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Abstract This article discusses the algorithm to mea-

sure electrocardiogram (ECG) and respiration simul-

taneously and to have the diagnostic potentiality for

sleep apnoea from ECG recordings. The algorithm is

composed by the combination with the three particular

scale transform of aj(t), uj(t), oj(aj) and the statistical

Fourier transform (SFT). Time and magnitude scale

transforms of aj(t), uj(t) change the source into the

periodic signal and sj = oj(aj) confines its harmonics into

a few instantaneous components at sj being a common

instant on two scales between t and sj. As a result, the

multi-modulating source is decomposed by the SFT and

is reconstructed into ECG, respiration and the other

signals by inverse transform. The algorithm is expected

to get the partial ventilation and the heart rate vari-

ability from scale transforms among aj(t), aj+1(t) and

uj+1(t) joining with each modulation. The algorithm

has a high potentiality of the clinical checkup for the

diagnosis of sleep apnoea from ECG recordings.

Keywords Fourier transform � Scale transform �
Electrocardiogram � Respiratory waveform �Heart rate

variability

1 Introduction

The electrocardiogram (ECG) contains well-known

PQRST(U) pattern. Its morphology has been exten-

sively studied since the technique of recording was

introduced in the beginning of the twentieth century.

The use of computers for ECG recording enabled

studies of dynamic properties of the ECG. In particu-

lar, two important characteristics have been revealed:

amplitude and frequency modulation.

The modulation of the cardiac cycle is extensively

studied based on the signal that is generated from

intervals between consecutives R-peaks, known as

heart rate variability (HRV). Numerous approaches

have been proposed and the signal have been decom-

posed in various ways—analyzing their spectral prop-

erties by frequency and time-frequency methods such

as Fourier transform [2], autoregressive spectral esti-

mation [11], wavelet transform [9, 17], or their scaling

properties [6].

The amplitude characteristics and amplitude mod-

ulation received less attention, especially because the

notion of the ECG amplitude is ambiguous: the heart

as a source of the signal is moving and the signal is

collected from the surface of the body that is moving as

well. In addition, it is usually recorded as a 2-D pro-

jection. However, it has long been recognized that one

of the sources of the amplitude modulation—the

respiratory related movement of the thorax can be

usefully used to extract the information about the

respiration.

The influence of respiration on recording cardiac

potentials was reported as early as in 1967; Flaherty et

al. [5] and Moody et al. [13] were probably the first to

discuss the possibility to derive the respiratory signal

from the ECG. Since then several algorithms were

proposed to reconstruct respiration by demodulating

the ECG signal (e.g. [1, 4, 8, 10]).

The ECG-derived respiration signal either based on

changes in heart rate or based on direct effect of res-
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piration on the ECG waveform has been particularly

used in studies of obstructive sleep apnoea [3, 16].

The problem to reconstruct waveform from the

discrete Fourier analysis is that the biological signal has

complicated properties; being non-stationary wave,

including random noise and having interactive com-

ponents. However, though people rarely notice, the

essential problem is that there is no way to gather

impartial and statistical samples. That is why samples

from an unique sampling frequency are biased for

spectral analysis even if fine sampling.

The purpose of this study is to introduce an algo-

rithm to classify the multi-modulating waveforms on

ECG signals. The algorithm is composed by the three

particular scale transforms and the statistical Fourier

transform (SFT) with impartial and statistical samples

[12]. As a result, the multi-modulating source is

decomposed by the SFT and is reconstructed into

ECG, respiration and the other signals simultaneously

by particular transformations.

2 Algorithm

The principle of this algorithm is the selection of three

particular scale transforms. Two scales convert modu-

lating waveforms into the periodic signal and the other

converts the periodic components into a few terms.

The role of the SFT is to hold sample information for

any transforms.

2.1 Scale transforms aj(t), uj(t) and oj(t) on

modulating signal

Since a source sample at any instant tk has the mutual

phase relationship of instantaneous components on the

SFT, any scale transform including permutation ex-

presses the same sample as own instantaneous com-

ponents by each scale (Appendix 1).

