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Abstract
Bioclimatic envelope models are commonly used to assess the influence of climate 
change on species' distributions and biodiversity patterns. Understanding how meth-
odological choices influence these models is critical for a comprehensive evaluation 
of the estimated impacts. Here we systematically assess the performance of bio-
climatic envelope models in relation to the selection of predictors, modeling tech-
nique, and pseudo-absences. We considered (a) five different predictor sets, (b) 
seven commonly used modeling techniques and an ensemble model, and (c) three 
sets of pseudo-absences (1,000 pseudo-absences, 10,000 pseudo-absences, and the 
same as the number of presences). For each combination of predictor set, modeling 
technique, and pseudo-absence set, we fitted bioclimatic envelope models for 300 
species of mammals, amphibians, and freshwater fish, and evaluated the predictive 
performance of the models using the true skill statistic (TSS), based on a spatially in-
dependent test set as well as cross-validation. On average across the species, model 
performance was mostly influenced by the choice of predictor set, followed by the 
choice of modeling technique. The number of the pseudo-absences did not have a 
strong effect on the model performance. Based on spatially independent testing, en-
semble models based on species-specific nonredundant predictor sets revealed the 
highest predictive performance. In contrast, the Random Forest technique yielded 
the highest model performance in cross-validation but had the largest decrease in 
model performance when transferred to a different spatial context, thus highlight-
ing the need for spatially independent model evaluation. We recommend building 
bioclimatic envelope models according to an ensemble modeling approach based on 
a nonredundant set of bioclimatic predictors, preferably selected for each modeled 
species.
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1  | INTRODUC TION

In the face of ongoing climate change it is crucial to quantify and 
understand its impacts on biodiversity. Threats of future climate 
change to biodiversity are commonly quantified with bioclimatic 
envelope models, that is, species distribution models (SDMs) that 
link species presence records with climatic variables to project the 
future distribution of species in response to climate change (Elith 
& Leathwick, 2009; Guisan & Thuiller, 2005; Pacifici et al., 2015; 
Pearson & Dawson,  2003; Thomas et  al.,  2004). Methodological 
choices made during the development of SDMs vary widely and 
may have considerable influence on the model output (Araújo 
et al., 2005, 2019; Araújo & Peterson, 2012; Barry & Elith, 2006; 
Pearson et  al.,  2006; Thuiller et  al.,  2019). This points at a clear 
need to understand how methodological choices affect the per-
formance of SDMs in general and bioclimatic envelope models in 
particular.

Key methodological aspects that influence SDMs include the se-
lection of predictor variables, selection of modeling technique, and se-
lection of pseudo-absence data (Araújo et al., 2019; Brun et al., 2019; 
Merow et al., 2014; Thuiller et al., 2019; Warren et al., 2019). Although 
there is consensus that predictor variables should be ecologically rele-
vant to the species of concern, often this is challenging due to data lim-
itations or because the ecological requirements of the species are not 
sufficiently known (Araújo et al., 2019). Many studies therefore rely 
on a (semi-)automated selection of complementary (i.e., not too highly 
correlated) predictors from a broader set of variables that are expected 
to be relevant (Barbet-Massin & Jetz,  2014; Bradie & Leung,  2017; 
Dormann et al., 2013; Petitpierre et al., 2017).

When it comes to the choice of modeling technique, there is a 
lack of consensus as to which technique is most suited for which 
SDM purpose (Araújo et al., 2019; Benito et al., 2013). Some stud-
ies build models based on machine-learning approaches such as 
Random Forest or MaxEnt (Bahn & McGill, 2013; Elith et al., 2011; 
Guisan et al., 2007), while others apply regression-based approaches 
(Guisan et al., 2002; Guisan & Zimmermann, 2000; Li & Wang, 2013) 
or prefer an ensemble of several modeling techniques (Araújo & 
New, 2007; Marmion et al., 2009; Rapacciuolo et al., 2012). There is 
evidence, however, that ensemble modeling is the preferred choice 
if the SDMs are to be used for projections, which are key in future 
climate threat assessments (Araújo et al., 2005).

