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Abstract

Objective

Our objective is to compare the predictive accuracy of four recently established outcome

models of patients hospitalized with coronavirus disease 2019 (COVID-19) published

between January 1st and May 1st 2020.

Methods

We used data obtained from the Veterans Affairs Corporate Data Warehouse (CDW)

between January 1st, 2020, and May 1st 2020 as an external validation cohort. The outcome

measure was hospital mortality. Areas under the ROC (AUC) curves were used to evaluate

discrimination of the four predictive models. The Hosmer–Lemeshow (HL) goodness-of-fit

test and calibration curves assessed applicability of the models to individual cases.

Results

During the study period, 1634 unique patients were identified. The mean age of the study

cohort was 68.8±13.4 years. Hypertension, hyperlipidemia, and heart disease were the most

common comorbidities. The crude hospital mortality was 29% (95% confidence interval [CI]

0.27–0.31). Evaluation of the predictive models showed an AUC range from 0.63 (95% CI

0.60–0.66) to 0.72 (95% CI 0.69–0.74) indicating fair to poor discrimination across all models.

There were no significant differences among the AUC values of the four prognostic systems.

All models calibrated poorly by either overestimated or underestimated hospital mortality.

Conclusions

All the four prognostic models examined in this study portend high-risk bias. The perfor-

mance of these scores needs to be interpreted with caution in hospitalized patients with

COVID-19.
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Introduction

Since the first reported case of COVID-19 in Wuhan, China, at the end of 2019, COVID-19

has rapidly spread throughout the globe shattering world economy and traditional way of life

[1]. As of August 1, 2020, more than 17 million laboratory-confirmed cases had been reported

worldwide. The number of infected individuals has surpassed that of SARS and MERS com-

bined. Despite the valiant public health responses aimed at flattening the curve to slow the

spread of the virus, more than 675000 people have died from the disease [2].

Numerous prognostic models ranging from rule based scoring systems to advanced machine

learning models have been developed to provide prognostic information on patients with

COVID-19 [3]. Such information is valuable both to clinicians and patients. It allows healthcare

providers to stratify treatment strategy and plan for appropriate resource allocation. As for

patients, it offers valuable guidance when advance directives are to be implemented. However,

initial description of these prognostic models has been based on patients from a localized geogra-

phy and time frame. These evaluations may thus be limited in scope of their predictability as con-

cerns have been raised about the applicability of such models when patient demographics change

with geography, clinical practice evolves with time, and when disease prevalence varies with both

[4, 5]. In response to the call for sharing relevant COVID-19 research findings, many of these

models have been published in open access forums before undergoing a peer review. The quality

of these models are further compromised by the relatively small sample size both in derivation

and validation [6]. Recently, Wynants and colleagues [7] conducted a systematic review of

COVID-19 models developed for predicting diagnosis, progression, and mortality from the infec-

tion. All models reviewed were at high risk of bias because of improper selection of control

patients, data overfitting, and exclusion of patients who had not experienced the event of interest

by the end of the study. Besides, external validation of these models was rarely performed. In the

present study, we sought to examine the external validity of four scoring models that have shown

excellent precision for predicting hospitalization outcome from COVID-19 [8–10].

Methods

Patients

We used data from the Veterans Affairs Corporate Data Warehouse (CDW) of all patients

tested positive on the reverse transcriptase polymerase chain reaction assay for severe acute

respiratory syndrome coronavirus 2 (SARS-CoV-2) between January 1st, 2020 and May 1st

2020. Data were extracted from CDW using structure query language (SQL) with pgAdmin4

PostgreSQL 9.6 on July 16, 2020. The de-identified database contained data of demographic

information, laboratory values, treatment processes, and survival data. We excluded patients

who had a length of stay <24 hours, who lacked vital signs or laboratory data, and who were

transferred to or from another acute care facility (because we could not accurately determine

the onset or subsequent course of their illness). The median time between the date the case

index tested positive for COVID-19 and the date of discharge (whether alive or dead) was

referred to as the median follow-up. All data analysis was done on the VA Informatics and

Computing Infrastructure workspace (VINCI). Access of the CDW for research was approved

by the Institutional Review Board of the VA Western New York Healthcare System. Because

the study was deemed exempt, informed consent was not required.

