifes the
loss function of clients. Diferent from the previous algo-
rithms, we modify pk in (1) to reduce the infuence of het-
erogeneity on the global model by fnding the correction value
qk. So the global model aggregation mode is rewritten as

θt+1
� 􏽘

K

k�1
qk · θt

k. (5)

As shown in Table 2, the loss function of the global
model is updated to θt+1 � 􏽐

K
k�1 qk · θt

k.

2.1.1. Federated Learning Algorithm for Automatic Weight
Optimization. We design a federated learning algorithm
FedAwo for automatic weight optimization to obtain qk.

Te FedAwo algorithm aims to reduce the negative impact
of statistical heterogeneity and system heterogeneity on
federated learning and makes full use of the computing
resources of the server. Compared with traditional feder-
ated learning, this algorithm needs to have a certain
amount of high-quality data in the server, which is
achievable in most federated learning tasks. We would use
these high-quality data as the server’s datasets in the server
and use the way of machine learning to calculate the op-
timal weight correction value q

∗

k . Te specifc process of the
federated learning algorithm for automatic weight opti-
mization is as follows:

(1) Te server S establishes a federated learning global
model θt and a weight allocation model ϑt. Ten, the
server S calculates the initial weight value q0k for each
client according to the data quantity. Te initiali-
zation weight distribution formula of each client is
q0k � (|Dk|/􏽐

K
k�1 |Dk|), and according to the above

formula, we can get the initial client weight alloca-
tion vector c � [q1, q2, . . . , qK]. At the same time, the
global model θt is broadcast to each client k, and the
server has the dataset Ds. Te data in Ds are inde-
pendent and identically distributed(IID) high-
quality data. Te total amount of data are J, and each
data has a unique corresponding label Lj, which is a
one-hot type data. For example, in the MNIST
dataset, the one-hot type label of digital zero is
[1, 0, . . . , 0]. We can get a matrix of all data labels
ω � [L1, L2, . . . , LJ]T.

(2) Each client would use its own local data for SGD for
the received global model θt until it is trained for the
specifed criterion, and send the model θt

k to the
server S.

(3) Assuming that Ds,j is a data sample in the dataset Ds,
we input data Ds,j into the local model θt

k, and the
output is M

j

k , which is a one-hot type data. Ten, we
input all the data in Ds to get a matrix
Mk � [M1

k, M2
k, . . . , MJ

k]T. We carry out the above
operations on all client models to get a matrix
M � [M1, M2, . . . , MK]

(4) Te server calculates χ, which is the product of M

and c. Tus, we have

Table 1: Limitations of the approach in federated learning.

Approach Challenges of the approach
Modifying the loss function of clients [2, 10–12, 14] Te approach increases the computational overhead of the client
Approach of sampling [4, 15–17] Te approach has low accuracy of the fnal global model
Heterogeneous quantization [18] Te actual quantifcation standard is not specifc
Approach of local gradient tracking [19, 20] Te approach ignored the statistical heterogeneity
Approach of combining adaptive learning [13, 21, 22] Te previous work was not intended to solve heterogeneity

Table 2: Adjustment of the loss function.

Existing loss function Updated loss function

θt+1 � 􏽐
K
k�1 pk · θt

k θt+1 � 􏽐
K
k�1 qk · θt

k
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χ � M · c �

q1M
1
1 + q2M

1
2 + · · · + qKM

1
K

· · · · · ·

q1M
j
1 + q2M

j
2 + · · · + qKM

j
K

· · · · · ·

q1M
J
1 + q2M

J
1 + · · · + qKM

J
K

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (6)

Note that each element q1M
j
1 + q2M

j
2 + · · · + qKM

j
K

in χ represents the average prediction result for the j

-th sample in Ds. We then calculate the cross-en-
tropy loss between χ and ω, i.e.,

H(χ,ω) � − 􏽘

J

j�1
(χ · log(ω) +(1 − χ) · log (1 − ω)), (7)

where H(χ,ω) refects the prediction loss under the
current weight c. By minimizing H(χ,ω), we can
obtain the best weight c∗, which is given by

c
∗

� q1
∗
, q2
∗
, · · · , qk

∗
􏼂 􏼃

T
� argmin

c

H(M · c,ω)􏼈 􏼉. (8)

We take q1
∗, q2
∗, · · · , qk

∗ in c∗ as the optimal
weights. In this paper, we adopt a machine-learning-
based approach in the server to get c∗. In particular, a
neural network model ϑt is trained so that H(M ·

c,ω) is minimized.
(5) Te server S aggregates the models according to the

current round of updated weight correction values
q∗k to obtain the global model of the next round
θt+1 � (􏽐

K
k�1 qk)∗ · θt

k.
(6) Te server broadcasts the new global model θt+1 to

each client and repeats the process of 1–6 until the
global model θT converges.

