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Abstract
Background/Aims: The stepped-wedge cluster randomised trial design has received substantial attention in recent
years. Although various extensions to the original design have been proposed, no guidance is available on the design of
stepped-wedge cluster randomised trials with interim analyses. In an individually randomised trial setting, group sequen-
tial methods can provide notable efficiency gains and ethical benefits. We address this by discussing how established
group sequential methodology can be adapted for stepped-wedge designs.
Methods: Utilising the error spending approach to group sequential trial design, we detail the assumptions required for
the determination of stepped-wedge cluster randomised trials with interim analyses. We consider early stopping for effi-
cacy, futility, or efficacy and futility. We describe first how this can be done for any specified linear mixed model for data
analysis. We then focus on one particular commonly utilised model and, using a recently completed stepped-wedge clus-
ter randomised trial, compare the performance of several designs with interim analyses to the classical stepped-wedge
design. Finally, the performance of a quantile substitution procedure for dealing with the case of unknown variance is
explored.
Results: We demonstrate that the incorporation of early stopping in stepped-wedge cluster randomised trial designs
could reduce the expected sample size under the null and alternative hypotheses by up to 31% and 22%, respectively,
with no cost to the trial’s type-I and type-II error rates. The use of restricted error maximum likelihood estimation was
found to be more important than quantile substitution for controlling the type-I error rate.
Conclusion: The addition of interim analyses into stepped-wedge cluster randomised trials could help guard against
time-consuming trials conducted on poor performing treatments and also help expedite the implementation of effica-
cious treatments. In future, trialists should consider incorporating early stopping of some kind into stepped-wedge clus-
ter randomised trials according to the needs of the particular trial.

Keywords
Stepped wedge, cluster randomised trial, group sequential, interim analyses, error spending

Introduction

In a stepped-wedge (SW) cluster randomised trial
(CRT), an intervention is introduced across several
time periods, with the time period in which a cluster
begins receiving the experimental intervention assigned
at random. Although the SW-CRT design was actually
first proposed over 30 years ago,1 it has only been in
recent years that it has gained substantial attention in
the trials community.

Numerous papers have now been published contain-
ing new research on the design. Methodology2–5 and
software6 now exist to determine required sample sizes,
and several results on optimal SW-CRT designs have
been established,7,8 while extensions to the standard

design to allow for multiple levels of clustering have
also been presented.9

However, as has been noted, little is known about
the design of SW-CRTs with interim analyses.10 In an
individually randomised trial setting, it has been well
established that group sequential methods can bring
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substantial ethical benefits and efficiency gains to a
trial.11 Explicitly, allowing the early stopping of a trial
for either efficacy or futility can reduce the number of
patients administered an inferior intervention and allow
efficacious interventions to either move to later phase
testing or to be rolled out across a population with
greater speed. Given that SW-CRTs can be highly
expensive because of the large number of time periods
and measurements they can require, it would be advan-
tageous to be able to incorporate interim analyses into
the design.

In this article, we present methodology for establish-
ing such designs. We then conclude with a discussion of
the practical and methodological considerations associ-
ated with the use of interim analyses.

Methods

Notation, hypotheses, and analysis

We assume that a SW-CRT is to be carried out on C

clusters over T time periods, with m measurements per
cluster per time period. We do not make a distinction
as to whether across the time periods these m measure-
ments are on different patients (a cross-sectional design)
or the same patients (a cohort design). Moreover, we
note that our methodology could be easily extended to
allow the number of measurements per cluster to vary
across the time periods according to some pre-specified
rule. For simplicity, we do restrict focus to the classical
case of a ‘balanced complete-block’ SW-CRT however.
In this case, a single experimental intervention is com-
pared to a single control or placebo, each cluster is pres-
ent in every time period, each cluster begins in the
control condition and finishes in the experimental con-
dition, and an equal (or as equal as possible) number of
clusters switch to the intervention in each time period.

We next assume that the accrued data from our SW-
CRT trial will be normally distributed, and a linear
mixed model has been specified for analysis as

y=Db+ Zu+ e

where

� y is the vector of responses, that is, the measure-
ments taken as part of the trial;

� b=(b1, . . . ,bp)
T is a vector of p fixed effects. For

example, this may commonly contain among other
factors fixed effects for the time period;

� D is the design matrix which links y to b. That is, D

ensures the correct fixed effects are included in the
formulae for each measurement;

� u is a vector of random effects which follows a spec-
ified multivariate normal distribution, u;N (0,G).
Commonly, one may expect u to contain random
effects for cluster for example;

� Z is the design matrix which links y to u, that is, it
performs the same job for u as D does for y;

� e is a vector of residuals which follows a specified
multivariate normal distribution, e;N (0,R). That
is, e accounts for the variation in the measurements
not explained by the fixed and random effects.