Missing data

Demographic and comorbidity data contained almost no missing data. However, many base-

line laboratory values had up to 20% missing data. When data are missing at random,
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statistical methods such as multiple imputation give less biased and realistic results compared

with complete case analysis [11]. However, the ordering of a laboratory test is likely driven by

factors that make assumptions underlying multiple imputation inaccurate. In the absence of a

standardized method to address missing data under these conditions, we have adopted the fol-

lowing approach: Missing data were imputed with the centered mean. A dummy variable

(called also an indicator variable) is added to the statistical model in order to indicate whether

the value for that variable is available or not [12]. When using the indicator method to handle

missing covariate data, the value for the missing variable is set to 1, otherwise the value is set to

0. Then, both the primary variable and the indicator variable are entered into the regression

model to predict the intended outcome. Then, both the primary variable and missingness indi-

cator were evaluated in a mixed-effects logistic regression model and the primary mean

imputed variable was considered.

External validation of risk models

We conducted initially a search strategy using PubMed and Medline databases between Janu-

ary 1st, 2020 and May 1st, 2020. The literature was done using the following keywords in com-

bination: 1) (COVID-19 OR SARS-CoV-2 OR 2019-nCoV) AND 2) (Mortality OR Death)

AND 3) (Predictive model OR Scoring system) (“S1 Table” in S1 File). Inclusion criteria were:

1) English-written peer reviewed studies; 2) hospitalized patients with COVID-19; 3) prognos-

tic models for predicting in-hospital mortality; and 4) sample size of no less than 100. Exclu-

sion criteria included duplicate studies and lack of access to full documents. Studies identified

by the search strategy were reviewed by title and abstract. Screening was conducted by two

independent investigators (YL and DES). Any disagreements were resolved by consensus. Fif-

teen studies were identified. Two were concise reviews leaving 13 studies for further evalua-

tion. Four prognostic models were selected based on availability of the predictive parameters

in the CDW [8–10, 13]. For each predictive model, we replicated the methods used by the orig-

inal authors to calculate the predicted hospital mortality from COVID-19. The main outcome

of interest was in-hospital mortality.

We incorporated the Transparent Reporting of a multivariable prediction model for Indi-

vidual Prognosis or Diagnosis (TRIPOD) principles for validating each of the selected predic-

tive models [14]. The risk of bias for each predictive model was evaluated by the Prediction

model Risk Of Bias Assessment Tool (PROBAST) described by Moons and colleagues [15].

Statistical analysis

The normality of continuous variables was assessed using the Kolmogorov–Smirnov test. Con-

tinuous variables with and without normal distribution were reported as mean (standard devi-

ation (SD)) and median (interquartile range (IQR)), respectively. Categorical variables were

presented as number (percentage). Continuous variables with or without normal distribution

between survivors and non-survivors were compared using t-test and Mann–Whitney U test,

respectively. Comparisons of categorical variables were performed using Chi squares tests.

Receiver operating characteristic (ROC) curves were drawn for each model by plotting sen-

sitivity versus one minus specificity. The area under the receiver operating characteristic curve

(AUC) was used to evaluate the discriminatory capacity of the selected models [16]. An ideal

discrimination produces an AUC of 1.0, whereas discrimination that is no better than chance

produces an AUC of 0.5. Based on a rough classifying system, AUC can be interpreted as fol-

lows: 90–100 = excellent; 80–90 = good; 70–80 = fair; 60–70 = poor; 50–60 = fail [17]. Pair-

wise comparison of the area under the ROC curve for each model was performed according to

the method described by Hanley and McNeil [16]. If P is less than the conventional 5% (P<
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.05), the compared areas are considered statistically different. Calibration was assessed with

the Hosmer–Lemeshow goodness-of-fit χ2 estimates by grouping cases into deciles of risk

[18]. The method involves sorting the predictive probabilities of death in ascending order and

dividing the total number of cases into 10 equally distributed subgroups or deciles. Calibration

plots were provided to show the relationship between model-based predictions of mortality

and observed proportions of mortality using the loess algorithm [19]. The non-parametric

bootstrapping method was used to calculate the 95% confidence intervals (CIs) of both dis-

crimination and calibration estimates [20]. These CIs were reported using the percentile

method, or bias corrected method if the estimation bias was greater than 25% of the standard

error [21]. All analyses were performed using STATA 15.0 (STATA Corp). A P-value less than

.05 was considered statistically significant.