For Algorithm 1, we need to defne the initial global
model θ0, the initial adaptive learning model ϑ0, and the
initial weight value q0k. Te server broadcasts the global
model θ0 to all clients within the specifed time T of the
system. Te client uses local data to train the model to the
specifed epoch I and then returns the model θt,I

k to the
server. Tis process is shown in 2 − 5 of Algorithm 1, which
represents the process of local model training. Ten, in the
server, the optimal weight value q∗k is obtained through the
adaptive learning model ϑ0.Temodel aggregation is carried
out according to the optimal weight value q∗k , and the latest
global model θt+1 is obtained.Tis process is shown in 6–9 of
Algorithm 1, which represents the process of model ag-
gregation [28–33].

Te federated learning algorithm of automatic weight
optimization adds an adaptive weight allocation algorithm
to the FedAvg algorithm. In the traditional weight allocation

method (3), the weight of the client is allocated according to
the amount of data, which is fully applicable under the
condition of IID. However, under the infuence of hetero-
geneity, only considering the amount of data cannot fully
refect the quality of client data because the data of most
clients tend to shift to a certain feature in practice afected by
statistical heterogeneity. In other words, most data in one
client often have similar features. If such a client has more
data, it would often lead to a poor aggregation efect
according to (3).Te correct approach is to adjust the weight
to minimize the cross-entropy. When the cross-entropy is
the smallest, predicted local distribution is closest to global
distribution, which is also the biggest advantage of FedAwo
compared with the traditional weight allocation algorithm.
FedAwo can converge quickly and improve the accuracy of
the global model, which is still applicable under IID
conditions.

3. Proof of Convergence

3.1. Nonconvex Loss Functions. As is known to all that for
convergence of nonconvex loss functions, the expected
gradient norm is usually taken as the index of convergence to
ensure convergence to a stagnation point [15–17, 34].
Terefore, this article takes the norm of the expected gra-
dient as the convergence index, namely,

1
T

􏽘

T

t�1
E ∇f θt( 􏼁

����
����
2 ≤ϖ. (9)

As is commonly used in literature studies [20–22], the
following assumptions are adopted in this article.

Assumption 1. Te loss function f, .fk, .l(.), areallL−

smooth, for any α, β ∈ Rd and any x ∈ D, there is inequality
(10).

‖∇l(α, x) − ∇l(β, x)‖≤ L‖α − β‖, (10)

where L denotes the Lipschitz constant.

Assumption 2. Stochastic gradients in clients are unbiased,
and the second raw moment of a stochastic gradient for all
functions is fk. (bounded).

E ∇lk(θ; x)
����

����
2 ≤ σ2k ∈ K, σ > 0,

s.t.∇fk θt,e
􏼐 􏼑 � ∇lk θt,e

; x􏼐 􏼑e ∈ I, t ∈ T, x ∈ D.
(11)

Theorem 1. Suppose Assumptions 1 and 2 hold, when the
step size is set as η � (1/L

��
T

√
), the convergence of FedAwo

with nonconvex loss functions satisfes:

1
T

􏽘

T

t�1
E ∇f θt

􏼐 􏼑
�����

�����
2
≤

2L

I
��
T

√ f θ0􏼐 􏼑 − f θ∗( 􏼁􏽨 􏽩 +
I
2σ2K
L
2
T

􏽘

K

k�1
q

t
k􏼐 􏼑

2
+

Iσ2K
��
T

√ 􏽘

K

k�1
q

t
k􏼐 􏼑

2
, (12)
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where f(θ∗) denotes the minimum value of (1), and f(θ0)
denotes the initialized value of (1).

Proof. In order to prove inequality (11) is true, E‖∇f(θt)‖

would be deduced frst.
According to (5), θt can be defned as 2.1 ng, and the

amount of data can be expressed as follows (Appendix A):

θt+1
� 􏽘

K

k�1
qk · θt

k � θt
− η 􏽘

K

k�1
qk · 􏽘

I−1

e�0
∇fk θt,e

􏼐 􏼑⎛⎝ ⎞⎠. (13)

Since f(.) is L − smooth, E[f(θt+1)], it can be derived as
follows:

E f θt+1
􏼐 􏼑􏽨 􏽩≤E f θt

􏼐 􏼑􏽨 􏽩 + E 〈∇f θt+1
􏼐 􏼑, θt+1

− θt〉 +
L

2
E θt+1

− θt
����

����
2

􏼔 􏼕􏼔 􏼕

� E f θt
􏼐 􏼑􏽨 􏽩 +

L

2
E θt+1

− θt
����

����
2

􏼔 􏼕

− ηE 􏼪∇f θt
􏼐 􏼑, 􏽘

K

k�1
q

t
k · 􏽘

I−1

e�0
∇fk θt,e

􏼐 􏼑⎛⎝ ⎞⎠􏼫⎡⎢⎢⎣ ⎤⎥⎥⎦.

