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Purpose. The objective of our study was to predicate candidate genes in cervical cancer (CC) using a network-based strategy and
to understand the pathogenic process of CC. Methods. A pathogenic network of CC was extracted based on known pathogenic
genes (seed genes) and differentially expressed genes (DEGs) between CC and normal controls. Subsequently, cluster analysis was
performed to identify the subnetworks in the pathogenic network using ClusterONE. Each gene in the pathogenic network was
assigned a weight value, and then candidate genes were obtained based on the weight distribution. Eventually, pathway enrichment
analysis for candidate genes was performed. Results. In this work, a total of 330 DEGs were identified between CC and normal
controls. From the pathogenic network, 2 intensely connected clusterswere extracted, and a total of 52 candidate geneswere detected
under the weight values greater than 0.10. Among these candidate genes, VIM had the highest weight value. Moreover, candidate
genesMMP1, CDC45, and CAT were, respectively, enriched in pathway in cancer, cell cycle, and methane metabolism. Conclusion.
Candidate pathogenic genes including MMP1, CDC45, CAT, and VIM might be involved in the pathogenesis of CC. We believe
that our results can provide theoretical guidelines for future clinical application.

1. Introduction

Cervical cancer (CC), arising from the cervix, is a major
cause of cancer death in developing countries [1]. Globally,
there are approximately half a million new diagnoses and
250,000 CC-related deaths annually [2]. Metastasis is a major
cause of cancer-related mortality [3]. In literature, human
papillomavirus (HPV) infection is a risk factor to result in the
development ofCC [4].Nevertheless, growing evidences have
demonstrated that HPV infection alone is not sufficient to
cause malignant initiation, and genetic alterations are essen-
tial for progression from precancerous disorder to invasive
cancer [5]. Thus, it is urgent to understand the pathogenic
process of CC via dissecting the components which take part
in the pathogenesis, for instance, pathogenic genes, thereby
preventing the development from precancerous disorder to
CC.

In laboratory, several techniques, including gene silenc-
ing and knockout, were used to identify the pathogenic genes.

So far, a total of 43 pathogenic genes of CC have been verified
through biological experiments and deposited in Online
Mendelian Inheritance in Man (OMIM) database. Neverthe-
less, the pathogenic genes are far from enough.Moreover, the
process of identifying pathogenic genes is painful and time
consuming. Fortunately, computational approaches can solve
this difficulty. A large number of studies have adopted com-
parative genomics method to obtain differentially expressed
genes (DEGs) to elucidate the pathogenic procedures of
disease via comparing control and disease groups [6, 7].How-
ever, DEGs alone may cause false positives while extracting
crucial genes involved in disease procedure because some
genes do not participate in the pathway of pathogenic genes
even if their expression changes are significant. Moreover,
studies have shown that many of gene biomarkers obtained
from different researches on the same disease are typically
inconsistent [8, 9]. To overcome this difficulty, a potentially
more effective approach is to employ a network-based strat-
egy to evaluate the disease-related biomarkers. For example,
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the integration of correlating protein interaction network
and phenotype network provided by Wu and colleagues
has been demonstrated to identify human disease genes
with high accuracy [10]. Moreover, human genome-wide
protein-protein interactions (PPIs) have been applied to
detect disease-related genes by analyzing topological features
in PPI network (PPIN) [11]. Importantly, Liu et al. [12] have
demonstrated that integrating protein interactionmap as well
as gene expression data is effective to predict the pathogenic
genes. Thus, the molecular interaction network of CC can
give hints to potential pathogenic genes.