Results

A total of 1634 patients were hospitalized for COVID-19 between January 1, 2020 and May 1,

2020. The majority of patients were male (95%) with 47% identified as Caucasian, 43% as Afri-

can American, and 10% as Latino. Fever (65%), dyspnea (41%), and cough (32%) were the

three most common manifestations at hospital admission. The mean age of the cohort was

68.8±13.4 years. Fifty percent of the group had three or more comorbidities. Hypertension was

the most common comorbidity, followed by hyperlipidemia, and heart disease. The median

time from illness onset to admission was 7.8 days (interquartile range 1.0–14.2). Of the 817

patients treated in the intensive care units, 478 (59%) required invasive mechanical ventilation.

Overall, 73.8% received at least one antibiotic treatment during their hospital stay. Almost half

of the patients had received azithromycin and/or hydroxychloroquine. After a median follow-

up of 58 (IQR, 50–68) days, there were 475 deaths (overall mortality, 29%) for a mortality rate

of 12 (95%CI, 11–12) per 1000 patient-days.

The clinical characteristics of survivors and non-survivors of the CDW cohort are depicted

in “Table 1”. In univariate analysis, age, current tobacco smoker, high burden of comorbidities,

lymphopenia, thrombocytopenia, liver function abnormalities, and elevated procalcitonin and

D-dimer levels were associated with mortality. Compared with survivors, non-survivors were

more likely to receive vasopressors, to require mechanical ventilation, and to develop compli-

cations including acute respiratory distress syndrome, acute renal failure, and septic shock.

A summary of models methodology is depicted in “S2 Table” in S1 File. “Table 2” shows the

independent risk variables and corresponding odds ratios of the four prognostic models. All

four models were classified as overall high ROB either because of flawed methods of data anal-

ysis pertaining to handling of missing data or lack of validation cohort “S3 Table” in S1 File.

The predictive performances of the four models on the CDW cohort are presented in

“Table 3”. The AUCs indicate inferior discriminative power across all models compared to the

AUCs obtained by the derivation cohorts. Pair-wise comparisons of the AUCs were performed

by using the method described by Hanley and McNeil [22] “Table 4”. Overall the best discrimi-

nation was obtained by the scoring model proposed by Shang et al. [9] which attained signifi-

cance with respect to Chen et al. [8] and Yu et al. [10] models (AUCs 0.72 (95% CI 0.69–0.74)

versus 0.68 (0.66–0.70) and 0.63 (95% CI 0.60–0.66); respectively) “Fig 1”. The least discrimi-

natory model was the model described by Yu et al. [10] with an AUC of 0.63 (95% CI 0.60–

0.66).

The Hosmer–Lemeshow goodness-of-fit test reveals poor calibration (p< 0.05) for all the

models “Table 3”. Calibration was further explored by plotting the observed to expected fre-

quency of death for each quintile of every model “Fig 2”. The Chen et al. model [8] showed a

departure from expected risks at the tail of risk distribution for each of the three endpoints
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Table 1. Comparison of baseline characteristics and treatment between survivors and non-survivors of the external validation group.

Study population N = 1,634 Missing observation (%) Survivors N = 1,159 Non-survivors N = 475 P value

Age, years 68.8±13.4 0 66.1±13.5 75.6±10.6 <0.001

Sex, n (%) 0 0.004

Male 1553 (95) 1,090 (94) 463 (97)

Female 81 (5) 69 (6) 12 (3)

Race, n (%) 0 0.24

Caucasians 772 (47) 562 (48) 210 (44)

Black 699 (43) 481 (42) 218 (46)

Latinos 163 (10) 116 (10) 47 (10)

BMI, kg/m2 28 (24–33) 1.0 27 (23–32) 29 (25–33) <0.001

Current smoker, n(%) 171 (10) 0 104 (9) 67 (14) 0.002

Comorbidities, n (%)

COPD 404 (25) 0 261 (23) 143 (30) 0.001

Diabetes mellitus 801 (49) 0 544 (47) 257 (54) 0.008

Hypertension 1208 (74) 0 839 (72) 369 (78) 0.03

CAD 461 (28) 0 290 (25) 171 (36) <0.001

Heart failure 299 (18) 0 177 (15) 122 (26) <0.001

Chronic renal failure 111 (7) 0 74 (6) 37 (8) 0.31

CVD 85 (5) 0 49 (4) 36 (41) 0.006

Liver cirrhosis 65 (4) 0 47 (4) 18 (4) 0.8

HIV infection 32 (2) 0 22 (2) 10 (2) 0.784

Charlson Comorbidity Index 3 (1–6) 0 2 (1–5) 4(2–7) <0.001

ICU admission 817 (50) 0 462 (39) 355 (74) <0.001

Signs and Symptoms, n(%)