Note that, in particular, it is the prescribed u, G, and
Z that would likely differ for cross-sectional and cohort
designs.

We assume the final element of b, bp, is our para-
meter of interest: the direct effect of the experimental
intervention relative to the control. We denote this ele-
ment for brevity by t and test the following one-sided
hypotheses

H0 : t� 0, H1 : t.0

Moreover, we assume it is desired to control the
type-I error rate of this test to some level a when t = 0

and to have power to reject H0 of at least 1� b when
t = d. Note that the determination of SW-CRT designs
for two-sided hypotheses is also easily achievable using
our methods. In addition, note that by the above we
are not considering treatment by period interactions.

We specify a set of integers T = ft1, . . . , tjT jg, with
t1 � 1 and tjT j= T . With this set, we employ interim
analyses after time periods t 2T . For example,
T = f2, 3, 5g would imply interim analyses were to be
conducted in a trial after time periods 2, 3, and 5. Note
that we always schedule an analysis at the end of the
trial, that is, after time period T . Furthermore, it is
important to ensure that after time period t1 at least one
cluster has received the experimental intervention in
some time period, otherwise estimating t is impossible.

With the above, y;N (Db,S), where S= ZGZT +R,
and after each period t 2T , we acquire an estimate
b̂t =(b̂1t, . . . , b̂pt)

T for b through the standard maxi-
mum likelihood (ML) estimator of a linear mixed
model, the generalised least squares estimate

b̂t =(DT
t S
�1
t Dt)

�1DT
t S
�1
t yt

Here, the subscript t indices indicate that we are con-
sidering response data accrued in the first t time periods
and the associated implied design matrices.

Following the notation of Jennison and Turnbull,11

we acquire t̂t = b̂pt, our estimate for t. This leads to the
following standardised Wald test statistic

Zt =
t̂tffiffiffiffiffiffiffiffiffiffiffiffiffiffi

var(t̂t)
p = t̂tI

1=2
t

where

It = f(DT
t S
�1
t Dt)

�1
½p, p�g

�1

is the information for t after time period t.
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Note that all of b may not be estimable at each anal-
ysis t 2T . However, by our requirement above that at
least one cluster has received the experimental interven-
tion in one of the time periods 1, . . . , t1, it will always
be possible to estimate t. In this case, the matrix
inverses in the formulae for b̂t and I

1=2
t above should

be interpreted as generalised inverses.11

While group sequential methodology is typically
associated with designs with an independent increment
structure, the important results hold for the more gen-
eral scenario utilising linear mixed models considered
here. In particular, we have that11

E(Zt)= tI
1=2
t , t 2T

cov(Zti , Ztj )= (Iti=Itj)
1=2, ti, tj 2T , ti� tj

Finally, given futility and efficacy bounds,
ft1 , . . . , ftjT j and et1 , . . . , etjT j , respectively, ft� et for all
t, the following stopping rules are employed

� For t 2 f1, . . . , T � 1g
- If t 62T continue through to the end of time

period t + 1, since stopping is only permitted at
our pre-specified times;

- If t 2T
* if Zt� ft stop the trial and accept H0;
* if Zt.et stop the trial and reject H0;
* if ft\Zt� et continue through to the end of

period t+ 1.

� For t= T

- if Zt� ft accept H0;
- if Zt.et reject H0.

We denote by vR 2T the interim analysis at which
the trial is stopped and by cR the reason for stopping.
That is, cR = 1 if H0 is rejected and is 0 otherwise.
Before a trial, vR and cR are random variables. We
can, however, compute the probability vR =v and
cR =c for any true treatment effect t through the fol-
lowing integral

P(vR =v,cR =cjt)

=

Zu(1,v,c)

l(1,v,c)

. . .

Zu(tjT j,v,c)

l(tjT j,v,c)

f x, r(t, jT j) 8 I
1=2,L

n o

dxjT j . . . dx1

where

� ffx,m,Lg is the probability density function of a
multivariate normal distribution with mean

m=(m1, . . . ,mk)
T and covariance matrix L,

dim(L)= k 3 k, evaluated at vector
x=(x1, . . . , xk)

T ;
� r(a, b)= (a, . . . , a)T is the vector formed from

repeating a b times;
� 8 denotes the Hadamard product of two vectors,

that is,
(a1, . . . , an)

T
8 (b1, . . . , bn)

T =(a1b1, . . . , anbn)
T ;

� I=(It1 , . . . , ItjT j )
T is the vector of information lev-

els for the estimated treatment effects across
the interim analyses, and its square root is taken in
an element wise manner. That is, f(It1 , . . . ,
ItjT j )

Tg1=2 =(I
1=2
t1

, . . . , I
1=2
tjT j )

T ;
� l and u are functions that tell us the lower and

upper integration limits for the test statistic Zt given
values for t, v, and c. For example, l(1, 2, 1)= f1
and u(1, 2, 1)= e1, while l(2, 2, 1)= e2 and
u(2, 2, 1)=‘;

� L is the covariance matrix of the standardised test
statistics at and across each interim analysis, that is

L=

cov(Zt1 , Zt1 ) . . . cov(Zt1 , ZtjT j )

..