(14)

Te expectation of the inner product in inequality (14)
can be derived as inequality (15) (Appendix B):

E 〈∇f θt
􏼐 􏼑, θt+1

− θt〉􏽨 􏽩 � −ηE 􏼪 ∇f θt
􏼐 􏼑, 􏽘

K

k�1
q

t
k · 􏽘

I−1

e�0
∇f θt,e

􏼐 􏼑⎛⎝ ⎞⎠⎛⎝ 􏼫⎡⎢⎢⎣ ⎤⎥⎥⎦

≤ −
ηI

2
E ∇f θt

􏼐 􏼑
�����

�����
2

􏼔 􏼕 +
1
2
η3I3σ2L2

K 􏽘
K

k�1
q

t
k􏼐 􏼑

2
.

(15)

According to inequality ‖ 􏽐
K
k�1 zk‖2 ≤K 􏽐

K
k�1 ‖zk‖2,

E[‖θt+1 − θt‖2] of inequality (14) can be rewritten as (16)
(Appendix C):

E θt+1
− θt

����
����
2

􏼔 􏼕 � E θt
− η∇f θt

􏼐 􏼑 − θt
�����

�����
2

􏼔 􏼕

≤ η2K 􏽘
K

k�1
q

t
k􏼐 􏼑

2
E 􏽘

I−1

e�0
∇fk θt,e

􏼐 􏼑

���������

���������

2
⎡⎢⎢⎣ ⎤⎥⎥⎦⎤⎥⎥⎦

≤ η2I2σ2K 􏽘
K

k�1
q

t
k􏼐 􏼑

2
.

(16)

Substituting inequality (15) and (16) into inequality (14)
yields inequality:
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E f θt+1
􏼐 􏼑􏽨 􏽩≤E f θt+1

􏼐 􏼑􏽨 􏽩 +
L

2
E θt+1

− θt
����

����
2

􏼔 􏼕

+ E 〈∇f θt
􏼐 􏼑, θt+1

− θt〉􏽨 􏽩

≤E f θt
􏼐 􏼑􏽨 􏽩 −

ηI

2
E ∇f θt

􏼐 􏼑
�����

�����
2

􏼔 􏼕

+
1
2
η3I3L2σ2K 􏽘

K

k�1
q

t
k􏼐 􏼑

2
+
1
2
η2I2Lσ2K 􏽘

K

k�1
q

t
k􏼐 􏼑

2
.

(17)

Dividing (17) both sides by (ηI/2) and rearranging terms
yield inequality:

E ∇f θt
􏼐 􏼑

�����

�����
2

􏼔 􏼕≤
2
ηI

E f θt
􏼐 􏼑􏽨 􏽩 +

1
2
η3I3L2σ2K 􏽘

K

k�1
q

t
k􏼐 􏼑

2
+
1
2
η2I2Lσ2K 􏽘

K

k�1
q

t
k􏼐 􏼑

2
− E f θt+1

􏼐 􏼑􏽨 􏽩⎡⎣ ⎤⎦. (18)

Summing over t ∈ 0, 1, . . . , T − 1{ } and dividing both
sides by T yield inequality:

1
T

􏽘

T−1

t�0
E ∇f θt

􏼐 􏼑
�����

�����
2 2
ηIT
≤ 􏽘

T−1

t�0
E f θt

􏼐 􏼑􏽨 􏽩 +
1
2
η3I3L2σ2K 􏽘

K

k�1
q

t
k􏼐 􏼑

2
+
1
2

Lη2I2σ2K 􏽘

K

k�1
q

t
k􏼐 􏼑

2
− E f θt+1

􏼐 􏼑􏽨 􏽩⎡⎣ ⎤⎦

≤
2

ηIT
f θ0􏼐 􏼑 − f θ∗( 􏼁􏽨 􏽩 + η2I2Lσ2K 􏽘

K

k�1
q

t
k􏼐 􏼑

2
+ LηIσ2K 􏽘

K

k�1
q

t
k􏼐 􏼑

2
.

(19)

Finally, substituting � (1/L
��
T

√
) into (18) yields the

desired result (12). So Teorem 1 is true. □

3.2. Strongly Convex Loss Functions. Compared with non-
convex loss functions, the convergence analysis of convex
loss functions usually adds Assumption 3 [13, 16, 22].

Assumption 3. Te loss functions f(.), fk(.), l(.) are μ
strongly convex, and for any α, β ∈ Rd and any x ∈ D, there
is inequality.