Fever 1064 (65) 0 764 (66) 300 (63) 0.29

Cough 530 (32) 0 414 116 (24) <0.001

Dyspnea 666 (41) 0 463 203 (43) 0.29

Fatigue 251 (15) 0 177 74 (16) 0.87

Diarrhea 165 (10) 0 132 33 (7) 0.007

Laboratory results, n(%)

WBC, x109/L 6.2 (4.8–8.4) 1.3 6 (4.7–8) 6.7 (5.1–9.7) <0.001

Lymphocytes, x109/L 0.88 (0.58–1.25) 1.9 0.92 (0.62–1.3) 0.77 (0.49–1.07) <0.001

Hemoglobin, g/L 13.25 (11.7–14.6) 9.7 13.6 (11.9–14.7) 12.9 (11.4–14.5) 0.2

Platelets, x109/L 179 (128–230) 5.8 193 (150–246) 161 (102–221) <0.001

Creatinine 1.3 (1.0–1.9) 0.1 1.21 (0.95–1.66) 1.52 (1.1–2.5) <0.001

AST, U/L 39 (26–58) 6.7 37 (25–55) 45 (29–71) <0.001

ALT, U/L 29 (19–44) 6.7 29 (1–44) 29 (19–46) 0.87

Procalcitonin, ng/mL 0.17 (0.08–0.46) 9.1 0.13 (0.07–0.3) 0.32 (0.13–1.21) <0.001

D-Dimer, ug/mL 215 (1.57–617) 18.7 183.5 (1.2–524.0) 297.5 (2.7–868.5) <0.001

Treatment, n(%)

Mechanical ventilation 478 (29) 0 190 (16) 288 (61) <0.001

Remdesivir 86 (5) 0 64 (6) 22 (5) 0.46

Hydroxychloroquine 747 (46) 0 493 (43) 254 (53) <0.001

Interleukin6-inhibitor 261 (16) 0 182 (16) 79 (17) 0.64

Vasopressors 374 (23) 0 144 (12) 230 (48) <0.001

Complications

ARDS 263 (16) 0 115 (9.9) 148 (31) <0.001

Acute renal failure 813 (49) 0 472 (41) 341 (72) <0.001

(Continued)
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Table 1. (Continued)

Study population N = 1,634 Missing observation (%) Survivors N = 1,159 Non-survivors N = 475 P value

Septic shock 530 (32) 0 273 (24) 257 (54) <0.001

ARDS = Acute Respiratory Distress Syndrome

AST = Aspartate transaminase

ALT = Alanine transaminase

BMI = Body Mass Index

CAD = Coronary Artery Disease

CVD = Cerebrovascular Disease

COPD = Chronic Obstructive Lung Disease

https://doi.org/10.1371/journal.pone.0244629.t001

Table 2. Odds ratios and 95% confidence intervals of the components of the three predictive models.

Parameters Chen et al. [8] Shang et al. [9] Yu et al. [10] Wang et al. [13]

Sample Size 1590 452 1464 296

Age, years 1.11 (1.05–1.17)

<65 1.0

65–74 3.43 (1.24–9.5)

�75 7.86 (2.44–25.35)

Age, years

<60 1.0

60–75 1.82 (0.41–8.17)

>75 15.07 (2.27–99.78)

Age, years

<65 1.0

�65 2.11 (1.39–3.21)

Sex

Female 1.0

Male 2.02 (1.37–2.99)

Hypertension 1.82 (0.5–6.63)

Diabetes mellitus 2.52 (1.62–3.94)

CAD 4.28 (1.14–16.13) 5.61 (1.39–22.62) 3.04 (0.45–20.74

CVA 3.1 (1.07–8.94)

Dyspnea 3.96 (1.42–11.0)

AST, U/L

>40 2.2 (1.1–6.73)

PCT, ng/ml

>0.5 8.72 (3.42–22.28)

>0.15 20.74 (5.14–83.75)

�0.05 3.13 (2.02–4.84)

Lymphocytes, %

<8% 3.66 (1.01–13.38)

Lymphocytes, x109/L

<1.1 1.45 (0.98–2.15)

D-dimer, ug/ml

>0.5 4.45 (1.37–14.51)

https://doi.org/10.1371/journal.pone.0244629.t002
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selected (14, 21, and 28 days predicted mortality) “Fig 2A–2C”. The predictions overestimated

the probability of death for high risk patients. This was also the case for the model by Yu et al.