The selection of pseudo-absence or background data is a third 
key consideration in SDM building, given that the majority of spe-
cies observations concern presence-only data (Ponder et al., 2001). 
Relevant aspects include the number of pseudo-absences as well as 
their spatial distribution (i.e., extent and geographic stratification), 
which may affect model performance as well as the relative impor-
tance of predictor variables (Barbet-Massin et  al.,  2012; Phillips 
et al., 2009; VanDerWal et al., 2009).

The impact of predictor set, modeling technique, and pseudo-ab-
sence selection on the performance of bioclimatic envelope models 
has been studied in isolation (Barbet-Massin et al., 2012; Beaumont 
et al., 2005; Moreno-Amat et al., 2015; Pearson et al., 2006; Pliscoff 
et al., 2014) or for two of the three factors (Brun et al., 2019; Bucklin 
et al., 2015; Dormann et al., 2008; Jarnevich et al., 2017; Petitpierre 
et al., 2017; Verbruggen et al., 2013; Warren et al., 2019). However, to 
our knowledge, no study so far has systematically evaluated the com-
bined effect of predictor set, modeling technique, and pseudo-absence 
selection on the performance of bioclimatic envelope models. Here we 
seek to fill that gap by systematically varying the choice of predictor 
set, modeling technique and number of pseudo-absences and evalu-
ating the performance of the resulting bioclimatic envelope models.

We evaluated five sets of bioclimatic predictors, seven model-
ing techniques plus a consensus ensemble model, and three sets of 
pseudo-absences. We selected a sample of 100 species from each 
of three major taxonomic groups, that is, mammals, amphibians, and 
freshwater fish, as the performance of bioclimatic envelope models 
has proven to differ among species groups (Heikkinen et al., 2012). 
For each species, we fitted a bioclimatic envelope model for each 
combination of predictor set, modeling technique, and pseudo-ab-
sence set. We evaluated the models with cross-validation (random 
split sample) and based on their transferability to a spatially inde-
pendent region, made up by different biomes (for mammals and am-
phibians) or different catchments (for fish). Thus, we test both model 
accuracy (the ability of the model to predict well within the space 
and time covered by the input data) and model generality (the ability 
of the model to predict well in another region or time), whereby the 
latter is more critical for bioclimatic envelope models given their aim 
to forecast changes (Araújo et al., 2019).

We asked the following research questions:

1.	 How sensitive is the performance of bioclimatic envelope models 
to the choice of predictor set, modeling technique, and number 
of pseudo-absences?

2.	 Which combination of predictor set, modeling technique, and 
pseudo-absence set yields the highest model performance?

3.	 To what extent are the outcomes contingent on the evalu-
ation method, that is, independent testing as opposed to 
cross-validation?

2  | MATERIAL S AND METHODS

2.1 | Species data

We retrieved species presence data from expert range maps provided 
by the IUCN (IUCN, 2018), similar to other recent studies that devel-
oped and applied bioclimatic envelope models (Hof et al., 2018; Visconti 
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et al., 2016). The IUCN Red List assesses the conservation status of indi-
vidual (sub)species and provides range maps that characterize the global 
distribution of species of several taxonomic groups. We preferred using 
range maps over global point records databases (e.g., GBIF), as range 
maps are expected to be less spatially biased (Fourcade, 2016; Merow 
et al., 2016). We included not only areas where the species are extant 
but also areas where the species are currently extinct, assuming that 
extinction was driven by factors other than climate change (Faurby & 
Svenning, 2015). We obtained data for each species by rasterizing its 
IUCN range map to a resolution of 5 arc-minutes and taking each raster 
cell that falls inside of the range of the species as a presence record.