Three scale transforms aj(t), uj(t), oj(t) are adopted

to the periodicity and to the reduction of Fourier

components.

aj = aj(t) is a scale to match time intervals in the

standard’s intervals and is called adaptive scale and

uj = uj(sj) is a scale to match the magnitude spans in

the standard’s magnitudes. Those scales convert the

source x¢(t) into the standard xj(t) as xj(t) = x¢(aj)/uj(aj).

aj(t) and uj(aj), then, are defined as a join of each akj(t)

and ukj(akj) (k = 1,..., kj�) when the standard repeats kj

times in a window Tj.

oj = oj(t), called inherent scale, is a timescale to

convert the standard xj(t) into the Fourier series of rj

components passing through 2rj poles of xj(t). The scale

transform sj(t) is defined as the composite transform as

follows (Appendix 2):

sjðtÞ ¼ ojðajðtÞÞ ð1Þ

The transformed signal (x¢(sj) – ej(sj))/uj(sj) occu-

pies rj instantaneous components of the skipped ikjth

term in a window Tjincluding kj modulations. While,

instantaneous components of the ej(sj)/uj(sj) scatters

into broad components from the 1st to the nth terms.

As a result, (x¢(sj) – ej(sj))/uj(sj) fits the scales sj, uj and

ej(sj)/uj(sj) unfits scales sj, uj, and then, the source x¢(t)

is decomposed into two class modulations of x¢(sj) –

ej(sj) and ej(sj) (Appendix 3).

That is, x¢(sj) – ej(sj) is extracted by vj(sj) = Suj(sj)

hij(sj) from the ikjth (i = 1,.., rj) components and ej(sj)

is extracted by the other ej(sj) = Suj(sj)hij(sj) except the

ikjth components when n instantaneous components of

x¢(sj)/uj(sj) are defined as hij(sj). The source x¢(t),

therefore, is decomposed into x¢(t) – ej(t) and ej(t) by

inverse scale transform t = t(sj) under an adequate

uj(sj).

The magnitude scale ukj(sj) is defined as an expres-

sion of the magnitude pattern in each window Tkj when

the signals vj(sj)(=x¢(sj) – ej(sj)), ej(sj) and uj(sj) are

expressed by {vkj(sj)}k, {ekj(sj)}k and {ukj(sj)}k (k = 1,..,

kj), and each changes its waveform independently.

Especially, vj(sj) is expressed by a constant value

uj(sj) = ukj in each window Tkj when its magnitude

modulation takes a similar figure with the standard

(Appendix 4).

2.2 Iterative scale classification of modulating

signals

The timescale transform of the residual ej(t) is defined

as sj+1(t) = oj+1(aj+1(t)) when several waves of {ekj(t)/

ukj+1(t)}k in ej(t)/uj+1(t) reappears within a window

Tj+1(Tj+1 £ Tj). ej(t) is analyzed as the j + 1th modula-

tion with the iterative algorithm as ej(t) – ej+1(t) and

ej+1(t) under aj+1(t), oj+1(aj+1(t)), uj+1(t) and xj+1(t)

(Appendix 2).

When x¢(t) is m classes of Fourier series with terms

of r1, r2,..., rm (n = r1 + r2 + � � � + rm), it expresses Eq.

2.

x0ðtÞ ¼
X

ujðsjðtÞÞvjðsjðtÞÞ þ emðtÞ ðj ¼ 1; :::;mÞ ð2Þ

In Eq. 2, t = t(sj) is the inverse scale transform of the

jth scale sj to scale t, vj(t) is a Fourier series of the jth

class modulation, and em(t) is the mth residual signal.
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Equation 2 shows that x¢(t) is reconstructed completely

by periodic Fourier series vj(sj) on scale sj (j = 1,2,..., m).

2.3 Quantity of information on the modulating

signal

The relation between the quantity of information (3)

and the modulation (4) is derived from formula (2).

Since the probability of components on the jth class

modulation is to be pj = rj/n, the probability to

encounter x¢(t) with m modulations is p(r1,r2,...,

rm) = p1
r1, p2

r2,..., pm
rm which relates to the geometrical

mean
ffiffiffi
pn
p

r1; r2; . . . ; rmð Þ. Equation is as follows

(Appendix 5).

ffiffiffi
pn
p

(r1,r2,:::rm) =
Y

p
pj
j ¼ 1=m ð3Þ

It clearly shows that the quantity of information on

multi-modulating signal is m itself.