. . .
. ..

.

cov(ZtjT j , Zt1 ) . . . cov(ZtjT j , ZtjT j)

0
B@

1
CA

The probability that H0 is rejected for any t can then
be computed as

P(Reject H0jt)=
X
v2T

P(vR =v,cR = 1jt)

Moreover, we can determine the expected number of
measurements that would be required by a design for
any t using the following formulae

E(M jt)=
X

v2T

X
c2f0, 1g

mCvP(vR =v,cR =cjt)

Here, mCv is the number of measurements that are
required when the trial stop after time period v. With
the above, the operating characteristics of any specified
SW-CRT with interim analyses can be determined.
However, at the design stage, one needs to be able to
ascertain values for C, m, T , the ft, and et, to convey
desired operating characteristics. This is achieved here
using error spending methodology as discussed in the
following section.

Error spending

Numerous procedures have today been proposed for
the determination of group sequential trial designs.
One of the earliest and most flexible such methods is
the error spending approach.12 In this case, functions f
and e are used to determine the amount of type-I and
type-II error ‘spent’ at a particular interim analysis.
Here, as an example, we utilise this approach,
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specifically employing a family of spending functions
indexed by parameters gf and ge given by

e(z)=azge

f(z)=bzgf

We define

pf1, tg=P(vR = t,cR = 1 j 0),
pf2, tg=P(vR = t,cR = 0 j d):

Thus, pf1, tg and pf2, tg are the probabilities of com-
mitting a type-I and type-II error, respectively, after
time period t.

Then, for given choices of C, T and m, the values of
the ft and et are found iteratively as the solutions to

pf1, t1g=e(It1=ItjT j)

pf2, t1g=f(It1=ItjT j )

and

pf1, tig=e(Iti=ItjT j)� e(Iti�1
=ItjT j)

pf2, tig=f(Iti=ItjT j)� f(Iti�1
=ItjT j)

for i 2 f2, . . . , jT j � 1g. Then, for convenience, we
force fjT j= ejT j so that a decision is made at the final
analysis, and to prioritise the trial to have the desired
type-I error rate, ejT j is taken as the solution to

pf1, tjT jg=e(ItjT j=ItjT j)� e(ItjT j�1
=ItjT j)

Note that one can prevent early stopping for futility
or efficacy by setting ft1 = . . . = ftjT j�1

=�‘ or
et1 = . . . = etjT j�1

=‘, and ignoring f or e, respectively,
for i 2 f1, . . . , jT j � 1g.

Now, all that remains is to be able to identify the C,
T , and m that provide the desired power. To do this, a
choice must be made as to which two of these three
parameters are pre-specified. A numerical search is then
performed over the third parameter. That is, we search
for the minimal value of this parameter that ensures

P(Reject H0jd) � 1� b

For individually randomised trials, this search is
usually done assuming the relevant parameter is contin-
uous, with it then rounded up to the nearest allowable
integer to ensure the desired power is met. The ability
to do this here depends upon having an explicit closed-
form expression for It for any C, T , and m. Such a for-
mulae is available for a range of SW-CRT designs and
analysis models.2,8,13 For some scenarios, however, to
determine the required values of these parameters, an
algorithm for discrete optimisation would need to be
utilised. With this though, we have then completely
described a means for researchers to determine SW-

CRT designs with interim analyses and desired operat-
ing characteristics. In addition, our formula for
P(Reject H0jt) and E(M jt) allow the performance of
these sequential designs to be compared to both each
other, and to the corresponding classical fixed design,
across all possible values of t.

Hussey and Hughes model

In this section, and for the majority of the remainder of
the article, we focus on cross-sectional SW-CRTs since
the majority of research into the design has been set in
this domain. This means that our value of m can now
be interpreted as the sample size required per cluster
per time period and M by the total required number of
patients.

