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Abstract: The recognition of stereotyped action is one of the core diagnostic criteria of Autism
Spectrum Disorder (ASD). However, it mainly relies on parent interviews and clinical observations,
which lead to a long diagnosis cycle and prevents the ASD children from timely treatment. To
speed up the recognition process of stereotyped actions, a method based on skeleton data and Long
Short-Term Memory (LSTM) is proposed in this paper. In the first stage of our method, the OpenPose
algorithm is used to obtain the initial skeleton data from the video of ASD children. Furthermore,
four denoising methods are proposed to eliminate the noise of the initial skeleton data. In the second
stage, we track multiple ASD children in the same scene by matching distance between current
skeletons and previous skeletons. In the last stage, the neural network based on LSTM is proposed to
classify the ASD children’s actions. The performed experiments show that our proposed method
is effective for ASD children’s action recognition. Compared to the previous traditional schemes,
our scheme has higher accuracy and is almost non-invasive for ASD children.

Keywords: ASD children; action recognition; LSTM; skeleton data

1. Introduction

Autism, or Autism Spectrum Disorder (ASD), is a neurodevelopmental disorder,
characterized by persistent deficits in social communication and interaction as well as
restricted and repetitive behaviors [1]. The cause of ASD is extremely complex, involving
genetic and environmental factors [2,3]. In recent years, the number of children diagnosed
with ASD has been increasing [4,5]. It is estimated that one in 160 children have autism [6].
This puts great pressure on society.

Studies have shown that early diagnosis and intervention are the most effective clinical
treatment methods for ASD [7,8]. At present, the diagnosis of ASD is complicated and
mainly relies on diagnostic tools, including parent interviews and clinical observations.
These measures have an extend period, leading to delays in ASD intervention and treatment,
causing ASD children to miss the window period. Moreover, parents of ASD children will
be under tremendous pressure and lose confidence in the relevant professional medical
staff after a long diagnosis delay [9]. Howlin et al. [10] surveyed over 1200 parents of
ASD children and found that about half of the families were “not too” or “not at all”
satisfied with the ASD diagnosis process. Studies have confirmed that dyskinesias are
common in children with ASD [11–13]. They often have uncontrolled repetitive actions,
such as clapping hands, shaking the body, and repeatedly fiddling with toys and objects.
In the United States (DSM–V) [1] and Europe (ICD–10) [14], stereotyped action is the core
diagnostic criteria in the professional clinical practice of ASD. Therefore, accurate and
rapid recognition of ASD children’s action is an important idea to accelerate diagnosis.
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For the action recognition of ASD children, direct observation is the most widely used
method [15–17], i.e., rehabilitation experts directly observe the behavior of ASD children,
then record and analyze their stereotyped actions [18]. However, ASD children move
swiftly, rehabilitation experts cannot accurately observe and record all stereotyped actions.
It is also difficult to determine the start and end time.

In addition to direct observation, wearable sensor-based methods provide a promising
solution for action recognition in ASD children. Before the Deep Neural Network (DNN) is
fully developed [19–21], manual extraction of features from sensor data for action classifi-
cation is the most common. Gonçalves et al. [22] used the acceleration sensor worn on the
right arm of ASD patients to collect action’s data and then analyzed the statistical features
such as mean, variance, peak number, and root mean square to detect the stereotyped ac-
tions. Crippa et al. [23] designed a simple ball-grabbing task. They used an optoelectronic
system to obtain the kinematics data of ASD children when they completed the actions
such as reach, grasp, and drop, then extracted 17 kinematics indicators as features. Finally,
the SVM classifier was used to classify different actions. The above works were designed
to quickly and accurately obtain the action information of ASD children from wearable
sensor data. The sensor’s advantages are simplicity, stability, and high sensitivity, but the
disadvantages are also obvious. On the one hand, the sensor cannot analyze the complex
actions of the human body. On the other hand, it is too invasive for ASD children. Wearing
sensors will distract them, which will change their behavior and affect the accuracy of their
actions [24,25]. Moreover, manual selection and extraction of features rely on researchers’
professional knowledge, and the omission of essential features related to the task will
cause the system to fail. Compared with the wearable sensor-based methods, video-based
automatic analysis methods are almost non-invasive. They have been widely used with
the development of computer vision technology, such as football videos [26,27], basketball
videos [28,29], tennis videos [30,31], and taekwondo videos [32,33]. However, due to the
uncertainties and noisy backgrounds of ASD children’s action, there are few attempts to
analyze ASD children’s videos.