In an attempt to obtain novel pathogenic genes of CC, we
also used the integration data of protein information and gene
data. We hypothesize that interacting proteins often share
parallel functions [13] and are likely involved in the similar
pathways [14]. Thus, a pathogenic subnetwork composed of
potential pathogenic genes is detected with a small number of
known pathogenic genes as seed genes. In brief, a pathogenic
network was extracted based on seed genes and DEGs.
Subsequently, in order to identify the subnetworks in the
pathogenic network, ClusterONE was utilized to carry out
the cluster analysis. Each gene in the pathogenic network
was assigned a weight value, and then candidate genes were
obtained based on the weight distribution. Eventually, the
pathway enrichment analysis for candidate genes was per-
formed. The candidate genes are expected to be involved in
the same biological processes as seed genes and therebymight
be pathogenic genes. Our study might provide guidelines for
experimental verification in the future and shed light on the
pathogenesis from precancerous disorder to invasive CC.

2. Material and Methods

2.1. Data Acquisition. Themicroarray profile E-GEOD-39001
[15], which was under GPL201 platform of [HG-Focus]
Affymetrix Human HG-Focus Target Array and GPL6244
platform of [HuGene-1 0-st] Affymetrix Human Gene 1.0 ST
Array [transcript (gene) version], was downloaded from the
EMBL-EBI database which is a public functional resource for
gene expression data of humans. In the current study, gene
microarray data of 62 HPV vaccination 16-positive CC and
17 healthy cervical epitheliums were used to perform further
analysis based on these two platforms.

2.2. Data Preprocessing and Identification of DEGs. The orig-
inal expression measures from healthy control and CC con-
ditions were converted to expression values via robust multi-
array average (RAM) [16]. The genes which were differently
expressed between CC and healthy controls were identified
by significance analysis of microarrays (SAM) algorithm. In
brief, statistically significant genes in expression were identi-
fied using SAMR function. Each gene was distributed a score
on the basis of gene expression change comparing with the
standard deviation of repeatedmeasurements for this gene. If
the scores of these genes were greater than a liminal value,
these were defined as potentially significant. The ratio of
falsely significant genes to the significant genes was regarded
as false discovery rate (FDR). To increase the stringency for
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Figure 1: The flow diagram of a network strategy to predict
pathogenic genes. First of all, the differentially expressed genes were
identified.Then, a pathogenic network was extracted. After that, dif-
ferentially expressed genes were aligned to the network by interact-
ingwith at least two seed genes. Subsequently, the clusters composed
of genes closely interacting with each other were screened, and the
genes in the clusters are thought to bemore possibly to be pathogenic
genes.

significant difference, delta value was computed by means
of the function of SAMR.compute.delta.table. DEGs between
healthy control and CC conditions were screened out using
the cut-off value of delta = 0.806.

2.3. Identification of PathogenicNetwork. In the presentwork,
the flow diagram of predicting pathogenic genes was shown
in Figure 1. OMIM is a comprehensive and authoritative
knowledge base of human genes as well as genetic disorders
to support human genetics research and practice of clinical
genetics [17]. Significantly, some identified pathogenic genes
were deposited in OMIM database. Up to now, a total
of 43 pathogenic genes of CC were deposited in OMIM
database. In the current study, these 43 pathogenic genes
were downloaded from the OMIM database for subsequent
analysis. The intersection of these known pathogenic genes
and the microarray data were extracted and called “seed
genes.” Significantly, the seed gene list and the evidence that
these genes were associated with CC were shown in Table 1
[18–38].

Human PPIN was obtained from the String database,
and the seed genes and DEGs were aligned to the PPIN.
Then, a new PPIN was extracted from the original PPIN,
which was composed of seed genes and their adjacent
DEGs. Additionally, a smaller subnetwork which was made
up of genes interacting with at least two seed genes was
detected from the new PPIN obtained above and identified
as pathogenic network, where the genes in this pathogenic
network were considered to be related to pathogenesis of CC.

Subsequently, in an attempt to identify the subnetworks in
the pathogenic network, clustering with overlapping neigh-
borhood expansion (ClusterONE), a plugin of Cytoscape
[39], was utilized to carry out the cluster analysis.
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Table 1: The seed genes and the evidence that these genes are
associated with cervical cancer.