In addition, for all considered examples, we utilise
the following model which has been proposed for the
analysis of cross-sectional SW-CRTs2

yijk =m+pj + tXij + ci + eijk

where

� yijk is the response of the kth individual
(k = 1, . . . ,m) in the ith cluster (i= 1, . . . ,C) and
jth time period ( j= 1, . . . , T );

� m is an intercept term;
� pj is the fixed effect for the jth period (with p1 = 0

for identifiability purposes);
� t is the fixed treatment effect on the experimental

intervention relative to the control;
� Xij is the binary treatment indicator for the ith clus-

ter and jth time period. That is, Xij = 1 if cluster i

receives the intervention in time period j. We will
denote by X the matrix formed from the Xij;

� ci is the random effect for cluster i, with
ci;N (0,s2

c);
� eijk is the individual-level error such that

eijk;N(0,s2
e).

Note that specification of the matrices G and R from
earlier therefore requires only values for s2

c and s2
e to

be provided. In addition, one could extend the above
model to allow a cohort design, or cluster by period
interactions.8,13

Our reasons for focusing on this model are twofold.
First, as a commonly studied and utilised model, it is a
sensible choice to consider when determining and
exploring the performance of example sequential SW-
CRT designs. Additionally, in this case, if C and T are
both pre-specified, the search over m can be done
assuming it to be continuous since2

It =
(s2 + ts2

c)(CU �W )+s2
c(U

2 � CV )

Cs2(s2 + ts2
c)
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where s2 =s2
e=m and

U =
XC

i= 1

Xt

j= 1

Xij

V =
XC

i= 1

Xt

j= 1

Xij

 !2

W =
Xt

j= 1

XC

i= 1

Xij

 !2

Software for determining designs in this scenario is
available from https://sites.google.com/site/jmswason/
supplementary-material.

To summarise the above, a design in this scenario
can now be determined given values for C, T , s2

c , s2
e , a,

b, d, T , a choice for whether to allow early stopping
for futility, efficacy, or futility and efficacy, and then
the specification of ge and/or gf as appropriate.

Unknown variance

In the above, we required all variance parameters to be
fully specified. In practice, the key variance parameters
of any analysis model will not be known precisely.
Instead pre-trial estimates are provided, which
we denote for the Hussey and Hughes model by ~s2

c and
~s2

e . If there is little confidence in these assumed
values, a sample size re-estimation design would be
more appropriate to provide the desired power, and the
use of interim analyses as presented here would be
unwise.

Even in the case where there is strong confidence
in their values, it would often still be preferred to
utilise the values for the variance parameters estimated
from a trial’s accrued data in the formation of the test
statistic at each interim analysis, rather than the speci-
fied pre-trial estimates ~s2

c and ~s2
e . Specifically, we wish

to take

Zt = t̂t Î
1=2
t

where Ît is the observed information at analysis t. Use
of these test statistics can lead to inflation of the type-I
error rate above the nominal level if no adjustment to
the stopping boundaries identified under assumed
known variance is made. For this adjustment, a quan-
tile substitution procedure was previously proposed.14

To relax the requirement for the variance parameters
to be specified, we here consider the performance of
this methodology at controlling the type-I error rate to
the desired a in our sequential SW-CRT designs.
Explicitly, a SW-CRT design with interim analyses is
determined, and then the boundaries ft and et are
altered to ft� and et�, which are the solutions of the fol-
lowing equations

Z‘

ft

ffx, 0, 1gdx=

Z‘

ft�

ufx, ntgdx

Z‘

et

ffx, 0, 1gdx=

Z‘

et�

ufx, ntgdx

for t 2T . Here, ufx, ng is the probability density func-
tion of a central t-distribution with variance 1, and
degrees of freedom n, evaluated at x. For the explored
examples here, utilising the Hussey and Hughes model,
we take nt to be the classical decomposition of degrees
of freedom in balanced, multilevel analysis of variance
(ANOVA) designs15

nt =mCt � C � t

In this instance, it is also necessary to decide whether
to utilise ML, or restricted error maximum likelihood
(REML) estimation, when fitting the chosen linear
mixed model at each interim analysis. Here, we con-
sider the performance of both options.

Thus, in total, the performance of each of four pos-
sible analysis procedures was explored: ML or REML
estimation, with or without boundary adjustment
through quantile substitution. To estimate empirical
rejection rates, 100,000 trials were simulated for each
considered parameter set.

Note that for simplicity, when generating data pj

was set to 0 for j= 1, . . . , T , and m0 was set to 0. Since
the analysis is asymptotically invariant under additive
period effects, incorporating non-zero period effects
would not be expected to greatly affect the results.