In recent years, with the application of deep learning in the biomedical field [34–37],
especially the development of Deep Neural Network and hardware computing capa-
bilities, a suitable method is to use neural networks to extract action information from
multi-dimensional data and integrate them into the action recognition of ASD children.
Rad et al. [38] used a three-layer CNN network to automatically extract features from ASD
patients’ data collected by acceleration sensors and ordinary inertial measurement units
(IMU), then they used an SVM classifier for classification. The results showed that neural
networks are superior to traditional manual feature extraction methods. Cook et al. [39]
used the OpenPose algorithm to extract the skeleton data of ASD children’s upper limbs
from the RGB image, then they calculated each key point’s speed to extract the features
manually. Their method could recognize clapping, swinging back and forth, and repeatedly
playing with the toy. They achieved 71% accuracy using the Decision Tree as a classifier.
The results of various studies show that the action recognition of ASD children is still a
challenging problem.

Considering this, to accelerate the diagnosis process, this paper proposes an effective
ASD children action recognition method. Our method uses the OpenPose [40] algorithm to
extract the skeleton data of ASD children from the video and then recognizes the action
through the Long Short-Term Memory networks (LSTMs). The main contributions of this
paper include:

1. We propose four measures to eliminate the initial skeleton data’s noise, which improve
recognition accuracy and calculation efficiency.

2. The multi-person tracking method based on skeleton data is proposed to track multi-
ple ASD children in the video. Unlike the latest multiple objects tracking technologies,
our method does not need additional GPUs and is suitable for multi-person tracking
in a fixed scene.
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3. An action recognition model based on LSTMs is proposed in this paper, and the
end-to-end deep learning-based framework eliminates the need to extract features
manually. The experimental results show that the Precision, Recall, and F1-score are
improved, and the proposed model outperforms other manual feature extraction-
based methods on our ASD children dataset.

4. We evaluate the impact of the input data time steps and the number of hidden
states on the LSTM network’s accuracy, which is crucial for the recognition of ASD
children’s actions.

The rest of this paper is organized as follows: Section 2 introduces the proposed
method, including three parts: the generation of de-noised skeleton data for ASD children,
multi-person tracking based on skeleton data, and ASD children’s action recognition based
on LSTM network. Section 3 describes the experiments and results, mainly including
the introduction of the experimental dataset, evaluation of important parameters, system
performance evaluation, and comparison with other methods. Finally, conclusions are
drawn in Section 4.

2. Proposed Method

The flow chart of our ASD children action recognition method is shown in Figure 1.
It consists of three stages. In stage 1, the OpenPose algorithm obtains the skeleton data of
ASD children in the video sequence. However, the original skeleton data will be lost due to
occlusion or overlap. Therefore, we denoise the skeleton data by discarding frames with
missing important information and deleting the head data that has little effect on this task
(detailed in Section 2.1). In stage 2, to track multi-person in real time, the skeleton data
in different frames obtained by stage 1 are matched to obtain each person’s continuous
skeleton data (detailed in Section 2.2). Finally, each ASD children’s skeleton data obtained
by stage 2 as the input of the LSTM model to recognize actions. With all stages finish, we
finally achieve three models: de-noised human skeleton data generation model, multi-
person tracking model based on skeleton data, and multi-person action recognition model.

Video sequence of ASD children

…

Raw OpenPose

Denoise

Modified OpenPose

skeleton data

(joint positions)

de-noised human 

skeleton data

generation model

de-noised skeleton data of each person

LSTM NetSoftmax

Stage 1

multi-person 

action 

recognition 
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Figure 1. Flow chart of proposed ASD children action recognition method.
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Based on these three models, we build a system for ASD children’s action recognition.
To make our flow chart clearer, Figure 2 shows the visual flow of the system recognizing
five different actions.

Figure 2. Our method first extracts the de-noised skeleton data (body key points coordinates) of
ASD children in the video sequence and then analyzes the skeleton data through the LSTM network.
Finally, the actions of ASD children are divided into five categories.

2.1. Generation of De-Noised Human Skeleton Data

In this paper, OpenPose [40] is used to obtain original human skeleton data. However,
there are two problems with the original skeleton data: On the one hand, ASD children
are sometimes occluded, which leads to a lack of skeleton data. On the other hand, ASD
children’s actions are highly random, making the acquired skeleton data not obvious, and
it is difficult to recognize the actions accurately. For this, we have taken four measures to
eliminate noise: First, we scale the coordinates of the key points outputted by OpenPose to
the same unit. Second, we remove the five joints on the head. Third, we discard frames
without skeleton data or missing important joints. Finally, we use the relative joint positions
in adjacent frames to fill in the unrecognized joint positions.