Seed genes Evidence
MTHFR Mei et al., 2012 [18]
MTOR Leisching et al., 2015 [19]
PHGDH Jing et al., 2013 [20]
CHI3L1 Ngernyuang et al., 2014 [21]
IL10 Stanczuk et al., 2001 [22]
CNKSR1 Fritz and Radziwill, 2010 [23]
BCL10 Kuo et al., 2012 [24]
PTGS2 Ryu et al., 2000 [25]
CD247 Zehbe et al., 2006 [26]
KHDRBS1 Li et al., 2012 [27]
SKI Chen et al., 2013 [28]
CRP Polterauer et al., 2007 [29]
TSPAN1 Hölters et al., 2013 [30]
HDAC1 Lin et al., 2009 [31]
YBX1 Zhang et al., 2012 [32]
RNASEL Madsen et al., 2008 [33]
TACSTD2 Varughese et al., 2011 [34]
JUN Prusty and Das, 2005 [35]
PARP1 Hassumi-Fukasawa et al., 2012 [36]
SLC2A1 Airley et al., 2003 [37]
CDC20 Rajkumar et al., 2011 [38]

2.4. Statistical Analysis of Prediction Results. In order to
determine the significance of the predicted clusters, a sig-
nificance score (SS) was defined for each cluster, where
SS was considered as the geometric average of 𝑃 values
accompanying all the nodes in one cluster. The 𝑃 value of
each nodewas got viaWilcoxon test based on gene expression
data of CC and control groups. In our background network,
all the genes were differentially expressed, and the genes in
one cluster weremore differentially expressed when the genes
were with smaller 𝑃 values. In addition, if a set of genes were
closely interacted and more differentially expressed, these
genes were more likely referred to disease pathogenesis, since
pathogenesis is generally involved in a set of genes which
acted in concert. Hence, the SS herein was used to evaluate
the significance of one cluster.

To determine the statistical significance of the predicted
clusters, a𝑃 valuewas, respectively, computed for each cluster
by means of randomization test. First of all, the 𝑃 values of
the genes in the cluster were randomly shuffled, and then
each gene got a new 𝑃 value after shuffling. Subsequently, we
recalculated the SSs for the clusters after the 𝑃 values were
shuffled and these were identified as null distribution of SSs.
Then, using the randomization test with 1,000 times, the 𝑃
value for a cluster was determined as the probability that one
cluster was identified in randomization test with smaller SS
than that of our predicted cluster.

2.5. Identification of Candidate Genes. To select more accu-
rate pathogenic genes from our method, each gene in the
pathogenic network was assigned a weight value on the

basis of the interactions as well as coexpressions with seed
genes. If a gene interacted and was coexpressed with more
seed genes, it was more likely to be a pathogenic gene. In
detail, the coexpression between the predicted pathogenic
gene and seed genes was calculated using Pearson correlation
coefficients (PCCs) based on gene expression data. Then,
the weight 𝑤(𝑥) for each gene 𝑥 was determined using
PCCs. The weight of a gene was higher; the gene was more
possible to participate in pathogenic procedure. Additionally,
we determined the potential pathogenic genes as candidate
genes of CC. The formula was listed as follows:

𝑤 (𝑥) = ∑

𝑦∈𝑆

PC (𝑥, 𝑦) 𝐼 (𝑥, 𝑦) , (1)

where 𝑆 was known pathogenic genes, PC(𝑥, 𝑦) represented
the PCC between gene 𝑥 and gene 𝑦, and 𝐼(𝑥, 𝑦) stood for
an indication function; if protein 𝑥 interacted with protein 𝑦,
𝐼(𝑥, 𝑦) ∼ 1; otherwise, 𝐼(𝑥, 𝑦) ∼ 0.

2.6. Pathway Enrichment Analysis of Candidate Genes and
Seed Genes. Kyoto Encyclopedia of Genes and Genomes
(KEGG) is a database that integrates genomic as well as sys-
temic functional information, and KEGG offers a reference
knowledge base for understanding cellular processes via the
process of pathway aligning, which is to map genes to KEGG
reference pathways to deduce systemic behaviors of the cell
[40]. In our study, all the KEGG reference pathways were
recruited from the KEGG database. Then, candidate genes
and seed genes obtained in this work were aligned to these
KEGG reference pathways to identify the potential pathways
which were simultaneously enriched by candidate genes and
seed genes. If candidate genes were involved in the same
biological pathway with the seed genes, these candidate genes
were potential pathogenic genes.