[10] “Fig 2E”. In contrast, the model by Wang et al. [13] underestimated the probability of

death for low risk patients and overestimated it for high risk patients “Fig 2F” while Shang

et al. model [9] consistently overestimated mortality risk across the range of total scores “Fig

2D”.

Discussion

This is, to our knowledge, the first study to evaluate and externally validate risk prediction

models of in-hospital mortality from COVID-19 in a large cohort. Our results showed that

external validation of all four selected scores was not commensurate with the performance

observed in the primary derivation cohorts underscoring that model evaluation can generally

be generalizable only when the model has been tested in a separate cohort exposed to similar

risk pressure.

With the rapid spread of COVID-19, healthcare providers struggle to institute clinical strat-

egies aiming at optimizing outcomes and reducing resource consumption. In response, more

than two dozen prediction models have been destined for publications in just over 12 weeks

period since COVID-19 was declared a pandemic by the WHO [3]. Many of the prediction

models were developed as simplified scoring system or nomograms. Despite the excellent pre-

dictive accuracy shown in the initial derivation, the validity of these models has not been con-

firmed independently. Based on our observations, the performance of these prognostic

systems varied in their ability to discriminate between survivors and non-survivors and were

labeled overall either fair or poor in contrast to their original designation as excellent or good.

We should point out that the four models originated from mainland China that was initially

Table 3. Summary of the discrimination and calibration performance for each model.

AUCd AUCv HLχ2 HL(p)

Chen et al. [8] 0.91 (0.85–0.97) 0.68 (0.66–0.70)

14d mortality 0.67 (0.64–0.70) 377.3 <0.001

21d mortality 0.68 (0.65–0.71) 1015.8 <0.001

28d mortality 0.69 (0.66–0.72) 1805.3 <0.001

Shang et al. [9] 0.92 (0.87–0.97) 0.72 (0.69–0.74) 44.3 <0.001

Yu et al. [10] 0.77 (0.73–0.81) 0.63 (0.60–0.66) 124.4 <0.001

Wang et al. [13] 0.88 (0.79–0.94) 0.69 (0.66–0.72) 62.8 <0.001

AUCd = Area under the curve of the derivation model; AUCv = Area under the curve of the validation model;

HL = Hosmer Lemeshow

https://doi.org/10.1371/journal.pone.0244629.t003

Table 4. Pair-wise discrimination model comparison.

Chen (14d) Chen (21d) Chen (28d) Shang Yu

Diff p Diff p Diff p Diff p Diff p
Chen (14d)

Chen (21d) 0.003 0.87

Chen (28d) 0.015 0.48 0.011 0.56

Shang 0.044 0.03 0.041 0.04 0.029 0.12

Yu 0.047 0.03 0.051 0.01 0.063 0.002 0.09 <0.001

Wang 0.016 0.46 0.012 0.54 0.0006 0.97 0.028 0.13 0.063 0.001

https://doi.org/10.1371/journal.pone.0244629.t004
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Fig 1. Receiver-operating characteristics curves of the prognostic models.

https://doi.org/10.1371/journal.pone.0244629.g001

Fig 2. Calibration plots. The green circles denote point estimates and the green vertical lines 95% confidence intervals for risk groups. Fewer than 10 groups in a plot

indicate absence of cases in decile risk groups. The dashed line represents a perfect agreement between observed and expected mortality estimates. The blue line

indicates the fitted loess curve. (A-C) represent the calibration plots generated from Chen et al. (D) represents the calibration plot generated from Shang et al. (E)

denotes the calibration plot generated from Yu et al. (F) illustrates the calibration plot generated from Wang et al.

https://doi.org/10.1371/journal.pone.0244629.g002
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hard hit by the pandemic. With the large disparity in medical resources among the Chinese

provinces [23], the expected models can only be accurate under the same clinical setting the

model was derived under. As such, the risk prediction models developed in a different geo-

graphic setting can be less accurate in providing risk-adjusted outcomes when applied exter-

nally [24].