Figure 3 illustrates the overall pipeline of OpenPose. The system takes, as input,
a color image of size w× h and produces, as output, the 2D location of anatomical key
points for each person in the image. It uses the first 10 layers of VGG-19 [41] as a feature
extractor, generating a set of feature maps F that is input to a feedforward network. First,
the feedforward network simultaneously predicts a set of 2D confidence maps S of body
part locations and a set of 2D vector fields L of part affinities, which encode the degree of
association between parts. The set S = (S1, S2, . . . , SJ) has J confidence maps, one per
part, where Sj ∈ Rw, j ∈ {1 . . . J}. The set L = (L1, L2, . . . , LC) has C vector fields, one
per limb, where Lc ∈ Rw×2, c ∈ {1 . . . C}, each image location in Lc encodes a 2D vector.
Finally, the confidence maps and the affinity fields are parsed by greedy inference to output
the 2D key points for all people in the image. The output includes ears, eyes, nose, neck,
shoulders, elbows, wrists, knees, hips, and ankles, as shown in Figure 4.

Figure 3. The pipeline of OpenPose.
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Figure 4. Key points detected using OpenPose.

The original joint positions outputted by OpenPose has a different unit for the X
co-ordinate and Y co-ordinate. As shown in Figure 5a, we scaled them to the same unit
to deal with the images with different height/width ratios. Moreover, the head’s position
helps little for the action classification. What matters is the configuration of the body and
limbs. Thus, we manually removed the five joints (Nose, Right eye, Left eye, Right ear, Left
ear) on the head, and the Neck becomes the 0th joint, as shown in Figure 5b. If in a frame
there is no human skeleton detected by OpenPose or the detected skeleton has no Neck or
Thigh (top of Figure 5c), then this frame is considered invalid and will be discarded. On
the contrary, frames missing other joints will be retained (bottom of Figure 5c).

(a) (b) (c) (d)

Figure 5. Proposed four de-noised measures. (a) Scale the co-ordinate. (b) Remove all joints on the
head. (c) Discard frames without Neck or Hip. (d) Fill in the missing joints.

In some cases, OpenPose might fail to detect a complete human skeleton from the
image, causing some blank in the joint positions. These joints must be filled with some
values to maintain a fixed position for the following automatic feature extraction procedure.
Two bad solutions are:

1. Discard this frame. However, in this way, the algorithm will barely recognize the
action when the person is not facing the camera.

2. Fill in the joint positions with some value outside a reasonable range. In theory, when
the algorithm is strong enough, this method could work. However, this requires a lot
of experimentation and more calculations.

In this paper, we will set the missing joints as their relative positions to the Neck in
the previous frame. Suppose a joint (xi, yi) is missing in the current frame, the position of
it can be expressed as:

xi_curr = xNeck_curr + (xi_prev − xNeck_prev), (1)

yi_curr = yNeck_curr + (yi_prev − yNeck_prev), (2)

Figure 5d shows an example of using our method to fill in the missing joint.
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The four measures to eliminate noise are described above. It is noteworthy that the
skeleton data we currently obtain is for everyone in a frame. Therefore, a multi-person
tracking technique should be used to obtain different persons’ id in a frame and match
their skeleton data.

2.2. Tracking Multi-Person by Skeleton Data

In an ASD rehabilitation scenario, there are usually multiple children. So, tracking
them is needed. It should be mentioned that for multiple object tracking (MOT), a usual con-
sideration is that some commonly used algorithms such as SORT [42] and Deep SORT [43].
Through the calculation of the Convolutional Neural Network (CNN), they can achieve
good accuracy. However, these methods have a high computational burden, which is
hardly put into a real-time system. In this paper, we design an algorithm to track multiple
people through human skeleton data in video sequences.