3. Results

3.1. Data Preprocessing and Identification of DEGs. Based
on different platforms, a total of 5199 and 12329 genes
were identified, respectively. Afterwards, 4654 overlapping
genes in these two platforms were extracted. After data
preprocessing; a total of 330 DEGs were identified under the
delta value = 0.806.

3.2. Identification of Pathogenic Network. In the current
study, a total of 43 known pathogenic genes of CC were
downloaded from OMIM database and then mapped to the
human PPIN. As a result, 21 of known pathogenic genes can
be aligned to the PPIN, and these 21 genes were treated as
seed genes (Table 1). Next, a subnetwork was extracted from
the PPIN, and the genes in the subnetwork interacted with at
least one seed gene.

Although the genes interacting with seed genes might
play important roles in maintaining the biological processes
for CC development and progression, the usage of DEGs is
helpful to reduce false positives since the expression changes
of DEGs might be likely caused by the interactions with seed
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Figure 2:The new protein-protein interaction network (PPIN).The
red nodes represent seed genes from OMIM database, that is, the
known pathogenic genes, the green nodes denote genes interacting
with at least two seed genes, and the yellow nodes are the genes
interacting with only one seed gene. The new PPIN is composed of
123 nodes and 266 interactions. In addition, the genes in the new
PPIN are differentially expressed in CC and control groups.

genes. After aligning DEGs to the original PPIN obtained
above, we obtained a new PPIN which was composed of 123
genes and 266 interactions, as shown in Figure 2.

Subsequently, the genes interacting with at least two seed
genes were screened out since these genes were more likely
to be pathogenic genes. Herein, we identified the subnetwork
which was made up of the genes interacting with at least two
seed genes, and this subnetwork was named as pathogenic
network hereafter, as exhibited in Figure 3. Importantly, we
found that four seed genes, including CRP, PTGS2, JUN, and
IL-10, interacted with each other and formed a clique. Hence,
these four seed genes might belong to the same complex or
pathway which is involved in the pathogenic process. In light
of these results, the genes which interacted with these four
seed genes tend more to be pathogenic genes. For instance,
LTF, one iron-binding member of the transferrin family,
has been demonstrated to regulate the tumor growth via
mediating the transition from the G1 to S phase of cell cycle
[41].

Moreover, a total of two intensely connected clusters
were identified from the pathogenic network by employing
Cytoscape.The genes in each cluster probably participated in
the same signaling or regulatory pathway as seed genes, and
these genes in cluster were more likely to be associated with
pathogenic procedure.

In cluster one, a total of 52 genes formed a tightly
connected subnetwork, and 14 seed genes were contained
as exhibited in Figure 4. In cluster two, there were 15 genes

Figure 3: The pathogenic network. The red nodes represent seed
genes from OMIM database, that is, the known pathogenic genes,
the green nodes are genes interacting with at least two seed genes,
and each node is assigned aweight value.The color bar stands for the
relationship between color andweight: where the color is deeper, the
weight is larger.

which formed a closely connected subnetwork involved in 3
seed genes (Figure 5).

3.3. SignificanceAnalysis of Pathogenic Clusters. In an attempt
to determine the importance of the clusters extracted above,
the SS was defined for each cluster. Herein, the differential
expression obtained 𝑃 value was applied since a set of genes
were more likely to be involved in pathogenesis if these were
intensely connected in a network and more differentially
expressed. It was noteworthy that a highly connected subnet-
work did not imply that the genes in the subnetwork were
remarkably differentially expressed. As a consequence, the
SS score was utilized to determine whether a cluster can be
identified by chance. In our study, the SS of cluster one and
cluster two was 0.051 and 0.009, respectively.