Example SW-CRT design scenarios

A SW-CRT on the effect of training doctors in commu-
nication skills on women’s satisfaction with doctor–
woman relationship during labour and delivery was
recently conducted.16 The trial included four hospitals
(C = 4), with balanced stepping across five time peri-
ods (T = 5). The final analysis estimated t̂ = � 0:13

with a 95% confidence interval of (� 0:29, 0:04) and
estimated the between cluster and residual variances to
be s2

c = 0:02 and s2
e = 0:51 respectively. Taking these

variance parameters as true, a conventional SW-CRT
design would have required m= 70 patients per cluster
per time period for the trial’s desired type-I and type-II
error rates of a= 0:05 and b= 0:1, respectively,
powering for a clinically relevant difference of d= 0:2.
Thus, for Scenario 1, we take C = 4, T = 5, a= 0:05,
b= 0:1, d= 0:2, s2

c = 0:02, and s2
e = 0:51.

We motivate our second example design scenario
(Scenario 2) based on the average design characteristics
of completed SW-CRTs according to a recently com-
pleted review.17 Explicitly, we set the number of
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clusters to be 20 (C = 20), and the number of time peri-
ods to be nine (T = 9), to correspond to the median
values used in-practice. We suppose a= 0:05, b= 0:2,
and choose s2

e = 1, s2
c = 1=9 to imply a more moderate

value for the intra-cluster correlation of 0.1 compared
to Scenario 1. Prescribing near-balanced stepping, we
specify that three clusters switch to the intervention in
the second through fifth, and two clusters in each of
the remaining, time periods. Finally, to ensure a total
sample size approximately equal to the median value of
completed SW-CRTs, we choose d= 0:24. Specifically,
this implies m= 7 patients are needed per cluster per
time period to meet the above operating characteristics.

For both scenarios, we then consider the effect of
different choices for the remaining design parameters:
T , ge, and/or gf .

Results

Example sequential SW-CRT designs

The performance of several example sequential SW-
CRT designs with differing choices for T , and the
allowed reasons for early stopping, is summarised in
Table 1 for Scenarios 1 and 2. It is clear that the incor-
poration of early stopping can substantially reduce
the expected sample size under H0 (up to 32% in
Scenario 1 using Design 4, and 32% in Scenario 2 using
Design 2) and H1 (up to 26% in Scenario 1 again using
Design 2, and 18% in Scenario 2 using Design 3), with
no cost to the type-I or type-II error rates.

However, as would be expected, the maximal sample
size that could be required by the sequential designs is

larger than that of the corresponding fixed sample
design. Furthermore, the sample size required by the
sequential designs can be subject to substantial variabil-
ity. In Figure 1, this variability is displayed for the
sequential designs with early stopping for efficacy and
futility (ge = gf = 0:5), in Scenario 1 (T = f2, 3, 4, 5g)
and Scenario 2 (T = f2, 4, 7, 9g), when t = 0, d. We
observe that while the expected sample sizes may always
be lower than that of the corresponding fixed sample
design, there is always a non-negligible probability that
a larger sample size could be expected (up to 38% when
t = d for the Scenario 2 design).

Considerations on T , ge, gf , and the allowed
reasons for early stopping

In Figure 2, we demonstrate the effect of different
choices for T in Scenarios 1 and 2 with all other
parameters fixed (early stopping for efficacy and futi-
lity with ge = gf = 0:5). It can be seen that, as is the
case for individually randomised group sequential
trials, increasing the number of interim analyses typi-
cally reduces the expected sample size of our sequen-
tial SW-CRT designs. However, this usually comes at
a cost of an increased maximal sample size (Table 2).
Moreover, for a fixed number of interim analyses,
placing them after earlier time periods typically leads
to smaller minimal sample sizes, but larger expected
sample sizes when t = 0 or t = d. These patterns are,
however, only a rough trend. The requirement for m

to be an integer means that they may not always be
present.

Table 1. The performance of several sequential SW-CRT designs (Designs 1–6), along with that of the corresponding classical SW-
CRT design (Design 7), is summarised, for Scenarios 1 and 2.

Scenario 1

Design T Stopping ge gf m E(Mj0) P(Reject H0j0) E(Mjd) P(Reject H0jd) min M max M

Design 1 {2,3,4,5} E&F 0.5 0.5 104 1043.49 0.05 1113.17 0.90 832 2080
Design 2 {3,5} F NA 1 75 1031.73 0.05 1464.44 0.90 900 1500
Design 3 {3,4,5} E 1 NA 97 1912.03 0.05 1288.63 0.93 1164 1940
Design 4 {2,3,4,5} E&F 1.5 1 84 946.52 0.05 1040.49 0.90 672 1680
Design 5 {3,5} F NA 1.5 73 1032.61 0.05 1433.30 0.90 876 1460
Design 6 {3,4,5} E 0.5 NA 104 2044.88 0.05 1353.52 0.95 1248 2080
Design 7 {5} NA NA NA 70 1400.00 0.05 1400.00 0.90 1400 1400