First, after the skeleton data is de-noised in Section 2.1, the multi-person skeleton data
Sn of each frame is obtained. Any two consecutive frames can be expressed as previous
skeleton data Sprev and current skeleton data Scurr. The skeleton data of each person in
each frame is expressed as:

Sprev[i]={(xi_0, yi_0), (xi_1, yi_1), ..., (xi_12, yi_12)}, (3)

Scurr[j]={(xj_0, yj_0), (xj_1, yj_1), ..., (xj_12, yj_12)}, (4)

where i, j represents different people in previous and current frame, respectively. Then,
all skeletons are sorted based on the distance between the neck (x0, y0) and the image
center (xcenter, ycenter), from small to large. This step provides convenience for matching
skeletons between current and previous. The calculation formula is as follows:

D =

√
(x0 − xcenter)

2 + (y0 − ycenter)
2. (5)

It should be noted that if Sprev is the first frame containing skeleton data, then the
human id of everyone will be initialized according to the distance from the center of
the frame.

Finally, matching the distance between current skeletons and previous skeletons.
If Scurr[j] and Sprev[i] are matched, for Sprev[i], Scurr[j] is the nearest skeleton in Scurr and
for Scurr[j], Sprev[i] is the most nearest skeleton in Sprev as well. Moreover, the distance
between the two matched people’s joints should be smaller than our pre-set threshold. For
unmatched skeletons in Scurr, they are considered to be new people appeared in the video.

Through the above steps, we can track the input skeletons by matching them with
previous skeletons and then obtain their corresponding human id.

2.3. Action Recognition Using LSTM Net

The skeleton data of different actions are time series. In this paper, the Long Short-
Term Memory (LSTM) network automatically extracts features from skeleton data. The
LSTM [44] is a special type of Recurrent Neural Network (RNN), which adds prior knowl-
edge in the hidden layer: input gate, forget gate, and output gate. These gates process
the inter-layer information at different moments and the input information at a certain
moment more transparently, which can effectively pass the past information to the current
calculation and can overcome the defect that the RNN structure cannot pass far apart
information [45].

The structure of the LSTM unit is shown in Figure 6, the function expressions of input
gate, forget gate, and output gate can be obtained as follows:

i(t) = sigmoid(Wxix(t) + Whih(t− 1) + bi), (6)

f (t) = sigmoid(Wx f x(t) + Wh f h(t− 1) + b f ), (7)
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o(t) = sigmoid(Wxox(t) + Whoh(t− 1) + bo), (8)

where Wx is the input weight matrix, Wh is the hidden layer state weight matrix at time
t− 1, b is the bias term. The self-connected unit state c(t) and hidden layer state h(t) at
time t are expressed as:

c(t) = f (t) · c(t− 1) + i(t) · tanh(Wxcx(t) + Whch(t− 1) + bc), (9)

h(t) = o(t) · tanh(c(t)). (10)

Analyzing (6)–(10), it can be found that by adjusting the weight matrix W of each gate,
the input gate i(t) can control the amount of information flowing into the self-connected
unit state c(t), and the forget gate f (t) can control the amount of information c(t − 1)
contained in the self-connected unit state c(t) at the current moment, i.e., how much
information is forgotten. The output gate o(t) controls the information of self-connected
unit state c(t) that can flow into the current hidden layer state h(t). Among them, the role of
the self-connected unit state c(t) is to complete the accumulation of historical information,
and its accumulation method is:

Set : in f o = tanh(Wxcx(t) + Whch(t− 1) + bc), (11)

where in f o is the source of information to be accumulated, substituting (11) into (9)
to obtain:

c(t) = f (t) · c(t− 1) + i(t) · in f o. (12)

From (12), it can be known that when the self-connected unit state c(t) accumulates
historical information, it relies on the forget gate f (t) to limit the information transmitted at
the previous moment c(t− 1), and at the same time, the input gate i(t) constrain the newly
entered information. According to (10), the current hidden layer state h(t) is constrained
by the output gate. Since it is updated linearly, the tanh function with nonlinear is added.

The information source of the entire LSTM unit is the current input x(t), the hidden
layer state h(t− 1) at the previous moment, and the linear self-connected unit state c(t− 1)
at the previous moment. Since c(t− 1) is calculated according to (9), the control basis of
the three gate units actually comes from the current input x(t) and the hidden layer state
h(t− 1) at the previous moment.

Figure 6. Structure diagram of the LSTM unit.

Compared with the traditional methods [22,23,46], using a Recurrent Neural Network
(RNN) with Long short-term memory (LSTM) units requires almost no feature engineering,
and the data can be directly fed into the neural network to model the problem correctly.