To determine the significant difference of the two pre-
dicted clusters, a 𝑃 value was derived for each cluster by
means of the randomization test, respectively. The 𝑃 values
of the two clusters were, respectively, 1.4 × 10−3 and 5 ×
10−4, which indicated that these two clusters were statistically
significant and not identified by chance.

3.4. Identification of Candidate Genes. Based on the weight
values of all the genes, we ranked these genes in descended
order. Totally, 52 genes were identified when the weight
values were more than 0.10. The top 20 genes with
higher weight including VIM, GAPDH, CAT, TNS1, LTF,
CFTR, RNASEH2A, EGR1, FABP4, GSTM2, GMNN, BARD1,
SCGB2A1, MMP1, IDO1, ABCG2, NUP107, CDC45, ALPP,
and CTSS were shown in Table 2.

3.5. Pathway Enrichment Analyses of Candidate Genes
and Seed Genes. Pathway enrichment results showed that
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Figure 4: Cluster one. The red nodes represent seed genes from
OMIM database, that is, the known pathogenic genes; the other
nodes are genes interacting with seed genes. All the genes in the
cluster were colored according to their weight values.

Figure 5: Cluster two. The red nodes are seed genes from OMIM
database, that is, the known pathogenic genes; the other nodes stand
for the genes interacting with seed genes. All the genes in the cluster
were colored according to their weight values.

candidate genes and seed geneswere simultaneously enriched
in pathway in cancer, cell cycle, and methane metabolism
(Table 3). Importantly,MSH6, PTGS2,HDAC1, JUN, SLC2A1,
andMMP1 were enriched in the pathway in cancer, of which
MSH6 andMMP1were candidate genes.Moreover, candidate
genes CDC7 and CDC45, as well as seed genes HDAC1
and CDC20, were involved in the same pathway of cell
cycle. Moreover, seed geneMTHFR and candidate gene CAT
participated in the same pathway of methane metabolism.

Table 2: The top 20 genes with higher weight values in pathogenic
network.

Node Weight value
VIM 2.622
GAPDH 2.491
CAT 2.386
TNS1 1.985
LTF 1.966
CFTR 1.886
RNASEH2A 1.880
EGR1 1.676
FABP4 1.646
GSTM2 1.354
GMNN 1.299
BARD1 1.190
SCGB2A1 1.118
MMP1 0.958
IDO1 0.931
ABCG2 0.829
NUP107 0.811
CDC45 0.795
ALPP 0.774
CTSS 0.761

Table 3: The KEGG pathway analysis of candidate genes and seed
genes.

Terms Candidate genes Seed genes
Pathways in
cancer MMP1,MSH6 PTGS2, HDAC1, JUN, SLC2A1

Cell cycle CDC7, CD45 HDAC1, CDC20
Methane
metabolism CAT MTHFR

4. Discussion

To illuminate the pathogenesis of CC, microarray profile E-
GEOD-39001 was analyzed to predict pathogenic genes by
means of a network method using known pathogenic genes
as seed genes, where the genes with interaction of the known
pathogenic genes were identified as candidate pathogenic
genes due to the hypothesis that interacting proteins generally
shared parallel functions. A total of 330 DEGs were identified
in CC tissues. Moreover, two intensely connected clusters
were extracted from the pathogenic network. Based on the
weight values of all the genes in pathogenic network, 52
candidate genes were screened out when the weight values
were more than 0.10. Among these, VIM had the highest
weight value. Pathway results showed that seed genes PTGS2,
HDAC1, JUN, and SLC2A1 were enriched in pathway in
cancer, seed genes HDAC1 and CDC20 were involved in
cell cycle, and seed gene MTHFR participated in methane
metabolism. Significantly, candidate genes MMP1, CDC45,
and CAT were also, respectively, enriched in the pathway in
cancer, cell cycle, and methane metabolism.
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In literature, matrix metalloproteinases (MMPs), a group
of proteases, have been indicated to play essential roles in the
degradation of basement membrane as well as extracellular
matrix (ECM) [42]. The deregulated ECM is demonstrated
to result in the cell abnormal behaviors and the failure of
organ function to lead to the incidence of cancer [43]. MMP1
is a member of MMPs, which exerts key functions in tumor
invasion and metastasis in many cancers [44]. In particular,
Nishioka and colleagues have revealed that MMP1 promoter
polymorphism influences the invasion of CC [45]. In our
study, MMP1 was found to be a candidate pathogenic gene
and enriched in the pathway in cancer. Based on these results,
we infer that MMP1 in our predicted pathogenic network is
tightly related with the pathogenic process and might be a
pathogenic gene in the development of CC.