〈∇l(α; x) − ∇l(β; x), α − β〉≥ μ‖α − β‖
2
. (20)

Theorem  . Suppose Assumptions 1 to 3 hold, for any t> t0
(t0 is a constant), when the step size is set as ηt � (1/μ · t), the
convergence of FedAwo with strongly convex loss functions
satisfes:

E θt
− θ∗

����
����
2 ≤

t0

t
E θt0 − θ∗

����
����
2

+
B

t
, (21)

where B �
de f

(I2σ2K/μ2) 􏽐
K
k�1 (qt

k)2.

Proof: Te following inequality is proved:

E θt
− θ∗

����
����
2

� E θt
− ηt∇f θt

􏼐 􏼑 − θ∗
�����

�����
2

􏼔 􏼕≤ 1 − 2μηt( 􏼁E θt
− θ∗

����
����
2

􏼔 􏼕 + η2t I
2σ2K 􏽘

K

k�1
q

t
k􏼐 􏼑

2
. (22)

Substituting ηt � (1/μ · t) into inequality (22) (Appendix
D) yields:

E θt+1
− θ∗

����
����
2
≤ 1 −

2
t

􏼒 􏼓E θt
− θ∗

����
����
2

􏼔 􏼕 +
I
2σ2K
μ2t2

􏽘

K

k�1
q

t
k􏼐 􏼑

2
.

(23)
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For the sake of simplicity, set λt �
de f

E[‖θt − θ∗‖2],
B �
de f

(I2σ2K/μ2) 􏽐
K
k�1 (qt

k)2. Te inequality (23) is rewritten
as inequality:

λt+1 ≤ 1 −
2
t

􏼒 􏼓λt
+

B

t
2 . (24)

Next, the induction would be used to derive Teorem
2. Obviously, inequality (11) holds for t � t0, and then,
assuming that inequality (21) is true when s> t0. Ten, we
have

λt ≤
t0
s
λt0 +

B

s
. (25)

Next, from inequality (24) and (25), we obtain inequality
as follows:

λt ≤ 1 −
2
s

􏼒 􏼓
t0

s
λt0 +

B

s
􏼒 􏼓 +

B

s
2 ≤

t0

s + 1
λt0 +

B

s + 1
. (26)

Terefore, inequality (21) is true; i.e., Teorem 2 is
true. □

4. Federated Learning Enhancement
Algorithm for Automatic Weight
Optimization (FedAwo ∗)

System heterogeneity is caused by the client’s computing
power, storage capacity, load capacity, and network envi-
ronment, and it means that the converged clients still need to
carry out model training for the specifed epoch. Tis
phenomenon results in the computing resource waste and

Require: initialized the global model θ0 and initialized the weight distribution model ϑ0, q0k and server dataset Ds

Ensure: fnal global model θT

(1) for t� 0 to T do
(2) Broadcast θt to clients
(3) for e� 0 to I do
(4) θt,e+1

k � θt,e
k − ηt∇fk(θt,e

k )

(5) end for
(6) θt

k←θ
t,I
k

(7) Pass θt to server S

(8) Calculate q∗k through III-V
(9) Aggregate the new global model

Server updates θt+1 � 􏽐
K
k�1 q∗k × θt

k

(10) end for

ALGORITHM 1: FedAwo (federated learning enhancement algorithm for automatic weight optimal allocation).

Require: initialized the global model θ0, initialized the weight distribution model ϑ0, qk and the server dataset Ds, and initialized
∇l0 � 0, ò, δ
Ensure: fnal global model θT

(1) for t� 0 to T do
(2) Broadcast θt to clients
(3) for e� 0 to I do
(4) θt,e+1

k � θt,e
k − ηt∇fk(θt,e

k ):
(5) Update ∇le: // for the optimization part of the FedAwo algorithm
(6) ∇le � ‖le − le− 1‖:
(7) Calculate whether the local model converges:
(8) if ∇le < ε, and ∇le < ε, or |δ − le|< ε then
(9) Break;
(10) else
(11) Continue
(12) end if
(13) Pass Model t

k to the server
(14) end for
(15) θt

k←θ
t,I
k :

(16) Trough III-V calculate q∗k
(17) Aggregate the new global model:

Server updates θt+1 � 􏽐
K
k�1 q∗k × θt

k

(18) end for

ALGORITHM 2: FedAwo ∗ (improved optimization algorithm of FedAwo).

8 Computational Intelligence and Neuroscience



energy waste in clients. Terefore, we further optimize the
FedAwo algorithm and propose an enhanced algorithm
(FedAwo ∗). Based on the FedAwo algorithm, the FedAwo ∗
algorithm adds an adaptive training round optimization
algorithm to the client, which can efectively reduce the
model training overhead of clients.