Figure 7 shows the action recognition network used in our method. The input skeleton
data has a shape of n × 13 × 2, which denotes the n sequential frames with 13 key points
having X and Y coordinates each. First is a fully connected layer activated by ReLU, and
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then two stacked LSTM layers are applied to the skeleton data of each frame. A many-to-
one architecture of LSTM is used in this paper. LSTM leverages the sequential nature of the
input sequences to identify temporal changes in skeleton data. The LSTM layers’ output is
passed to a fully connected layer with SoftMax activation and five outputs. Each of these
five outputs provides the probability of the corresponding action in terms of cross-entropy.
Thresholding is applied to this output to detect when the ASD children are performing
specific actions.

Figure 7. Schematic diagram of the ASD children action recognition network.

3. Experiments and Results

In this section, we first introduce the ASD children dataset used in this paper. Next,
two important parameters are evaluated. Then, we verify the effectiveness of the proposed
skeleton data de-noised methods. Finally, we compare the proposed approach with several
methods of manually extracting features.

3.1. Experiment Dataset

There is currently no public dataset that can be used for the action recognition of ASD
children. The dataset used in this paper was collected in our cooperative ASD rehabilitation
institution. We arranged four 5 million pixels HIKVISION remote cameras in the classroom
to collect videos of ASD children from four different angles, then transferred the images
to the database through the POE recorder. We can view the real-time situation in the
classroom through a smart phone, and adjust the shooting angle of the camera remotely
to ensure that the image with the best angle can be collected without disturbing the ASD
children. The data collection system is shown in Figure 8.

Our purpose was to collect ASD children’s videos in various real environments, to
mark some stereotyped actions. The children with ASD selected by us are about 5 to
10 years old. It is worth noting that not all children are severely autistic, some children have
milder symptoms, and their actions are similar to normal children. We mainly focused
on their repetitive actions. These actions are usually very fast, such as shaking hands,
shaking their bodies, and standing up suddenly, they are easily ignored by ASD children’s
busy parents.



Sensors 2021, 21, 411 9 of 17

Figure 8. Data collection system.

In this paper, the dataset we made contains video clips of 5 actions: sit, stand, squat,
shake the body, and shake hands. Each clip is a sequence of images about 1–3 s (25 frames
per second), a total of 1062 sequences. Each sequence contains the complete process of a
single action. Table 1 below describes an overview of the dataset, including the name of
each action, the number of frames, and the number of sequences.

After obtaining the dataset, we normalized the image size to 656× 368, then sent them
to the de-noised human skeleton data generation model proposed in Section 2.1. It should
be noted that when extracting skeleton data for training the LSTM network, there may be
multiple ASD children in some frames. For this, we only keep the skeleton data of the ASD
child closest to the image center.

Table 1. Dataset description.

Action No. Action Name No. of Frames No. of Sequences

1 Sit 7245 189
2 Stand 7903 207
3 Squat 5997 178
4 Shake the body 10,613 251
5 Shake hands 9118 237

Total 40,876 1062

3.2. Evaluation of Parameters

Model network structure and the input data structure have a fundamental impact
on the effect of action recognition. In this section, two important parameters that affect
the accuracy of the LSTM network were evaluated. One is the time steps of the input
sequence, which indicates how many frames constitute an action sequence. It is related
to the structure of the input data. The other is the number of hidden states of the LSTM
network, which is related to the network structure.

The time steps of the input sequence is one of the important parameters in making a
training dataset. On the one hand, action sequences with small time steps cannot guarantee
that it covers all the process of an action. On the other hand, action sequence with too large
time steps will not only increase the pressure of network computing, but also introduce
some interference features affecting action recognition of ASD children. Thus, to verify the
effect of input data structure on network performance, datasets with time steps from 20–50
were trained under other conditions unchanged. As shown in Figure 9.
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The number of hidden states, one of the basic parameters of the LSTM network
structure, represents the number of nodes used to remember and store the past state, which
determines how much information is remembered and how much is forgotten. From the
construction principle of the neural network, the more hidden states, the more data features
and the higher adaptability of the network. However, too many hidden states will overfit
the neural network. Therefore, the extracted dataset was used to test the impact of the
number of hidden states on recognition accuracy. As shown in Figure 9.

The extracted dataset from the ASD children dataset we made in Section 3.1, including
151 sequences of sit, 149 sequences of stand, 133 sequences of squat, 150 sequences of
shake the body, and 141 sequences of shake hands. 70% of the complete action sequences
were used to train the model, and the remaining 30% were used to test the recognition
model. It is worth noting that in the original dataset proposed in Section 3.1, the length of
a single action is 1–3 s (25–75 frames). Therefore, to evaluate the effect of the sequence’s
time step, the original action sequence should be scaled to 20–50 frames. The methods we
used as following:

• For the sequences that are less than 20 frames, we fill them with all-zero skeleton data
at the end of the sequence.