Cell cycle plays important roles in cell proliferation aswell
as cell growth [46]. It is well known that dysregulation of
cell cycle brings about the aberrant cell proliferation which
is a feature of a set of human cancers [47]. Significantly,
Qin et al. [48] have indicated that CC cells are inhibited via
inducing cell cycle arrest. In the current study, our findings
argued for a significant role of cell cycle loss of control in
the pathogenesis of CC, and a candidate pathogenic gene
was screened out, for example, CDC45. CDC45 exerts an
important role in DNA replication including initiation and
elongation phases [49]. A recent study has also indicated that
CDC45 has a key role in late G1 [50]. Defect in replication
functions, for example, CDC45, leads to DNA damage as
well as chromosome rearrangements [51]. This alteration of
DNA replication can contribute to genome instability to
further result in the development of cancer [52]. Thus, as
demonstrated here, CDC45might be a promising pathogenic
gene in biology process of CC.

Methane, as one of end products of fermentation in
gastrointestinal system, rapidly appears in breath as do
fermentation gases including hydrogen when methane is
installed into the human colon [53]. Moreover, as early as
1992, Sivertsen et al. [54] have indicated that there is a
relationship between breath methane and colorectal cancer,
and the results are the same as that in 2013 offered byHolma et
al. [55]. In our work, another potential pathogenic gene CAT
was enriched in the pathway of methane metabolism. CAT,
located on the chromosome 11 in human, has highGCcontent
in the promoter [56]. Relative to normal samples, CAT has
been indicated to be downregulated in tumor tissues [27, 57].
In particular, the decreased CAT is connected with the high
concentration of hydrogenperoxide,which participates in the
activation of pathways to lead to the proliferation, migration,
and invasion of cancer cells [58]. Significantly, low level of
CAT was observed in the CC patients [59]. Together, we infer
that CAT is an important pathogenic gene to participate in
the metabolism process to further cause the initiation of CC.

Interestingly, in the current study, VIM gene has the
highest weight value in pathogenic network. As we all know,
vimentin encoded by VIM, as a major member of the inter-
mediate filament family, is especially expressed in connective
tissue [60, 61]. It is noteworthy that vimentin exerts vital
functions in cell adhesion, migration, and signaling [62].
Remarkably, VIM is an important target gene for various

cancers. For example, VIM has been demonstrated to be
methylated in advanced colorectal carcinomas and indicated
to serve as a diagnostic biomarker in the detection and
monitoring for colorectal carcinoma using stool and serum
samples [63]. Moreover, Costa et al. [64] have suggested that
VIM, as a marker, allows for early diagnosis of bladder cancer
using urine samples. Jung et al. [65] also have suggested
that VIM overexpression appears to positively influence the
proliferation and migration in CC. In light of these, we
infer that VIM might play important roles in the pathogenic
process of CC.

5. Conclusion

In conclusion, our results provide evidence that candidate
pathogenic genes such asMMP1, CDC45, and CAT and their
enriched pathways, respectively, of pathway in cancer, cell
cycle, and methane metabolism might be involved in the
pathogenesis of CC. Moreover, VIM might play important
roles in the pathogenic process of CC. We believe that the
results obtained above can provide theoretical guidelines
for future works in laboratory. Still, a mountain of work is
warrant to understand the pathogenic process extensively.
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