We retrieved pseudo-absences from an area outside the 
range maps, but potentially within reach of the species (Elith & 
Leathwick, 2009; Phillips et al., 2009). For mammals and amphibians, 
we used the terrestrial biomes encompassing the species' ranges to 
sample pseudo-absences (Vences & Köhler, 2008). For freshwater fish, 
we used the catchments encompassing the ranges (Berra, 2001). The 
terrestrial biomes map was derived from the Terrestrial Ecoregions 
of the World map (Olson et al., 2001). The catchments map was con-
structed by combining the hydrography of Hydrosheds and Hydro1k 
at 30 arc-seconds and derived using the “Basin” function in ArcGIS, 
with a total of 152,739 catchments (Barbarossa et al., 2018). We ras-
terized the biome and catchment maps at a 5 arc-minutes resolution 
to match the spatial resolution of the rasterized species ranges. For 
each species, we then randomly selected an initial set of maximum 
100,000 pseudo-absence raster cells outside the range of that species 
but within the surrounding biomes or catchments.

Next, we split the species data into training and test data. We 
created two test datasets for each species, that is, a cross-valida-
tion set and a spatially independent set. For the cross-validation set, 
we randomly took 80% of the data for model training and used the 
remaining 20% for model testing, without considering the spatial 
structure of the data. To create the spatially independent test set, 
we sorted the biomes (for mammals and amphibians) or catchments 
(for fish) based on the number of presence and pseudo-absence 
points in the area. The records in the biomes or catchments were 
then alternately assigned to the training or test set, starting with 
the training set to ensure that the training set would have the larg-
est number of records, resulting in at least half of the species data 
assigned to the training data set. We then selected species for which 
both the training and test set included at least 100 points in the spe-
cies range and 10,000 pseudo-absences. From this list of species, we 
randomly selected 100 species from each taxonomic group for our 
analysis. A list of species is provided in Table S1.

2.2 | Predictors, modeling techniques, and pseudo-
absence sets

2.2.1 | Predictors

We retrieved the climate data for fitting the bioclimatic envelope 
models from the global 5 arc-minutes resolution Worldclim 1.4 set 

(Hijmans et al., 2005). The Worldclim dataset contains 19 bioclimatic 
variables that represent aspects of temperature and precipitation 
that are considered particularly relevant for species and ecosystems. 
From this dataset we compiled five different sets of predictors. The 
larger the set of predictor variables, the more likely that it includes 
ecologically meaningful variables for the species of concern, yet at 
the expense of an increased risk of model overfitting and spurious 
relationships (Barbet-Massin & Jetz, 2014; Merow et al., 2014). We 
defined four generic predictor sets consisting of an increasing num-
ber of variables and a fifth species-specific set of nonredundant vari-
ables specific to each species, as follows:

1.	 A predictor set consisting of two variables representing mean 
climate, that is, annual mean temperature and annual precip-
itation (bio1 and bio12).

2.	 A predictor set consisting of four variables, representing mean 
climate and seasonality, that is, annual mean temperature and an-
nual precipitation and the seasonality of temperature and precipi-
tation (bio1, bio4, bio12 and bio15).

3.	 A set of nonredundant bioclimatic variables identified based on 
multicollinearity within the entire dataset (i.e., global extent). To 
that end, we calculated variance inflation factors (VIFs) using the 
“vifstep” function in R package “usdm” (Naimi et  al.,  2014). We 
excluded a variable if its VIF value was above 10, starting with 
the variable with the highest value (Duque-Lazo et al., 2016; Zuur 
et al., 2010). This resulted in the following 10 remaining predic-
tors: bio2, bio3, bio4, bio8, bio9, bio13, bio14, bio15, bio18 and 
bio19.

4.	 A predictor set consisting of all 19 bioclimatic predictors, reflect-
ing the strategy of including a broad set of possible bioclimatic 
predictor variables and relying on the modeling technique to 
identify relevant variables or penalize models with collinear ones 
(Brun et al., 2019; Dormann et al., 2013).