• For the sequences that are more than 50 frames, we randomly select frames without
repeating and make them form a shortened frame sequence in the original order.

According to Figure 9, we first analyze the impact of time steps on recognition accuracy.
When the number of hidden states is 4 to 16, the network is too simple. At this time, the time
steps have almost no effect on the accuracy of the model. When the number of hidden
states between 32 and 512, increasing the time steps from 20 to 32 improves the model’s
accuracy, and the accuracy almost unchanged after more than 32 frames. The decrease in
accuracy at a time steps of 50 means that the time span is so long that the model learns
the interference features. The above results indicate that for our dataset, the time steps of
32 frames (about 1.3 s) can summarize the action features of ASD children.

Figure 9. The recognition accuracy of the LSTM model under different time steps and hidden states.

Then analyze the impact of hidden states, when the number of hidden states from 4 to
16, the network structure is so simple that the model cannot learn enough features from
the data. At this time, the accuracy is low. When the number of hidden states from 32 to
512, the accuracy of the model improves significantly, which indicates that the network
has learned more features to classify actions. When the number of hidden states is 128,
the model reaches the best accuracy. It is worth noting that when the number of hidden
states changes from 256 to 512, the accuracy decreases, mainly due to the over-fitting
phenomenon caused by the complex network structure, which significantly reduces the
generalization ability of the model.

Considering these factors comprehensively, we got the following best parameters: the
time steps is 32, the number of hidden states is 128, and the learning rate is 0.001.



Sensors 2021, 21, 411 11 of 17

3.3. Performance Evaluation

To verify the impact of the skeleton data de-noised methods proposed in Section 2.1,
we used the ASD children dataset to experiment with different time steps and the number
of hidden states.

In the experiment, we selected 749 action sequences from the ASD children dataset
made in Section 3.1 (144 for sit, 151 for stand, 129 for squat, 171 for shake the body, and 154
for shake hands). 70% of the complete sequences are used for training, and the remaining
30% are used for testing. After processing, we got two groups of skeleton data. One
group was obtained after denoising using proposed methods, and the other group was
the original skeleton data extracted by OpenPose. The results are shown in Figure 10.
After denoising, the recognition accuracy under different time steps and hidden states
is higher than that of unprocessed original data, about 10%. It shows that our skeleton
data de-noised methods can make the model learn more useful features and reduce the
influence of interference features. It is worth noting that same as the best parameters in
Section 3.2, the model achieves a balance between recognition accuracy and calculation
pressure under the time steps of 32 and the hidden state of 128, which shows that the best
parameters obtained are indeed suitable for our experiments.

(a) (b)

Figure 10. Action recognition accuracy of the model under original and de-noised skeleton data.
(a) Varying the number of time steps. (b) Varying the number of hidden state.

Two kinds of confusion matrices, obtained from original and de-noised skeleton data
using the best parameters, are presented in Figure 11. The row of a confusion matrix
represents true classes of samples while the column represents the predicted classes. The
diagonal entries represent the true classification rate of each class, the shallower the color
is, the higher the true classification rate is. Figure 11a is the confusion matrix obtained
from the original skeleton data extracted by OpenPose, while Figure 11b uses the de-noised
skeleton data. Obviously, skeleton data denoising processing improves action recognition
accuracy, especially shake the body, squat, and sit. The features of these three actions are
more complex. However, the denoising processing enables the network to learn more
useful features and reduces invalid features’ interference. It is worth noting that for the
two experiments, shake the body was confused with sit. A very important reason is
that in our dataset, ASD children shaking the body are done in a sitting position, so the
features of these two actions are similar. In this case, our denoising methods achieves
a recognition rate of 90.29%. Similarly, squat and sit have been misrecognized due to
decreased body height, but our denoising method finally gets a recognition rate of 90.39%
and 93.55%, respectively.

Figure 12 shows some screenshots from real-time tests. Through the multi-person
tracking method based on skeleton data proposed in Section 2.2, our system supports
real-time action recognition of multiple ASD children. The threshold we set is 0.9. When
the probability of action is greater than 0.9, the system will determine that the ASD children
are performing this action and display the label of the action on the character selection box.
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(a) (b)

Figure 11. Confusion matrices obtained from original and de-noised skeleton data using the best pa-
rameters. (a) The matrices with original skeleton data. (b) The matrices with de-noised skeleton data.