When hij(sj) is the ith instantaneous Fourier com-

ponent of standard xj(sj) in scale sj and hij(t) is its

modulating component in scale t, the morphological

relation is given by the following Formula (4):

hijðtÞ ¼ ujðsjÞhijðsjÞ@sj=@t ð4Þ

In Eq. 4, ¶sj/¶t is the Jacobian. Therefore, formula

(4) shows that the modulation of every component at

scale t is expressed by scale’s modulations on its mag-

nitude uj(sj) and its time sj(t) = oj(a(t)). Especially, the

adaptive scale aj(t) describes composite transform

aj(t) = c1(c2(� � �cn(t))) and that of exchanged orders

aj(t) = cn(� � �c2 (c1 (t))), so the sth scale cs(t) will ex-

press its specific modulation from the standard such as

modulations of PQ, QRS, QT and RR.

3 Materials and methods

The analysis of scale classification of the three modu-

lating signals on V4 lead was carried out by using the

statistical Fourier analysis with maximum terms of 256

with A/D converted 16-bit samples of the sampling

frequency 20 kHz over successive 50 s. To gather

independent samples with 256 terms, samples needed

to be accumulated by the high speed 20 kHz of A/D

converter with a large dynamic range of 16 bit to avoid

the deform of a tiny respiratory signal (Fig. 1).

The ECG standard xj(t) was selected from the

source x¢(t) without breathing. On the other hand, x¢(t)

with natural breathing and the respiratory flow _VðtÞ are

recorded simultaneously by using Number 3 Fleisch

pneumotachograph. Both the ECG and the respiratory

scale transforms were the same as in Fig. 2a, b of

Appendix 2. The ECG x¢(t) – ej(t) and its baseline

wander ej(t) were analyzed when uj(sj) = 1 and the

respiratory standard xj+1(t) was selected from station-

ary sequences of ej(t) in 16 respiratory cycle. (ej(sj+1) –

ej+1(sj+1))/uj+1(sj+1) and ej+1(sj+1)/uj+1(sj+1) were ana-

lyzed when uj+1(sj) of the formula (5) in Appendix 4

and lung ventilation Vj+1(t) and its residual ej+1(t) were

determined.

4 Results

Signals corresponding to every process on the scale

classification of m = 2 under constant magnitude scale

of uj = 1 are illustrated in Fig. 3 with five cardiac

periods. That is, intervals among specific points in

source x¢(t) in Fig. 3a are transformed into the same

intervals of the standard signal with the adaptive scale

Fig. 1 Synchronous
frequency samplings on scale t
and s
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aj(t) to x¢(aj(t)) of Fig. 3b and with the inherent scale

sj(t) to x¢(oj(aj(t))) of Fig. 3c. The transformed signal

x¢(sj) is decomposed into statistical Fourier compo-

nents on a fundamental period of 53 cardiac intervals.

The transformed signal xj¢(sj) in Fig. 3d is a recon-

structed signal from the 53rd, 106th, 159th and 212th

components, and its residual ej(sj) in Fig. 3e from all

other components. The extracted ECG xj¢(t) in Fig. 3f

and the base line wander ej(t) in Fig. 3g are the inverse

scale-transformed signals from scale sj to scale t. When

tiny-leak signals on the ej(t) synchronized with intervals

of QT are replaced with linear trends, the figure of

pattern ej(t) takes that of the lung ventilation in Fig. 3i.

The smoothing signal, Vj(t) in Fig. 3h is a filtered signal

of ej(t) with low-pass filter (LPF) under 30 terms

(0.6 Hz). Vj(t) is illustrated with enlarged four times.

The signal V(t) in Fig. 3i is the lung ventilation curve

which is an integral signal of the direct measurement of

the respiratory flow _VðtÞ:
Any differences of P ~ U waveforms between the

source x¢(t) and reconstructed ECG x¢j(t) bear getting

information, and also the differences between ventila-

tion V(t) and baseline wander Vj(t) are small when

frequencies lower than breathing are neglected. x¢j(t)

provides time-interval information on Minnesota codes

better than that of x¢(t) clearly in visual.