5.	 A species-specific set of nonredundant variables, identified by 
excluding collinear variables based on a variance inflation factor 
(VIF) larger than 10 calculated based on the input data specific to 
each individual species. We calculated the VIF values according 
to the approach as explained for predictor set 3. The number of 
remaining variables for each species is given in Table S1.

2.2.2 | Modeling techniques

We used seven modeling techniques to fit the bioclimatic models, 
including one classification method (Classification Tree Analysis, 
CTA), three regression techniques (Generalized Linear Model, 
GLM; Generalized Additive Model, GAM; Multivariate Adaptive 
Regression Splines, MARS) and three machine-learning techniques 
(Generalized Boosted Model, GBM; Random Forest, RF; Maximum 
Entropy, MaxEnt). These techniques are commonly used in biocli-
matic envelope modelling (Araújo et al., 2005; Bahn & McGill, 2013; 
Barbet-Massin & Jetz,  2014; Beaumont et  al.,  2016; Jeschke & 
Strayer,  2008). Although various studies already indicated that 
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some of these techniques perform better than others (Araújo 
et  al.,  2005; Bahn & McGill,  2013; Benito et  al.,  2013; Guisan 
et al., 2007; Heikkinen et al., 2012; Rapacciuolo et al., 2012; Ruiz-
Navarro et  al.,  2016), this was typically tested in cross-validation, 
and their transferability in space has not yet been extensively tested. 
Besides using the individual techniques, we evaluated also an en-
semble model consisting of the average of the fitted models across 
the seven techniques (Araújo & New, 2007). We selected individual 
models only if their true skill statistic (TSS) value was higher than 0.7, 
and we weighted the models according to their TSS value (Marmion 
et al., 2009).

2.2.3 | Pseudo-absences

We selected three sets of pseudo-absences from the full set 
of pseudo-absences available in the training data set. The first 
pseudo-absence set consisted of 10,000 randomly selected 
pseudo-absences. For the second set, 1,000 pseudo-absences 
were randomly selected. For the last set, the number of selected 
pseudo-absences was equal to the number of presences avail-
able for model fitting (i.e., in the training dataset). These sets 
were selected based on recommendations regarding the number 
of pseudo-absences to be used for different modeling techniques 
(Barbet-Massin et al., 2012). We applied equal weighting of pres-
ences and pseudo-absences in model fitting, as recommended by 
Barbet-Massin et al. (2012).

2.2.4 | Model fitting and evaluation

We fitted the models using the “biomod2” package in R (Thuiller 
et al., 2016), which comprises the most commonly used techniques 
in species distribution modeling. We kept the default values of tun-
ing and fitting parameters for each modeling technique, as given in 
the biomod2 package. The combination of five predictor sets, seven 
modeling techniques and one ensemble, and three pseudo-absence 
sets resulted in 120 fitted models for each species, hence a total 
of 36,000 models for all 300 species. We evaluated the bioclimatic 
envelope models based on their transferability to the spatially in-
dependent test set. For comparison, we also performed cross-
validation within the training dataset that includes all biomes and 
catchments. We quantified model performance based on the TSS 
value (Allouche et al., 2006).

To assess the sensitivity of model performance to the number 
of predictors, modeling technique and pseudo-absences selection, 
we fitted linear mixed effects models relating TSS values to these 
modeling choices using the “lmer” function from the “lme4” package 
in R (Bates et al., 2015). We fitted a separate model per taxonomic 
group and per evaluation method (spatially independent testing 
or cross-validation) relating the TSS values to predictor set (fac-
tor with five levels), modeling technique (factor with eight levels), 
and pseudo-absences set (factor with three levels), including their 