(a) (b) (c) (d) (e) (f)

Figure 12. Sample images in real-time tests. (a) Sit. (b) Stand. (c) Squat. (d) Shake the body. (e) Shake
hands. (f) Multi-person.

3.4. Comparison and Analysis

To further verify the accuracy of the proposed method, manual feature extraction-
based methods were introduced to recognize ASD children’s actions. In the experiments,
we selected 844 action sequences from the ASD children dataset made in Section 3.1 (160 for
sit, 155 for stand, 151 for squat, 190 for shake the body, 188 for shake hands). 70% of the
complete sequences were used for training and the remaining 30% were used for testing.

Manual feature extraction is very popular in motion analysis. In the field of ASD
children’s action recognition, the most common is to extract features from sensor data.
Gonçalves et al. [22] and Albinali et al. [47–49] both used acceleration sensors to collect ac-
tion data, then captured time and frequency domain features from them, finally recognized
the actions of ASD children. With the development of human pose estimation technology
based on RGB images (such as OpenPose and AlphaPose [50]), extracting features from
skeleton data can also achieve good performance. Like our work, [39] used OpenPose to
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extract the skeleton data of ASD children and then manually extract features from it for
action recognition.

To compare the recognition effects of the proposed LSTM-based method and man-
ual feature extraction methods more comprehensively, we re-set two feature extraction
methods. Method 1 was based on [39], and the extracted features included the maximum
magnitude, mean magnitude, and standard deviation of the autocorrelogram maxima.
These features were calculated from each key point’s three velocity measures (velocity
change in the X-axis, Y-axis, and overall position). It should be noted that [39] only used six
key points of the upper body to extract features: Right shoulder, Right elbow, Right wrist,
Left shoulder, Left elbow, and Left wrist. It means that their method was only sensitive to
the upper body actions of ASD children. However, our dataset includes some lower body
actions, so based on the original features, we added all normalized joints except the head
positions as additional features to ensure the effectiveness of action recognition.

Method 2 included three features: normalized joint positions X, moving velocity
of the body Vbody, and joint velocities Vjoints. Compared with method 1, these features
contained information on all key points and can better summarize the actions of ASD
children. A summary of the computed features is shown in Table 2. In addition, method 1
used the Decision Tree mentioned in [39] as classifier, and method 2 used DNN (3 layers,
100 × 100 × 100), Linear SVM, and Random Forests (depth 40, trees 100) as classifiers.
The implementation of these classifiers was from the Python library “sklearn”.

The experiments were carried out under the original and de-noised skeleton data, re-
spectively. Figure 13 shows the recognition accuracy of different methods. Simultaneously,
to further verify the performance of the proposed method, Table 3 reports the Precision,
Recall, and F1-score of each action computed over all the methods, which are defined
as follows:

Precision : P =
TP

TP + FP
, (13)

Recall : R =
TP

TP + FN
, (14)

F1− score =
2× P× R

P + R
, (15)

where True Positive (TP) represents the number of actions correctly recognized, False Posi-
tives (FP) represents the number of actions falsely recognized, and False Negatives (FN)
represents the number of missed actions.

(a) (b)

Figure 13. Action recognition accuracy of five different methods.(a) Using original skeleton data.
(b) Using de-noised skeleton data.
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Table 2. Summary of the computed features. Bold represents the features selected for experiments.

Feature Meaning

Method 1 [39]

mean− δx, mean− δy,
mean− δP

Mean velocity change in X co-ordinate, Y co-ordinate,
and overall position of each key point

σ− δx, σ− δy, σ− δP
Standard deviation of velocity change in X co-ordinate,

Y co-ordinate, and overall position of each key point

max − ρm

Maximum magnitude of the autocorrelogram maxima
computed for each of the three velocity measures

tracked for each key point

mean − ρm

Mean deviation of the autocorrelogram maxima
computed for each of the three velocity measures

tracked for each key point

σ − ρm

Standard deviation of the autocorrelogram maxima
computed for each of the three velocity measures

tracked for each key point

X Normalized joint positions

Method 2

Xs Concatenation of key points’ positions of N frames

H In Xs: Average height of the skeleton. It equals the
length from Neck to Thigh.

Vbody In Xs: Velocity of the body

X Normalized joint positions

Vjoints In X: Velocity of all joints

Table 3. P, R, and F1-score of five different methods under the original and de-noised skeleton data.