Te above phenomenon is common in federated
learning, but traditional federated learning algorithms do
not pay attention to this problem, and this phenomenon is
aggravated with the progress of federated learning, which
leads to a large number of invalid calculations in the client
and adds a lot of meaningless computational overheads.
Terefore, it is necessary to add discriminant conditions for
model convergence in local training. Tis is where the
FedAwo ∗ algorithm is optimized for the FedAwo algorithm.
Tis method returns to the server a local model that satisfes
the convergence criteria, even if the specifed epoch has not

been completed. Tis idea seems to be similar to that of the
FedProx algorithm [2], but the starting points of them are
completely diferent. FedProx is to solve the problem of
struggling, while FedAwo ∗ is to reduce training costs. When
the model trained by the client reaches the convergence
criteria we set, the local training would automatically stop
even if the training numbers are less than the epoch set by
the system. And local converged model would been returned
to the server, so as to reduce the computational overhead of
the clients.

Te specifc process of FedAwo ∗ is as follows:

(1) In each epoch, clients save le of the current epoch and
subtracts the previous round le− 1 to get the diference
∇le � |le − le− 1|.

(2) Judging the convergence of clients, if ∇le < ε and
∇le+1 < ε, |δ − le|< ε, θt

k is considered converged and
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Figure 1: Global model accuracy (IID).
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Figure 2: Global model loss (IID).
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Figure 3: Global model accuracy (statistical heterogeneity).
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Figure 4: Global model loss (statistical heterogeneity).
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would be returned to the server. ε represents a very
small parameter and δ represents a parameter close
to the global model convergence loss. Te value is
adjusted according to the specifc situation. In sec-
tion 6, we would set δ � 0 and ε � 0.001.

(3) If the conditions in II cannot meet the specifed
criterion, after training the specifed criterion, θt

k

would be returned to the server.

In Algorithm 2, we need to defne the initial globalmodel θ0,
the initial adaptive learningmodel ϑ0, the initial weight value q0k,
the initial loss function diference∇l0 � 0, and other parameters
ϵ, δ. Te server broadcasts the global model θ0 to all clients
within the specifed time T of the system. Te client uses local
data to train themodel for the specifed epoch I and then returns

the model θt,I
k to the server. At the same time, in each local

training epoch, we would record the diference ∇le between the
loss function of this epoch and the previous epoch. When the
diference ∇le between the loss functions of two consecutive
epoch is very close, or the diference between these two epochs is
less than ϵ, we consider that the localmodel has converged at this
time and immediately return this model to the server. Tis
process is shown in 2–14 of Algorithm 2, which represents the
process of local model training. Ten, in the server, the optimal
weight value q∗k is obtained through the adaptive learningmodel
ϑ0. Te model aggregation is carried out according to the op-
timal weight value q∗k , and the latest global model θt+1 is ob-
tained. Tis process is shown in 15–18 of Algorithm 2, which
represents the process of model aggregation.

Te algorithm reduces the computational overhead of
clients by dynamically performing local-training epochs.
According to a large number of experiments, we found that in
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Figure 5: Global model accuracy (statistical heterogeneity and
system heterogeneity).
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Figure 6: Global model loss (statistical heterogeneity and system
heterogeneity).

Table 3: Details of the experimental environment.

Environment detail specifcations
Operating system Microsoft Windows 10
Processor AMD Ryzen 7 3700X 8-core
Architecture 64-Bit
Memory allotted 4GB
GPU NVIDIA GeForce RTX 2070
Language Python
Framework PyTorch, FastAI
Libraries used pandas, NumPy, Matplotlib, argparse

Table 4: Layered architecture of the experimental model.

Layers Kernel size Parameters Tensor size
Convolution 5× 5 (conv) Stride� 1 1× 32
Pooling 2× 2 (ma× pool) Stride� 2 —
Convolution 5× 5 (conv) Stride� 1 32× 64
Pooling 2× 2 (ma× pool) Stride� 2 —
Linear 1× 1 — 7× 7× 64× 512
Linear 1× 1 — 512×10
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Figure 7: Global model accuracy (IID).
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the process of federated learning, some clients have converged
before performing the number of specifed epochs. Following
the previous federated learning algorithm, these clients still
need to perform training until the specifed epoch.Tis process
inevitably results in the waste of computing resources [2].
Terefore, the FedAwo ∗ algorithm adaptively judges whether
the SGD process converges during the client training. If the
convergence conditions are reached before the specifc epoch,
the SGD would be stopped and the converged local model
would be returned to the server. Otherwise, the SGD would
continue and stop after reaching the specifed epoch.

5. Experiments

5.1. Experimental Environment. In order to analyze the
performance of FedAwo and FedAwo ∗ algorithms, we
established an experimental environment based on PyTorch
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Figure 8: Global model loss (IID).
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Figure 10: Global model loss (statistical heterogeneity).

Table 5: Results of the Nemenyi test.