interactions. We included species as a random effect (intercept) 
in order to account for having repeated measures within species 
(i.e., the 120 combinations of predictor set, modeling techniques 
and pseudo-absences set). Because model performance and trans-
ferability may depend on the degree of similarity in environmental 
conditions between training and extrapolation (Qiao et al., 2019), 
we added a measure of environmental niche overlap between the 
training and testing data as an additional fixed effect. To that end, 
we calculated the overlap in the environmental space between 
the training and testing datasets based on the predictor set with 
four bioclimatic variables, measured by the Jaccard similarity index 
(Jost, 2006) with the R package hypervolume (Blonder et al., 2014). 
As the overlap estimate can be inflated with the addition of more 
dimension (Blonder et  al.,  2014), we used the overlap values de-
rived from the predictor set containing four variables with normal-
ized values. Per taxonomic group and validation method (spatially 
independent versus cross-validation), we selected the best model 
based on the lowest Akaike information criterion (AIC). To quantify 
the contribution of each random and fixed effect to the variability 
in model performance, we retrieved the percentage of explained 
variance using the “r2beta” function with the standardized gen-
eralized variance approach from the “r2glmm” package (Jaeger 
et al., 2017).

3  | RESULTS

3.1 | Variation in model performance

TSS values derived with spatially independent data ranged from 
0.35 to 0.81 for mammals, from 0.44 to 0.92 for amphibians, and 
from 0.11 to 0.47 for fish (Figure 1). TSS values obtained in spa-
tially independent testing were consistently lower than those 
obtained in cross-validation, which ranged from 0.68 to 1 for 
mammals, from 0.69 to 1 for amphibians, and from 0.29 to 0.97 
for fish. We found the lowest average TSS values for fish, while 
amphibians and mammals had higher values. In general, a species-
specific set of nonredundant variables resulted in the highest 
model performance. In addition, model performance generally 
increased with the number of predictors, whereby the largest 
increase in model performance occurred between the sets with 
two and four predictors. Models based on the full set of 19 bio-
climatic predictors performed no or only marginally better than 
models based on a nonredundant set of 10 predictors. On aver-
age, the ensemble model performed best in the spatially inde-
pendent testing, while in the cross-validation the Random Forest 
technique resulted in the highest predictive power (Figures 1 and 
2). The MaxEnt models had the lowest performance on average 
both in the spatially independent testing and the cross-validation 
(Figure 2), which was most evident for the spatially independent 
evaluation of the mammal species models (Figure 1). There were 
no evident differences in model performance between the three 
pseudo-absence sets (Figures S1 and S2).
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3.2 | Sensitivity to predictor, modeling 
technique, and pseudo-absences selection

Model performance was mostly related to the choice of predictors 
set, both for spatially independent validation and cross-validation 
(Figure 3). The only exception was the performance of the fish mod-
els in spatially independent validation, which was mostly related to 
the overlap between the training and testing data (niche overlap). 
The choice of modeling technique was the second most important 
factor explaining variation in model performance, in interaction with 
the predictor set, or on its own. The number of pseudo-absences ex-
plained only a very small part of the variation in model performance. 
This ranking did not change when we excluded the smallest and larg-
est predictor sets (Figure S3).

4  | DISCUSSION

In this study, we evaluated the sensitivity of bioclimatic envelope 
model performance to choices in predictor set, modeling technique, 

and number of pseudo-absences. Based on spatially independent 
testing, that is, the preferred testing strategy for bioclimatic en-
velope models (Araújo et al., 2005; Bahn & McGill, 2013; Roberts 
et al., 2017), we found that the highest model performance is ob-
tained if the selection of bioclimatic predictors is tailored to the 
species of concern (Figure 1). In addition, we found that model per-
formance generally improves by increasing the number of predictors 
(Figure 1). In part, this may reflect a mere effect of chance, as each 
predictor (even a random one) may explain a bit of additional varia-
tion just by chance (Fourcade et al., 2018). However, we also found 
that the relative increase in model performance became smaller or 
even declined slightly when the full set with 19 predictors was used 
rather than more parsimonious predictor sets with 10 variables. Our 
findings thus indicate that the set of 19 predictors can be profitably 
reduced to a (preferably species-specific) nonredundant set based 
on an evaluation of multicollinearity. This would reduce the risk of 
erroneous model inference or projections arising from collinearity 
issues, due to the inflated regression parameters or models being 
projected to variables with different levels of collinearity (Dormann 
et al., 2013).