Scenario 2

Design 1 {2,4,7,9} E&F 0.5 0.5 11 878.21 0.05 1063.59 0.81 440 1980
Design 2 {5,9} F NA 1 9 856.89 0.05 1037.91 0.82 900 1620
Design 3 {3,6,9} E 1 NA 8 1416.43 0.05 1031.39 0.81 480 1440
Design 4 {2,4,7,9} E&F 1.5 1 9 1583.44 0.05 1084.97 0.82 360 1620
Design 5 {5,9} F NA 1.5 8 924.10 0.05 1365.12 0.82 800 1440
Design 6 {3,6,9} E 0.5 NA 8 952.90 0.05 1382.72 0.83 480 1440
Design 7 {9} NA NA NA 7 1260.00 0.05 1260.00 0.81 1260 1260

E&F: efficacy and futility; E: efficacy; F: futility; NA: not applicable.

All rounding is to two decimal places.
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Table 2. The performance of several sequential SW-CRT designs with different possible choices for T in Scenarios 1 and 2, along
with that of the corresponding classical SW-CRT design (T = f5g in Scenario 1 and T = f9g in Scenario 2), is summarised.

Scenario 1

T m E(Mj0) E(Mjd) min M max M

{2,3,4,5} 104 1043.49 1113.17 832 2080
{2,3,5} 100 1051.78 1139.21 800 2000
{3,4,5} 93 1153.99 1175.46 1116 1860
{2,5} 90 1188.84 1296.69 720 1800
{3,5} 90 1148.57 1184.27 1080 1800
{4,5} 79 1268.06 1270.79 1264 1580
{5} 70 1400.00 1400.00 1400 1400

Scenario 2

{2,4,7,9} 11 878.21 1063.58 440 1980
{2,3,6,9} 11 891.44 1091.02 440 1980
{3,6,9} 10 859.24 1017.45 600 1800
{2,4,9} 10 902.58 1131.62 400 1800
{5,9} 9 965.12 1042.02 900 1620
{3,9} 9 979.53 1180.94 540 1620
{9} 7 1260.0 1260.00 1260 1260

Early stopping is allowed for efficacy and futility, with ge = gf = 0:5. All rounding is to two decimal places. All designs have a type-I error rate of

0.05, a type-II error rate of 0.1 in Scenario 1, and a type-II error rate of 0.2 in Scenario 2, as desired.

Figure 1. The probability distribution of the sample size required
by example sequential designs (early stopping for efficacy and
futility with ge =gf = 0:5) for (a) Scenario 1 (T = f2, 3, 4, 5g)
and (b) Scenario 2 (T = f2, 4, 7, 9g) is shown when t = 0, d
(d= 0:2 for Scenario 1, d= 0:24 for Scenario 2).

Figure 2. The expected sample size curves of several
sequential SW-CRT designs with different possible choices for
T in (a) Scenario 1 and (b) Scenario 2, along with that of the
corresponding classical SW-CRT design (T = f5g in Scenario 1
and T = f9g in Scenario 2), are displayed. Early stopping is
allowed for efficacy and futility, with ge =gf = 0:5.
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Similarly, Figure 3 displays the impact of altering
ge = gf in Scenarios 1 and 2 when there is early stop-
ping for efficacy and futility, and all other parameters
are fixed (T = f2, 3, 4, 5g in Scenario 1, and
T = f2, 4, 7, 9g in Scenario 2). Typically, the fact that
the majority of information in a SW-CRT is accrued
towards the completion of the trial means that increas-
ing the value of ge = gf results in designs with lower
expected sample sizes, since it is preferable to spend the
type-I and type-II error later in the trial. Once more,
however, this is not guaranteed to be the observed pat-
tern, as illustrated by Scenario 2.

Finally, in Figure 4, we observe the effect of
the choice of allowed reasons for early stopping
(Scenario 1 with T = f2, 3, 4, 5g and ge = gf = 0:5).
Incorporating early stopping for both efficacy and futi-
lity provides good performance across all possible val-
ues for t. However, this design carries the largest
possible maximal sample size (2080, relative to 1760 for
efficacy stopping only, and 1740 for futility stopping
only). Allowing early stopping for only futility (effi-
cacy) results in the largest possible reduction to the
expected sample size under H0 (H1), but comes at the
biggest cost to the expected sample size under H1 (H0).