FedAvg FedAdp FedProx FedAwo FedAwo
FedAvg 1.00 0.90 0.72 0.12 0.02
FedAdp 0.90 1.00 0.89 0.22 0.04
FedProx 0.72 0.89 1.00 0.72 0.32
FedAwo 0.12 0.22 0.72 1.00 0.90
FedAwo ∗ 0.02 0.04 0.32 0.90 1.00

Table 6: Comparison of indicators between FedAwo and FedAwo∗
with the state-of-art algorithms (MNIST).

Precision (%) Recall (%) AUC F1
FedAvg 93.8 93.2 0.975 0.944
FedProx 97.1 96.9 0.995 0.961
FedAdp 96.8 95.4 0.982 0.966
FedAwo 97.3 96.8 0.994 0.971
FedAwo ∗ 96.9 96.9 0.995 0.967
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Figure 11: Global model accuracy (statistical heterogeneity and
system heterogeneity).
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1.10.1 and CUDA 10.2. Te software environment is Python
3.8. Te hardware environment is 3.60GHz AMD Ryzen 7
3700X 8core processor CPU, 16.00GB, Win10 64 bit, and
NVIDIA GeForce RTX 2070 system. Te simulation ex-
periment strictly follows the protocols and rules that may be
used in distributed federated learning [35]. More details of
the experimental environment are shown in Table 3.

5.2. Experimental Setup. In this paper, MNISTand Fashion-
MNIST datasets are selected as experimental datasets to
verify the performance and stability of FedAwo and

FedAwo ∗ algorithms. MNIST and Fashion-MNIST are two
image datasets. In the experiment, we normalize the two
datasets, respectively. For IID dataset partition, data samples
are evenly and randomly distributed to clients. For nonIID
dataset partitions, data samples are sorted by their labels and
divided into 2K groups, and each client receives two groups
(i.e., samples corresponding to two labels).

For MNIST, the dataset has 60000 training samples and
10000 test samples. It is an image dataset containing 0–9
hand-written digits, and each sample contains 28× 28 pixels.
We set a total of K� 100 clients, and we allocate 600 training
samples for each client. In addition, when using the FedAwo
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Figure 12: Global model loss (statistical heterogeneity and system heterogeneity).
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algorithm, we get 2000 data from 10000 test datasets and
take these data as the server dataset Ds for adaptive learning
of weight distribution and the remaining 8000 data as test
datasets. For comparison, we confgured the same CNN
model according to the method proposed in [1]. Te model
has two 5× 5 convolution layers of CNN (the frst has 32
channels, the second has 64 channels, and each channel is

followed by 2× 2 maximum pool), and one has 512 units,
ReLU activation, and fnal Softmax output layer.

For Fashion-MNIST, the dataset also has 60000 training
samples and 10000 test samples. It is an image dataset
containing diferent commodities, and each sample also
contains 28× 28 pixels. Other experimental settings are
consistent with the MNIST dataset.
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Te specifc experimental setup details are as follows: we
set the learning rate to 0.01, batch size to 64, and epoch to 5.
Since the MNIST and Fashion-MNIST datasets have the
same input and output and are both image datasets, we set
the same CNN model. Te details of the specifc model
settings are shown in Table 4.

5.3. Results of the Experiment. We chose the most classic and
widely used FedAvg, FedProx, and FedAdp algorithms as the
baselines of the experiments.

For the MNIST dataset, we frst used the data distri-
bution of IID to compare FedAwo, FedAwo ∗, FedAvg,
FedProx, and FedAdp algorithms. As shown in Figures 1 and
2, we could see that under the dataset with IID distributed
data, the fve algorithms converge in 10–15 communication
rounds. FedAvg has slower convergence speed and lower
accuracy of the global model than the other four algorithms,
but it is not clear.

NonIID experiments heavily distribute skewed data to
individual clients, and the results of the experiment are
shown in Figures 3 and 4. In Figures 1 and 2, we could see
that the convergence rates of the fve algorithms were af-
fected by statistical heterogeneity. Te FedAvg algorithm
was seriously afected, which led to a signifcant decrease in
the convergence speed, and converged after the 70th
communication round. At the same time, the quality of the
global model was obviously inferior to the global model
under the IID condition. Due to the addition of the near
term to the loss function, the quality of the global model was
not afected in the FedProx algorithm, but the convergence
speed was still slowed down.Te same is true for the FedAdp
algorithm. For FedAwo and FedAwo ∗ algorithms, both the
convergence speed and the quality of the global model were

minimally afected by statistical heterogeneity, and they
reached convergence around the 30th communication
round.