Correlation coefficients q between the signal Vj(t)

and V(t) are calculated by each ventilation with scatter

plots in Fig. 4a, and are classified by P ~ U waves of 53

cardiac signals in Table 1a and by respiratory phases of

16 ventilations in Table 1b. Total q takes even values

(q G 0.82) and has less interference between P ~ U

waves in cardiac cycles. However, it takes low values

(q £ 0.5) at the transient regions of I, III between the

inspiration and the expiration corresponding to loops

in Fig. 4a. The inspiration and the expiration except

transient regions are statistically dominant at higher

value (q G 0.95). It is clear that the scale classification

extracts the electrical activity of the heart with constant

magnitude scale of uj(sj) = 1 in hole window of Tj. The

extracted baseline wander is constructed with lung

ventilation and other biological information.

The magnitude scale transform is applied to the

scale classification of the base line wander Vj(t) with a

Fig. 2 ECG and respiratory
standard waves and specific
points on scale t. a Cardiac
standard, b respiratory
standard, and c detecting dots
on a part of the source
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respiratory standard in Fig. 2b. Scale classification of

m = 4 is illustrated in Fig. 5, the source x¢(t) in Fig. 5a,

the extracted ECG xj(t) in Fig. 5b, the extracted

respiratory signal Vj+1(t) in Fig. 5c, the residual ej+1(t)

in Fig. 5d, the leak ECG e(t) over 0.6 Hz of ej(t) in

Fig. 5e and the ECG of xj(t) + e(t) in Fig. 5f. The signal

V(t) in Fig. 5g is 16 measured respiratory ventilations.

The magnitude scale Duj+1(t) is illustrated in Fig. 5h.

Vj+1(t) and ej+1(t) are displayed in the reverse because

the extracted respiratory waveform is a visually re-

versed V(t). ej+1(t) is similar to base-line trends of V(t)

which relate to the thoracic gas volume (TGV).

The scatter plots of 15 lung ventilations between

Vj+1(t) and V(t) take the similar pattern as illustrated in

Fig. 3 Classified process of
modulating signal of the
algorithm

Fig. 4 X–Y loop among
modulating Vj(t), Vj+1(t) and
V(t)
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Fig. 4b. Correlation coefficients q in Table 1c takes

higher value than the others though transient regions

change I, III into II, IV.

The frequency distributions of the amplitude com-

ponents on |V(f)|, |Vj+1(f)|, |ej+1(f)| and that of phase

shifts Du(f) between V(f) and Vj+1(f) are illustrated in

Fig. 6. On frequency ranges from 0.2 to 0.5 Hz,

amplitude distribution in |V(f)| and |Vj+1(f)| takes

similar pattern and those of phase shifts are invariant

near 0�. Amplitude distribution in |ej+1(f)| has not only

the lower frequency components under 0.06 Hz cor-

responding to the trends of TGV but also the leak

components of the lung ventilation from 0.25 to 0.5 Hz.

The components of |ej+1(f)|, moreover, has the har-

monics among 0.04, 0.1, 0.18 and 0.28 Hz though those

harmonics disappear in |V(f)| and |Vj+1(f)| at least.

As a result, the time and magnitude scale is effective

to classify modulating signals from the higher

Table 1 Correlation coefficients qi among Vj(t), Vj+1(t) and V(t) on cardiac and respiratory stages

Cardiac stages PQ QRS ST-T Base line Total

(a) Correlation coefficients qi between Vj(t) and V(t) on ECG stages
qi 0.8328 0.8243 0.8149 0.8151 0.8244
Number of samples 13,566 12,690 33,018 43,553 102,827

Respiratory stages I II III VI V Total

(b) Correlation coefficients qi between Vj(t) and V(t) on respiratory stages
qi 0.3990 0.9788 0.5772 0.9970 0.9546 0.7273
Number of samples 25,747 25,210 25,928 14,574 11,558 103,017