Quantile substitution

In Table 3, the empirical rejection rate of the sequential
SW-CRT designs for Scenario 1 with T = f2, 3, 4, 5g
and T = f3, 5g, taking ge = gf = 0:5, are explored for
each of our four considered analysis procedures, for
t = 0 and t = d, and finally for three possible combi-
nations of ~s2

c and ~s2
e . Namely, these are, to reflect a sit-

uation where estimates provided are close to their true
values, (~s2

c , ~s2
e )= 0:9(s2

c ,s
2
e), (~s2

c , ~s2
e )= (s2

c ,s
2
e), and

(~s2
c , ~s2

e )= 1:1(s2
c ,s

2
e). For comparison, the empirical

rejection rates of the corresponding fixed sample SW-
CRT designs are also shown.

It is clear that when ML estimation is utilised in the
sequential designs there can be substantial inflation in
the empirical type-I error rate (up to 0.0812 for
(~s2

c , ~s2
e )= 0:9(s2

c ,s
2
e) without quantile substitution

when T = f2, 3, 4, 5g). However, when REML estima-
tion is used, there is generally much better control (with
a maximum of only 0.0645 for (~s2

c , ~s2
e )= 0:9(s2

c ,s
2
e)

with quantile substitution when T = f2, 3, 4, 5g). In
general, it appears the sample size is large enough that
quantile substitution makes little difference to the empiri-
cal type-I error rate. However, the small number of clus-
ters makes REML estimation particularly important.

The small number of clusters also results in inflation
of the type-I error rate in the fixed sample designs. It is
clear that this inflation is typically less than that for the
corresponding sequential design and analysis proce-
dure, though the difference is smaller when REML esti-
mation and quantile substitution is utilised. Moreover,
the inflation is smaller for the sequential designs with
T = f4, 5g compared to those with T = f2, 3, 4, 5g,
because the later timing of the analyses helps alleviate
the issues caused by the small value of C.

Discussion

In this article, we demonstrated how established group
sequential trial methodology can be adapted to

Figure 3. The expected sample size curves of several
sequential SW-CRT designs with different possible choices for
ge =gf are displayed for (a) Scenario 1 and (b) Scenario 2. Early
stopping is allowed for efficacy and futility, with T = f, , , g in
Scenario 1 and T = f, , , g in Scenario 2.

Figure 4. The expected sample size curves of several
sequential SW-CRT designs with different possible allowed
reasons for early stopping are displayed for Scenario 1. Each
design has T = f, , , g, with ge =gf = 0:5 when required.
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determine SW-CRT with interim analyses. It was clear
from our examples that the incorporation of interim
analyses into the SW-CRT design could bring substan-
tial reductions in the expected sample size under both
H0 and H1. Researchers should therefore certainly con-
sider incorporating interim analyses into any future
SW-CRT they conduct. However, it is important to
note several practical considerations about the employ-
ment of interim analyses.

Although the inherent time period structure of SW-
CRTs lends itself well to sequential methods, this does
rely upon the efficient collection and storage of data for
analysis. Putting measures in place to prevent opera-
tional issues would therefore be essential. In reality, a
small delay between time periods may be necessary to
allow for an interim analysis to be conducted. Without
this, the clusters will have already begun data accrual
for the following time period, which would bring a loss
of efficiency to the required number of measurements.
In addition, the more interim analyses a trialist includes
theoretically reduces the expected sample size; however,
this too comes with a larger burden in terms of the cost
of analysis. In practice, trading off some loss in effi-
ciency to reduce this burden may be wise.

Furthermore, the increase in sample size required per
cluster per period in the sequential designs may mean

the length of each time period needs to be increased.
This would specifically be true when the length of a
time period is chosen based on the supposed achievable
recruitment rate. In this instance, however, the possibil-
ity to stop the trial early in the sequential designs means
the average length of a trial could often still be reduced.

Moreover, the methodology presented here requires
data to be unblinded at each interim analysis. Although
many SW-CRTs are performed in an unblinded man-
ner,18 it would be important to ensure even then that
the results of the data analysis at interim are kept hid-
den from all but those on the Data Monitoring
Committee.

There is also much to consider in terms of the choice
of allowed reasons for early stopping. It was previously
noted that stopping early for futility would be unlikely
in a SW-CRT because of the often held a priori belief
the intervention will be effective.10 However, a recent
literature review established that 31% of SW-CRTs
completed to date did not find a significant effect of
their intervention on any primary outcome measure.17

For this reason, incorporation of futility stopping does
in fact seem warranted. Nonetheless, there are addi-
tional factors to consider. Primarily, the plan to eventu-
ally implement the intervention in all clusters, as is
often the case in SW-CRTs, could be decided upon as

Table 3. The empirical rejection rate using the four considered analysis procedures (ML or REML estimation, with or without
boundary adjustment (BA) through quantile substitution) is displayed, for several possible values of the assumed variance parameters,
true treatment effect, and the designs with T = f2, 3, 4, 5g, T = f4, 5g, and T = f5g.