F I G U R E  1   Mean TSS values for 
each combination of predictor set 
and modeling technique for spatially 
independent testing (panels a–c) and 
cross-validation (d–f). The results are 
given for all three pseudo-absence (PA) 
datasets, including 1,000 PA (panels a 
and d), 10,000 PA (panels b and e), and a 
number equal to the number presences 
(P = PA, panels c and f). Predictor sets 
include two variables (p2), four variables 
(p4), a nonredundant set of 10 variables 
(p10), all 19 bioclimatic variables (p19), 
and species-specific nonredundant 
sets (pSp). CTA = Classification Tree 
Analysis; GAM = Generalized Additive 
Model; GBM = Generalized Boosted 
Model; GLM = Generalized Linear Model; 
MARS = Multivariate Adaptive Regression 
Splines; MaxEnt = Maximum Entropy; 
RF = Random Forest. Mean TSS values 
and corresponding 5 and 95 percentiles 
are given in Tables S1 and S3
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Our results further indicate that an ensemble model is the 
preferred option for bioclimatic envelope modeling, as the ensem-
ble generally performed best based on the spatially independent 
testing. Although individual modeling techniques may outperform 
the ensemble model in some cases, overall the ensemble model 
demonstrated a higher and a more consistent performance com-
pared to the individual techniques (Figure  2). This is in line with 
other studies that demonstrated that model ensembles may out-
perform or give more robust estimates compared to the individ-
ual modeling techniques that are used to build a consensus model 
(Araújo & New, 2007; Buisson et al., 2010; Crimmins et al., 2013; 
Marmion et al., 2009).

The Random Forest models generally performed best in 
cross-validation but showed a clear drop in performance when evalu-
ated based on spatially independent data, both in absolute terms and 
compared to other modeling techniques (Figure 2, Table S2). High 
performance of RF and other more complex modeling techniques in 
cross-validation is commonly observed, as more complex techniques 
tend to fit the relationship closely to the data (Merow et al., 2014; 
Randin et al., 2006), but perform poorly when models are transferred 
into novel spatial or temporal contexts. Similar results for RF were 
shown in a study that compared random data partitioning with using 
temporally independent data for model evaluation, where RF per-
formed well when assessed on internal cross-validation, yet poorly 
when assessed with an independent dataset (Crimmins et al., 2013).

We found that MaxEnt models often performed relatively poorly 
(Figures 1 and 2), despite the fact that MaxEnt is a widely used mod-
eling technique for SDMs (Warren & Seifert, 2011). Applying back-
ground data (i.e., sampled from the entire study area) rather than 
pseudo-absences (i.e., sampled outside of the species' presence 
ranges), as recommended for MaxEnt (Phillips et al., 2006), did not 
result in an improvement in the performance of the MaxEnt models 
(Figure S4). Our findings are in line with previous studies indicating 
that MaxEnt is prone to overfitting and does not perform well when 
a model is transferred to a different spatial or temporal context 
(Peterson et al., 2007; Radosavljevic & Anderson, 2014). However, 
the performance of the MaxEnt models clearly increased when fit-
ted based on the species-specific input datasets (Figure 1), underlin-
ing the need to tune MaxEnt models to the species of concern (Elith 
et al., 2011; Radosavljevic & Anderson, 2014).