(c) Correlation coefficients qi between Vj+1(t) and V(t) on respiratory stages
qi 0.9923 0.6589 0.9943 0.8032 0.7305 0.91648
Number of samples 25,286 22,816 21,163 15,155 18,077 102,497

I inspirations before midpoints, II inspirations after midpoints, III expirations before midpoints, VI expirations after midpoints, V
expirations after inflection points

Fig. 5 Scale classification of
the four modulating signals in
an electro-cardiac signal

246 Med Bio Eng Comput (2007) 45:241–250

123



frequency Vj+1(t) to the lower frequency ej+1(t) because

a residual ej+1(t) has less interference of the higher

Vj+1(t) and successive sequential ej+1(t) will supply the

signal for detecting other lower modulation.

5 Discussion and conclusion

A discrepancy between time domain and frequency

domain analysis happens commonly by using biased

samplings for discrete signal processing in various way

such as Hilbert transform [2] and wavelet analysis [9]

relating with an unique sampling frequency. Moreover,

the mathematical concepts of one-to-one correspon-

dence, n unknown amplitudes and phases are derived

from 2n samples, hinders to orientate the statistics in

the signal processing.

The SFT, however, has no contradiction between

Fourier analysis and the statistics which resolute com-

ponents with the same signal-to-nose ratio (SNR) for

any signal decreasing amplitude components with or-

der 1/f such as ECG signal, which is unsatisfied in the

autoregressive spectral estimation [11]. The SFT com-

ponent, moreover, is given independently by a time

trace of instantaneous components at each instant as

shown in Appendix 1. That is, its amplitude and phase

are not calculated by the inner products between the

source and trigonometric bases but by the extracted

traces of instantaneous sin-wave themselves [12]. The

concepts of signal arrangements at series {tk} is another

thing on the SFT because the replacement between ti
and tj needs the replacements of all the synchronous

frequency samplings between ti and tj to hold the same

instantaneous components. The summation of

replacements, then, is about ðn� 1Þ! ðn� 2Þ! � � � 1. In

other words, the SFT supplies a signal ensemble

arranging samples of the series {tk}. In this study, dis-

crete samples from A/D converter of 20 kHz satisfy the

independency as shown in Appendix 6. As a result, the

random noise including a signal is not analyzed as a

white noise but as inherent components characterizing

arrangements. Therefore, the reconstructed waveform

of a baseline wander holds a prototype even if it in-

cludes many random noises.

The necessary condition of the spectral analysis

known as Nyquist’s condition [14, 15] becomes precise

on the SFT as shown in Appendix 3, which confirms its

condition statistically. The potentiality to scatter the

aliased components impartially discriminates the

waveforms under the unsatisfied Nyquist’s condition.

In this algorithm, while the inherent scale transform

converges to the standard xj(sj) with four skipping

components, others ej(sj), either continuous or random,

disperse components into 256 terms.

Since the scale-transformed samples on the SFT are

gathered from a whole window at any instant, those

samples reflect its scale transform better than any local

one. The random and leak signal on the extracted ECG

xj¢(t) are reduced into the tiny level under a stable

behavior of the random noise. The 256 terms is enough

to analyze scale-transformed signal in a window under

53 cardiac cycles because transformed components

with the ranges, 8 £ kj £ 53, takes almost the same

figures. The high-resolution analysis, therefore, is

accomplished by the relative high SNR from those

instantaneous components.

The problem on the scale transforms is to be ade-

quate scales, not to be expressing the true biological

modulation. aj+1(t) is, however, selected a traditional

scale for non-stationary sequences in each respiratory

cycle which carry information stored in Fourier phases

as already indicated in [6] and aj(t) is selected from

cardiac cycles without breathing in addition to the non-

stationary sequences. As a result, oj(aj) and oj+1(aj+1)

Fig. 6 Frequency
distributions of the
measured V(f) and the
extracted Vj+1(f), ej+1(f)
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make those mutual relationship of phases more simple

relations. Taking own standard characterized with

number of poles is also reasonable to determine the

waveform reconstruction and to discriminate the own

HRV. Moreover, the lost waveform is scattered into

the other components without losing the morphologic

information such as the leak ECG waveform.