Sit Stand Squat Shake the Body Shake Hands

Original De-Noised Original De-Noised Original De-Noised Original De-Noised Original De-Noised

Method 1 + Decision Tree [39]

P 0.4498 0.524 0.8634 0.8899 0.5582 0.6169 0.7896 0.8417 0.7584 0.8235

R 0.619 0.6762 0.7375 0.8083 0.6389 0.6889 0.6485 0.7091 0.7286 0.8

F1-score 0.521 0.5905 0.7955 0.8471 0.5958 0.6509 0.7121 0.7697 0.7432 0.8116

Method 2 + linear SVM

P 0.5692 0.6109 0.8423 0.9095 0.6462 0.6667 0.8345 0.8955 0.8063 0.8339

R 0.6857 0.7476 0.7792 0.8375 0.7 0.7556 0.7182 0.7788 0.7286 0.8071

F1-score 0.622 0.6724 0.8095 0.872 0.672 0.7084 0.7719 0.8331 0.7655 0.8203

Method 2 + Random Forests

P 0.5774 0.6574 0.895 0.9334 0.6364 0.7005 0.8841 0.9263 0.8044 0.8856

R 0.7286 0.7857 0.8167 0.8792 0.7389 0.8056 0.7394 0.8 0.7786 0.8517

F1-score 0.6442 0.7158 0.8541 0.9055 0.6838 0.7494 0.8053 0.8585 0.7913 0.8711

Method 2 + DNN

P 0.5824 0.6798 0.9148 0.9437 0.6603 0.7438 0.9236 0.9613 0.8692 0.9145

R 0.7571 0.819 0.85 0.9083 0.7667 0.8389 0.7697 0.8273 0.8071 0.8786

F1-score 0.6584 0.7429 0.8812 0.9257 0.7095 0.7885 0.8397 0.8893 0.837 0.8962

Proposed method

P 0.6816 0.8448 0.9184 0.9835 0.7387 0.8852 0.9391 0.9835 0.9227 0.9821

R 0.7952 0.9333 0.9375 0.9958 0.8167 0.9 0.7939 0.903 0.8964 0.9786

F1-score 0.734 0.8868 0.9279 0.9896 0.7757 0.8925 0.8604 0.9415 0.9094 0.9803
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By analyzing the performance indicators in Figure 13 and Table 3, we can find that
using the de-noised skeleton data, the recognition accuracy of all actions has been signifi-
cantly improved, and an overall improvement of more than 5% was gained in the F1-score.
At the same time, we can find that the proposed method achieved the highest accuracy in all
five classes of actions. Among the other four manual feature extraction-based methods, the
DNN classifier got the highest accuracy, while the Decision Tree classifier got the lowest. It
is worth noting that for shaking hands, [39] has a smaller gap with other methods. A crucial
reason is that [39] mainly focuses on the upper body features, especially the hands, so the
actions of hands are more sensitive. Therefore, we can conclude that the methods based on
manual feature extraction rely more on the professionalism of feature selection, and the
omission of essential features will make the model invalid. On the contrary, the proposed
method based on the LSTM network can automatically learn features from the time series
ASD children’s skeleton data, then recognize the actions with higher accuracy.

4. Conclusions

In this paper, an action recognition method based on skeleton data and LSTM net-
work was proposed for ASD children. It can recognize single or multiple ASD children’s
action from the real-time or pre-recorded video. First, the OpenPose algorithm is used
to extract skeleton data from the continuous image sequences, then proposed denoising
methods eliminate the noise of the skeleton data. Next, the multi-person tracking model
based on the skeleton data tracks multiple ASD children in the previous and subsequent
frames. Finally, the LSTM network analyzes each ASD children’s skeleton data to recognize
different actions.

Experimental results show that the recognition performance of the proposed method
is better than traditional manual feature extraction methods, and the denoising of skeleton
data can also improve the action recognition accuracy. It must be noted that our approach
does not require special hardware, and the image taken by the conventional RGB camera
can be used as the input of the system, which is almost non-invasive for ASD children. In
addition, the end-to-end deep learning-based framework eliminates the need to manually
extract features, allowing for the addition of new actions by just retraining the model with
new data. This method can assist rehabilitation experts in recognizing the actions of ASD
children automatically, to shorten the diagnosis cycle. Moreover, the number of stereotyped
actions recognized by the proposed method can be used as an indicator to evaluate the
effect of ASD rehabilitation.

In future research, more actions of ASD children and a larger dataset can be included.
Also, we plan to transplant the proposed method to the embedded platform and conduct
some real-time tests to verify the reliability of the system.
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