We found that the number of pseudo-absences did not have a 
strong effect on model performance, in particular when compared 
with the effect of the predictor set. Although it has been recom-
mended to tailor the number of pseudo-absences to the technique 
of choice (Barbet-Massin et al., 2012), our results indicate only a 
weak interactive effect of the number of pseudo-absences and 
the modeling technique for mammals (Figure 3). Only for the am-
phibian models, there was a small effect of the number of pseu-
do-absence on its own. Our results thus suggest that selecting a 
fixed number of pseudo-absences for all species is a defensible 

F I G U R E  2   Modeling technique ranking based on TSS values, shown as distribution of ranks across the species, pseudo-absence sets and 
predictor sets. Modeling technique rankings are given for Mammals (panels a and d), Amphibians (panels a and e), and Fish (panels c and f), 
both in spatially independent testing (panels a-c) and cross-validation (panels d-f). Model ranking of 1 is the highest ranked model (highest 
TSS value), while 8 is the lowest ranked model. Boxplots show median rank values, quartiles, and 1.5 times of the interquartile distance of 
the ranks; diamonds represent means. CTA = Classification Tree Analysis; GAM = Generalized Additive Model; GBM = Generalized Boosted 
Model; GLM = Generalized Linear Model; MARS = Multivariate Adaptive Regression Splines; MaxEnt = Maximum Entropy; RF = Random 
Forest

(a) (b) (c)

(d) (e) (f)
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choice (Bucklin et  al.,  2015; Petitpierre et  al.,  2017; Richmond 
et al., 2010).

Differences in model performance among the taxonomic groups 
could result from differences in the background regions from which 
the pseudo-absences were selected. For mammals and amphibians 
the background region consisted of biomes encompassing the spe-
cies' range, whereas for fish the background region was restricted 
to the catchments in which the species occurs. The smaller spatial 
extent of catchments and resulting smaller background area from 
which values are sampled might explain the lower mean TSS for fish, 
as a more restricted background region (i.e., smaller environmental 
gradients) typically reduces model performance (Leroy et al., 2018; 
Lobo et al., 2008; VanDerWal et al., 2009). The smaller background 
region for fish species may also explain the larger importance of 
environmental niche overlap between training and testing data 
in explaining the variation in TSS (Figure  3). Smaller spatial units 
to delineate spatially independent training and testing datasets 
may result in a larger variation in niche overlap between different 
species (Figure S5) hence a larger influence on variation in model 
performance.

The relatively low model performance for freshwater fish may 
also reflect that we fitted the models based on bioclimatic pre-
dictors representing air temperature and precipitation, whereas 
the distributions of freshwater fish is also influenced by other fac-
tors (Barbarossa et  al.,  2020; Knouft & Ficklin,  2017; McGarvey 
et al., 2018). However, two key factors underlying the occurrence 

of freshwater fish (i.e., water temperature and streamflow) depend 
on air temperature and precipitation (Barbarossa et  al.,  2018; 
Knouft & Ficklin,  2017), and it has indeed been demonstrated 
that bioclimatic variables can be effectively used as proxies for 
macro-scale modeling of the distribution of freshwater spe-
cies (Domisch et  al.,  2015; Frederico et  al.,  2014; McGarvey 
et al., 2018).

In conclusion, our study shows a clear impact of predictor and 
modeling technique selection on the performance of bioclimatic en-
velope models. Our findings indicate that bioclimatic envelope mod-
els are preferably built based on a species-specific, nonredundant 
set of predictor variables, and an ensemble modeling approach. A 
pragmatic choice can be made for the number of pseudo-absences, 
for example, based on runtime, as the number of pseudo-absences 
appeared to be less influential on model performance. In contrast 
to the results of the spatially independent testing, cross-validation 
pointed toward Random Forest as the preferred modeling tech-
nique. This finding highlights that cross-validation does not nec-
essarily identify the best combination of modeling technique and 
predictor set to establish a predictive model, as displayed by a drop 
in performance when comparing cross-validation and spatially inde-
pendent validation.
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