It is well known the volume conductivity of the

thorax takes inequality and changes the electro cardiac

potentials on the thorax’s surface with respiratory

movements [1, 5].

In the scale classification of m = 4, it indicates that a

constant magnitude scale ukj = 1 produces unchange-

able heart-activity xj¢(t) so that the signal ej(t) appears

in respiratory modulations from their changes of the

conductivity. It suggests that the standard without

breathing follows the formula (2) of the signal classi-

fication and the source follows the formula (4) which

expresses the modulating standard with Jacobian, ¶sj/

¶t. A composite scale cs(t), therefore, is expected to

express the inherent modulation from the standard

such as PQ, QT and RR. That is, the spectral analysis

of cs(t) on RR provides the distribution of the HRV

without a tachogram which is expressed in other ways

by others [2, 9, 11]. The extracted ECG has the

potentiality to detect R–R modulations of the heart

itself.

The algorithm extracts the lung ventilation curves

{Vj+1(t)}k from V4 lead as changing the thoracic gas

volume [1, 4]. The difference of amplitude distribution

between V(t) and Vj+1(t) from spectral analysis takes

the same pattern around 0.3 Hz [8]. The phase differ-

ence between V(t) and Vj+1(t), however, occurs in the

transient regions between the inspiration and the

expiration which deduce from inadequate respiratory

standards, false respiratory peaks and the gas com-

pression in the thorax [7]. It is effective to determine

specific components, such as harmonics of ej+1(t)

around (0.04, 0.1, 0.18 and 0.28 Hz) in cardiovascular

responses [2, 17].

Information of the partial ventilation is also ex-

pected from other 12 leads [8]. The respiratory Jaco-

bian ¶sj+1/¶t, like that of ECG, has the potentiality to

detect respiratory modulation itself as a part of the

HRV and uj+1(t) is expected to detect the amplitude

modulation such as sighs distribution. The residual

ej+1(t) supplies information of waveforms not only of

the thoracic gas volume but also of the blood flow

relating to cardiovascular responses [2, 11, 17].

It can be concluded that this algorithm reveals the

simultaneous measurements of ECG and respiration.

The comparison with the frequency distribution and

the waveform evaluates new modulations clearly, such

as ukj+1 for detecting changes of the tidal volume (TV)

and for finding TGV and cardiovascular responses.

This contribution of the algorithm indicates diagnostic

potentials on the sleep apnoea from ECG recordings

[16].

6 Appendix 1

Instantaneous Fourier components on the SFT at any

instant tk are derived from samples of the synchronous

frequency samplings from the source, having maximum

components number of n, as illustrated in Fig. 1a.

Those samples at any instant tk are independent of

each other when the tk is given by tk = kTj/s (k = 0,...,

s – 1) in a window Tj for a prime number s of s > 2n.

Although the sampling timing from the transformed

source at scale sj is the same pattern in Fig. 1a, timing

at scale t becomes as illustrated in Fig. 1b. Any source

sample, therefore, is expressed by own components on

each scale independently.

7 Appendix 2

The ECG standard xj(t) and its scale-transformed sig-

nal xj(sj) are illustrated in Fig. 2a and those of the

respiratory xj+1(t) and xj+1(sj+1) are illustrated in

Fig. 2b. xj(sj) is four terms of Fourier series passing

eight poles of xj(t). xj+1(sj+1) is a sin wave passing two

poles of xj+1(t). Inherent scale sj = oj(t) and

sj+1 = oj+1(t) are defined as transforms from xj(t), xj+1(t)

into xj(sj), xj+1(sj).

The detected specific points for the source and the

ECG standard are illustrated in Fig. 2a, c as a dot

curve. These dots indicate start, pole and end of the

P ~ U waves in each cardiac cycle. Specific points of

lung ventilation are the poles of inspiration, expiration,

midpoints and expiratory inflection point in each

respiratory period. The midpoints represent respira-

tory maximum flows and expiratory inflection points

distinguish expirations relating to pleural pressure.

Points are determined to divide time interval of the

specific-points into 6 ~ 16 to approximate true signals.