We also simulated both systematic and statistical
heterogeneity of federated learning. Obviously, the in-
fuence of heterogeneity on the global model was further
increased. It could be seen from Figures 5 and 6 that the
FedAvg algorithm had a great impact on the convergence
speed and global model quality. Te model did not
completely converge until round 80. Te convergence
speed of FedProx and FedAdp was not signifcantly
slowed down compared with the condition of only sta-
tistical heterogeneity, but the quality of the global model
was degraded. For FedAwo, both the convergence rate
and the quality of the global model were still minimally
afected, while FedAwo ∗ had some fuctuations under
the infuence of system heterogeneity. Te convergence
speed and global model quality of FedAwo and FedAwo ∗
algorithms were better than those of FedAvg, FedProx,
and FedApd baseline algorithms.

In order to ensure the superiority of FedAwo and
FedAwo ∗ algorithms, we conducted the Friedman test on
the model accuracy and loss of these fve algorithms and
obtained the results of stat� 14.68, p value� 0.00184 and
stats� 10.24, p value� 0.02626. Te Friedman test can only
show that there are diferences between the accuracy and loss
of the models, but it cannot show which model is better.
Terefore, we conducted the Nemenyi test on the above
algorithms to further verify whether there is a signifcant
diference between the two models. According to the results
shown in Table 5, it can be concluded that FedAwo and
FedAwo ∗ algorithms are superior to the other three
algorithms.
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14 Computational Intelligence and Neuroscience



In addition to accuracy and loss, we also cited the fnal
precision, recall, AUC, and F1 values of the global model as
performance indicators to compare the fve algorithms
under statistical heterogeneity, as shown in Table 6.

For the Fashion-MNIST dataset, we obtained similar
conclusions as in the MNISTdataset. According to Figures 7
and 8, the convergence speed of the FedAvg algorithmwould
be slower under the IID condition, and the other four al-
gorithms were not much diferent.

According to Figures 9 and 10, the experimental results
were also similar to those in the MNIST dataset of the in-
fuence with only statistical heterogeneity.

In Figures 9–12, we can see that although the FedAwo
and FedAwo ∗ algorithms have some fuctuations, their
convergence speed and model accuracy are better than those
of the baseline algorithms.

For the Fashion-MNIST dataset, we conducted the
Friedman test on the model accuracy and loss of the fve
algorithms, and the results obtained were stat� 13.27, p

value� 0.00181 and stats� 10.24, p value� 0.02626. We
conducted the Nemenyi test on the above algorithms to
further verify whether there is a signifcant diference be-
tween the two models. According to the results in Table 7, it
can be concluded that FedAwo and FedAwo ∗ algorithms are
superior to the other three algorithms.

Similarly, for the Fashion-MNIST dataset, we also cited
the fnal precision, recall, AUC, and F1 values of the global
model as performance indicators to compare the fve al-
gorithms under statistical heterogeneity, as shown in Table 8.

In addition, we tested the computational overhead of
four algorithms under the IID condition and nonIID con-
dition. Te results of IID condition are shown in Figures 13
and 14, and the other four algorithms did not judge whether
the local model converged, so clients would train 5 epochs in
each round. Te total calculation amount of 100 clients in a
communication round is 500. Due to the IID dataset, the
convergence speed of the local model and the global model
was fast. When the model and global model was close to
convergence, clients would save more computing resources.

Under the condition of nonIID (statistical heterogene-
ity), FedAwo ∗ can still save computing resources of clients.
However, compared with the IID condition, the convergence
speed was slower in the case of statistical heterogeneity, and
the saving efect of saving computing resources in the
FedAwo ∗ algorithm was slightly worse, which is shown in
Figures 13–16.

5.4.Discussion onExperiment. According to Figures 1 and 2,
in the MNIST dataset, we can see that each federated
learning algorithm has similar performance without het-
erogeneity. When we use the local dataset with statistical
heterogeneity, as shown in Figures 3 and 4, the global model
accuracy and convergence speed of the FedAvg algorithm
are signifcantly reduced. Te global model accuracy of the
FedProx algorithm and the FedAdp algorithm is not af-
fected, but the convergence speed is signifcantly reduced,
reaching convergence in the 70th round. However, the
global model accuracy and the convergence speed of the

FedAwo algorithm and the FedAwo ∗ algorithm are almost
not afected by statistical heterogeneity and can reach
convergence 20 rounds before. On this basis, we add system
heterogeneity. When two types of heterogeneity exist at the
same time, heterogeneity has a more signifcant negative
impact on model aggregation. As shown in Figures 5 and 6,
the global accuracy and convergence speed of the FedAvg,
FedProx, and FedAdp algorithms are signifcantly reduced.
Te FedAwo and FedAwo ∗ algorithms have received a slight
impact, but the global model accuracy can still reach 90%
and can converge within 20 rounds. In the Fashion-MNIST
dataset, we get consistent results, as shown in Figures 7–12.
Trough the above experiments, it fully refects the optimal
weight value calculated according to the adaptive learning
algorithm; compared with the weight value assigned by the
traditional federated learning algorithm according to the
amount of client data, it has signifcant advantages. Te
FedAwo∗ algorithm optimizes the computational cost of the
FedAwo algorithm for the client. As shown in Figures 13–16,
FedAwo ∗ can signifcantly reduce the computing overhead
of the client and is applicable to the situation of both IID and
heterogeneity.