Various statistical and clinical factors may lead to a prognostic model to perform poorly

when applied to other cohorts [25]. First, the models presented in this study are parsimonious,

making a variety of assumptions in order to simplify applicability and avoid overfitting the

limited and often incomplete data available. Even when these predictive models being con-

structed with similar variables such as age, presence of comorbidities, and laboratory values

(procalcitonin, C-reactive protein, or D-dimer), the thresholds selected for each of these vari-

ables vary significantly for a given geographic locality [26]. Second, these models have several

sources of uncertainty, including the definition of parameters entered into the final model, dif-

ferences in handling missing data, and most importantly, non-comparable traits (genetic

diversity), which can weaken model prognostication and lessen its discrimination accuracy

[27, 28].

Even when discrimination can be useful for generic risk stratification, the observed poor

calibration underlines the fact that the applicability of these prognostic scoring models to het-

erogeneous systems of health care delivery dissimilar to the derivation cohorts may not be fea-

sible. The four prognostic models showed shortcomings with regard to calibration, tending to

over-predict or under-predict hospital mortality. This may partly reflect the inclusion criteria

of the sample–in which, for example, do not resuscitate patients were not included–and

improvements in care (e.g. timing to transfer to ICU or prone position in management of

ARDS) since the models were first developed. A relevant factor in explaining the divergence in

performance accuracy is that the time from onset of illness to admission was not similar

among all cohorts. Wang and colleagues [13] reported the shortest interval of a median of 5.0

days for survivors and 6.8 days for non-survivors while Yu and coworkers [10] reported a

median of 10.0 days for both the survivors and non-survivors. Our interval was comparable to

the study of Shang and colleagues [9] which may explain the higher performance of that study

using the CDW cohort.

It could be argued also that our CDW cohort consisted of predominantly male, Caucasian

and African American patients with multiple comorbidities which are different from the

patient demographics in the original training dataset and, as such, may impose significant

strain on the accuracy of the risk estimates. Age-standardized mortality in men was shown to

be almost double compared to that of women across all age groups [29]. Reports have similarly

suggested a disproportionate mortality rates among Black and Latino residents compared with

their proportion of the US population. Age and population adjusted Black mortality was

reported more than twice that for Whites [30, 31]. Accordingly, the predictive models might

be expected to give different predictions of mortality risk in our validation cohort. While this

may cause prognostic systems to underestimate the mortality rate at the lower end of the cali-

bration curve, only two out of the four tested models exhibited this pattern. Multiple studies

have demonstrated a decreasing ratio of observed mortality to expected mortality with time

[32, 33]. Changing risk profiles, advance treatment modalities, and changes in the association

of risk factors with outcomes can all contribute to poor calibration. Given that the CDW

cohort overlaps the time period during which the four models were constructed, we cannot

attribute the failure of the Hosmer-Lemeshow tests to this phenomenon [34]. Consideration of

other variables, such as severity of comorbid diseases, lifestyle habits (smoking or alcohol

intake), and prescribed treatments may improve the predictive accuracy of these models.
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Alternatively, an ensemble learning model [35] which uses multiple decision-making tools can

be implemented to produce a more accurate output [36].

Our study has its own strengths but also several limitations. The systematic nature of the

model identification, the large sample size in which the models were validated and the

opportunity to compare the performance among the predictive models are all substantial

strengths. Conversely, at the time our analysis was conducted, the number of COVID-19

cases was relatively small compared to the most recent statistics of veterans infected with

COVID-19. This limits the precision in re-estimating the baseline prevalence of the disease,

which may have hampered the calibration performance of the model. However, CDW is

undergoing continuous update and re-conducting this validation in the large expanded

cohort may mitigate some of these issues related to selection bias. Such validations in large

datasets have been advocated to ensure developed prediction models are fit for use in all

intended settings [37]. Finally, while previous studies have shown that physicians usually

overestimate patients’ mortality [38], there is limited evidence so far to suggest that prog-

nostic models represent a superior solution when their performance in actual clinical prac-

tice is taken into consideration.

Conclusions

In conclusion, predictions arising from risk models applied to cohorts drawn from a differ-

ent distribution of patient characteristics should not be adopted without appropriate valida-

tion. The variability in predicted outcomes as we have documented in this analysis

highlights the challenges of forecasting the course of a pandemic during its early stages [7].

To achieve a more robust prediction model, the focus should be placed on developing plat-

forms that enable deployment of well-validated predictive models and prospective evalua-

tion of their effectiveness. We are actively engaged in pursuing these objectives at the

Veterans Affairs.
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