Both the ECG and the respiratory standard are line

curves of connected points. The adaptive scales aj(t),

aj+1(t) are coordinated by divided points after adjusting

detected specific points to those of the standard. The

scale-transformed signal x¢(sj) and that of the residual

ej(sj) at scales sj, sj+1 are determined from formula (2),
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whereas the scale transforms are sj(t) = oj(aj(t)) and

sj+1(t) = oj+1(aj+1(t)).

8 Appendix 3

The inherent transform oj(t) satisfies the necessary

condition of the SFT analysis because Fourier com-

ponents appear in the skipped ikjth (i = 1,..,rj) terms

under n > rjkj when x¢(sj)/uj(sj) is periodic waves of kj

standard. Contrarily, instantaneous components are

scattering into broadband of 1st ~ nth components

when the source x¢(t) unfits scales sj, uj.

The necessary condition of the SFT analysis is that

the mean mi(tk)(i = n + 1,..., 2n) over the (n + 1)th of

synchronous frequency sampling takes the same value

at any instant tk as mn+1(tk) = mn+2(tk) = � � � = m2n(tk)

which has the same properties with Nyquist’s condi-

tion. Each instantaneous component includes errors of

aliased components under the unsatisfied condition,

but the summation of all the instantaneous components

comes back to a source sample completely at any in-

stant and the SNR of each component is improved with

an adequate n value because the aliased errors are

scattered into n components monotonously than those

of the unique-interval samplings.

9 Appendix 4

The Dukj(=ukj – 1) is given by the following formula (5)

when xk¢(sj) = vkj(sj) + ekj(sj) under ukj(sj) = 1.

Dukj ¼ ðekjðsmxÞ � ekjðsmiÞÞ=ðvkjðsmxÞ � vkjðsmiÞ ð5Þ

vkj(smx) and vkj(smi) are the maximum and minimum

values of vkj(sj) when ukj(smx) = ukj(smin). That is,

ekj(sj) takes ekj(sj) – Dukjvkj(sj) when vkj(sj) changes

(1 + Dukj)vkj(sj) in a window Tkj.

The constant component of each window Tkj is

compensated under the continuous condition with an

end expiratory point at each edge of window Tkj.

10 Appendix 5

The cases of modulations take n!=r1! r2! � � � rm! when

the Fourier components of n = r1, + r2, + � � � + rm are

distributed into m cases. The probability p(r1, r2,..., rm)

to encounter x¢(t) with m modulations is given by

Starling’s formula as below.

pðr1; r2; :::; rmÞ ¼ r1! � r2! � � � rm!=n! ¼ pr1
1 pr2

2 � � � prm
m

Fig. 7 The comparison
between SFT and DFT on a
randomized signal. A The
reconstructed signals from
SFT and DFT components on
rearranged ECG, B
amplitude distribution on the
SFT, and C amplitude
distribution on the DFT
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ms/n = 1 is derived from the relation Spj = 1 and

pj = s/n when s is satisfied with the relation Ppj
rj = (s/

n)n. That is, the geometrical mean s/n is satisfied with

the relation of s/n = Ppj
pj, so m is given as m = Ppj

–pj.

11 Appendix 6

When the random signal in Fig. 7A-b is a permuted

source in Fig. 7A-a, the amplitude distributions on the

SFT are illustrated in Fig. 7B and on the direct Fourier

transform (DFT) in Fig. 7C, respectively. While

amplitude distributions of the source take the same

forms between the SFT in Fig. 7B-a and the DFT in

Fig. 7C-a, those of the random signal are different in

Fig. 7B-b and C-b. That is, the distribution takes an

exponential form on the SFT but takes an even form

on the DFT which is well known as the form of a white

noise.

As amplitude and phase components of the SFT

reconstruct the random signal in Fig. 7A-b completely,

the inverse rearrangement of the reconstructed ran-

dom noise comes back to the source in Fig. 7A-c.

Contrarily, the waveform from the DFT is still a ran-

dom in Fig. 7A-d not the source. As a result, the dis-

tribution of samples is kept in SFT but lost in DFT.

The SFT supplies true instantaneous Fourier compo-

nents for any scale transform including arrangements.

In other words, a signal with any random noise holds

far more stable information in the SFT than in any

other integral transform.
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