Trough the above experiments, we can clearly fnd that the
ability of FedAwo and FedAwo ∗ algorithms to solve the het-
erogeneity of federated learning is better than that of the other
three baseline algorithms. Even under the condition of system
heterogeneity and statistical heterogeneity, the algorithm in this
paper can still converge quickly and ensure excellent global
model quality. In addition, the algorithm in this paper is still
applicable to IID.Terefore, FedAwo and FedAwo ∗ algorithms
are universal, and they can be applied to most federal learning
scenarios. Te FedAwo ∗ algorithm optimizes the convergence
criterion of the local model. As shown in Figures 13 and 16,
FedAwo ∗ signifcantly saves the computing overhead of the
client compared with other algorithms. Terefore, FedAwo ∗ is
an adaptive weight optimization federated learning algorithm
that can efectively solve the heterogeneity and save the com-
putational overhead. Compared with existing algorithms, it has
great advantages.

Table 7: Results of the Nemenyi test.

FedAvg FedAdp FedProx FedAwo FedAwo ∗

FedAvg 1.00 0.84 0.61 0.37 0.04
FedAdp 0.84 1.00 0.90 0.90 0.37
FedProx 0.61 0.90 1.00 0.90 0.61
FedAwo 0.37 0.90 0.90 1.00 0.84
FedAwo ∗ 0.04 0.37 0.61 0.84 1.00

Table 8: Comparison of indicators between FedAwo and
FedAwo ∗ with the state-of-art algorithms (Fashion-MNIST).

Precision (%) Recall (%) AUC F1
FedAvg 81.8 81.2 0.832 0.824
FedProx 86.1 85.4 0.875 0.871
FedAdp 86.8 85.2 0.872 0.866
FedAwo 87.3 86.2 0.896 0.861
FedAwo∗ 86.3 86.0 0.891 0.877
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6. Conclusion

We investigate an automatic local model weight optimization
strategy to reduce the negative efects of systematic and sta-
tistical heterogeneity in federated learning and propose fed-
erated learning algorithms FedAwo and FedAwo ∗. Te
FedAwo algorithm can improve the convergence speed of the
global model and obtain a global model with higher accuracy,
and the enhancement algorithm FedAwo ∗ can reduce the
training overhead. Experimental results verify the superiority of
our proposed schemes in terms of convergence speed and
global model accuracy, as well as the efectiveness of FedAwo ∗
in saving the client-computing overhead. In this paper, we
combine adaptive learning with federated learning to solve the
heterogeneity problem and have achieved remarkable results.
Tis paper puts forward a new idea to solve the negative impact
of heterogeneity in federated learning.

7. Future Work

However, the FedAwo and FedAwo ∗ algorithms also have
some instability. As shown in Figures 9 and 10, in the
Experiment section, the global model shows the zig-zag
spike phenomenon when it is close to convergence. Te
reason for this phenomenon is that the learning rate is too
high when the algorithm is about to converge fast. In the
future work, we hope to improve the zig-zag spike

phenomenon by dynamically adjusting the learning rate. In
addition, we will further improve the adaptive learning
model $\varthetâ0$ in future work to further improve the
performance of the FedAwo algorithm.

Appendix

A Proof of equation (13)

We expand equation (5) according to the SGD,
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B Proof of inequality (15)

We expand the right half of equation (14)
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C Proof of inequality (16)

According to inequality ‖ 􏽐
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E[‖θt+1 − θt‖2] of inequality (14) can be rewritten as (16)
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D. Proof of inequality (22)

We take B �
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Data Availability

Te MNIST and Fashion-MNIST datasets used to support
the fndings of this study have been deposited in the

(“https://www.kaggle.com/datasets/oddrationale/mnist-in-
csv”) (“https://www.kaggle.com/datasets/zalando-research/
fashionmnist”) repository ((DOI or OTHER PERSISTENT
IDENTIFIER)). Te MNIST and Fashion-MNIST datasets
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used to support the fndings of this study are included within
the article. Te MNISTand Fashion-MNISTdatasets used to
support the fndings of this study are included within the
supplementary information fle(s). Te experimental code
has been open source to the “https://github.com/amazing-
yx/FedAwo.” Fashion-MNIST is available at https://www.
kaggle.com/datasets/zalando-research/fashionmnist MNIST
is available at https://www.kaggle.com/datasets/
oddrationale/mnist-in-csv. Our experimental code for the
manuscript is as follows: https://github.com/amazing-yx/
FedAwo.
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