(~s2
c , ~s2

e ) t Estimation BA Empirical rejection rate

T = f2, 3, 4, 5g T = f4, 5g T = f5g

0:9(s2
c ,s2

e) 0 ML No 0.0812 0.0712 0.0625
0 ML Yes 0.0808 0.0699 0.0605
0 REML No 0.0640 0.0595 0.0541
0 REML Yes 0.0645 0.0595 0.0550
d ML No 0.8748 0.8800 0.8809
d ML Yes 0.8760 0.8843 0.8845
d REML No 0.8818 0.8840 0.8825
d REML Yes 0.8789 0.8844 0.8839

(s2
c ,s

2
e) 0 ML No 0.0777 0.0674 0.0600

0 ML Yes 0.0781 0.0675 0.0596
0 REML No 0.0627 0.0560 0.0536
0 REML Yes 0.0624 0.0575 0.0531
d ML No 0.9014 0.9089 0.9097
d ML Yes 0.9017 0.9090 0.9102
d REML No 0.9080 0.9106 0.9076
d REML Yes 0.9075 0.9099 0.9079

1:1(s2
c ,s2

e) 0 ML No 0.0755 0.0666 0.0582
0 ML Yes 0.0769 0.0667 0.0591
0 REML No 0.0600 0.0564 0.0515
0 REML Yes 0.0608 0.0573 0.0521
d ML No 0.9219 0.9298 0.9309
d ML Yes 0.9228 0.9290 0.9289
d REML No 0.9270 0.9306 0.9310
d REML Yes 0.9273 0.9304 0.9312

ML: maximum likelihood; REML: restricted error maximum likelihood.

All rounding is to four decimal places.
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an incentive for cluster participation in the trial. If this
is the case, one must be careful to acknowledge to
enrolled clusters that they may in fact not receive the
intervention if the trial is stopped early for futility.
Furthermore, some SW-CRTs are planned roll-outs of
a programme, in which case there may not be a desire
to stop the roll-out for futility if the study is part of a
larger programme implementation. If this is the case, it
may be likely that a SW-CRT design with early stop-
ping would not be appropriate.

Moreover, the stopping of a trial for efficacy would
typically imply the immediate deployment of an inter-
vention to all clusters will then follow. However, with
SW-CRTs often used when there are logistic con-
straints, this may not be possible. It could be that an
intervention is rolled out as quickly as is possible, but
this fact should be considered before early stopping for
efficacy is included in a design. Finally, in some
instances, there may be a desire to study the develop-
ment of an intervention within the clusters over time.
Stopping a trial early for efficacy or futility may pre-
vent this possibility. In this case, it could be wise to
only include stopping for futility to guard solely against
harmful interventions.

There are several methodological considerations that
should be recognised. First, the approach used to
sequential SW-CRT design here assumes the trial’s nui-
sance parameters to be known. We demonstrated that
REML estimation can help deal with this problem in
the case where there is only small uncertainty in their
values, and the number of clusters is small. As was
noted, a sample size re-estimation procedure would be
required if this was not the case. Moreover, even in this
instance, there was still some inflation to the empirical
type-I error rate. This is common, however, to both the
classical fixed sample design and our proposed sequen-
tial designs. Nonetheless, smaller inflation was observed
in a sequential design with fewer interim analyses,
placed later into a trial. Therefore, similar to the burden
introduced from introducing additional analyses dis-
cussed above, this should be factored in when choosing
an appropriate sequential design.

Additionally, as with any trial design scenario, if the
model assumed at the design stage does not hold, the
trial’s operating characteristics will not be reliable. For
a sequential design, depending on the violation, the
degree to which the type-I and type-II error rates depart
from their planned values could be larger than that of a
fixed sample SW-CRT design. It would be important
therefore when choosing an appropriate sequential SW-
CRT, as for classical SW-CRT designs, to assess the
sensitivity of the design to deviations in the underlying
distribution of the data.

Finally, we have here only considered the design of
SW-CRTs with interim analyses. It is well known that if
naive estimators are used after a sequential trial, then
acquired treatment effects will be biased. The development

of methodology to account for this would be required.
Fortunately, there is a breadth of literature on this for
individually randomised trials upon which such work
could be based (see, for example, Bretz et al.19).

In conclusion, although there are several factors that
must be considered by a trialist before deciding to
incorporate early stopping in to a SW-CRT design, they
should certainly consider whether the methodology is
appropriate. With the inclusion of interim analyses,
they can more suitably guard against much investment
being spent on an inferior intervention or indeed help
hasten the roll-out of an efficacious treatment.
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