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Long-term consequences of chronic fluoxetine exposure on the
expression of myelination-related genes in the rat hippocampus
Y Kroeze1,2, D Peeters1, F Boulle3, DLA van den Hove3, H van Bokhoven2, H Zhou2,4 and JR Homberg1

The selective serotonin reuptake inhibitor (SSRI) fluoxetine is widely prescribed for the treatment of symptoms related to a variety
of psychiatric disorders. After chronic SSRI treatment, some symptoms remediate on the long term, but the underlying mechanisms
are not yet well understood. Here we studied the long-term consequences (40 days after treatment) of chronic fluoxetine exposure
on genome-wide gene expression. During the treatment period, we measured body weight; and 1 week after treatment, cessation
behavior in an SSRI-sensitive anxiety test was assessed. Gene expression was assessed in hippocampal tissue of adult rats using
transcriptome analysis and several differentially expressed genes were validated in independent samples. Gene ontology analysis
showed that upregulated genes induced by chronic fluoxetine exposure were significantly enriched for genes involved in
myelination. We also investigated the expression of myelination-related genes in adult rats exposed to fluoxetine at early life and
found two myelination-related genes (Transferrin (Tf) and Ciliary neurotrophic factor (Cntf)) that were downregulated by chronic
fluoxetine exposure. Cntf, a neurotrophic factor involved in myelination, showed regulation in opposite direction in the adult versus
neonatally fluoxetine-exposed groups. Expression of myelination-related genes correlated negatively with anxiety-like behavior in
both adult and neonatally fluoxetine-exposed rats. In conclusion, our data reveal that chronic fluoxetine exposure causes on the
long-term changes in expression of genes involved in myelination, a process that shapes brain connectivity and contributes to
symptoms of psychiatric disorders.
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INTRODUCTION
Selective serotonin reuptake inhibitors (SSRIs) are widely
prescribed for the treatment of a variety of psychiatric disorders,
such as depression,1,2 bipolar affective disorder,3 anxiety-related
disorders (obsessive compulsive disorder, post-traumatic stress
disorder),4,5 aggression6 and autism spectrum disorder.7,8 All these
disorders have symptoms related to, among others, negative
affectivity, which might be the symptom responsive to SSRI
treatment. Clinical studies have shown that there are many side
effects upon chronic administration of SSRIs, like sexual
dysfunction,9 suppression of rapid eye movement sleep,10

nausea,11,12 decreased appetite13 and deterioration of symptoms
(for example, aggression),14,15 indicating that optimization of
chronic treatment of affective disorders is needed. In addition,
some patients remain free of symptoms after discontinuation of
SSRI treatment, whereas in others the symptoms reoccur.16,17

Studies in generalized social anxiety disorder patients showed that
within 24 weeks after discontinuation of SSRI treatment 40–50% of
the patients (receiving placebo after stopping SSRI) relapsed.18,19

For major depressive disorder, the cumulative probability of
suffering a recurrence of major depression within 2 years after
discontinuation of SSRIs was 60% for people aged 60 years or
older.20 Hence, the effects of SSRIs are not always sufficient to
warrant long-term remission. To further improve the efficacy of

SSRIs, there is an urgent need to unravel the mechanisms
contributing to the long-term effects of chronic SSRI exposure.
The primary target of SSRIs is the serotonin transporter (5-HTT);

its blockade by SSRIs leads to increases in extracellular serotonin
(5-HT) levels. According to classic literature, chronic rises in 5-HT
levels would contribute to the therapeutic effects of SSRIs,21 acting
through 5-HT receptors. For example, antagonism of 5-HT2C
and 5-HT7 results in significantly increased therapeutic effects of
SSRIs22–25 and SSRI/5-HT1A antagonist co-administration leads to
increased extracellular 5-HT levels and enhanced antidepressant
responses.26,27 However, these and other 5-HT receptors are
also implicated in the side effects of SSRIs, like sexual dysfunction
(5-HT1A),

28 sleep disturbances (5-HT7,
29 5-HT1A

30), nausea
(5-HT3B

31) and decreased appetite (5-HT2C,
32 5-HT1B

33). Although
5-HT receptors have a key role in the short-term effects of chronic
SSRI exposure, it is likely that pathways downstream of the
receptors are important for the long-term effects of chronic SSRI
exposure.
Recently, several gene expression studies in rodents have

shown that SSRI exposure can affect a wide variety of pathways in
addition to the serotonergic system. It has been shown that SSRI
treatment during adulthood alters gene expression levels of
hypothalamic hormones, neurotrophic factors, inflammatory
factors and components of non-serotonergic neurotransmitter
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systems.34–36 Especially the inflammatory factors might have a
central role in mediating the effects of SSRIs, because down-
regulation of proinflammatory cytokines can inhibit HPA axis
function (facilitating stress reduction), enhance 5-HT and dopa-
mine synthesis and inhibit 5-HT and dopamine reuptake.34 Yet,
these findings reflect short-term effects (24 h after the last
treatment) of chronic SSRI exposure. The long-term consequences
of SSRI exposure on gene expression are so far not well
understood and might provide additional information about the
long-term adaptations that contribute to the remediation of
disease symptoms after stopping medication.
Studies addressing the long-term consequences of perinatal

SSRI exposure may provide hints regarding potential mechanisms
by which SSRIs exert their long-term effects. In humans and
rodents, there is evidence that perinatal SSRI exposure increases
the likelihood of symptoms related to autism37–41 in the offspring.
This seemingly contrasts the use of SSRIs in the treatment of
autism during adulthood. In addition, in rodents perinatally
exposed to SSRIs there is evidence for ‘paradoxical’ anxiety- and
depression-like symptoms at adulthood.42–44 Because adult and
perinatal SSRI exposure is associated with comparable effects on
the serotonergic system, like increases in 5-HT levels, reductions in
5-HT transporter expression45,46 and desensitization of 5-HT1A
receptors,47,48 the ‘paradoxical’ outcomes of perinatal SSRI
exposure cannot be explained by 5-HT levels (alone). Critically,
during development, 5-HT not only acts as a neurotransmitter, but
also as a neurotrophic factor. Specifically, during early brain
development, 5-HT steers neurodevelopmental processes like
neuronal outgrowth and migration processes.49–51 Studies have
shown that 5-HT affects embryonic interneuron migration51 and
also affects organization of axonal projections of excitatory spiny
stellate and pyramidal cells in the barrel cortex.52 These data show
that 5-HT affects the outgrowth and migration of non-
serotonergic neurons. As the brain is highly plastic during early
development, rises in 5-HT levels induced by perinatal SSRI
exposure can have outcomes that are substantially different from
adult SSRI exposure. Nonetheless, studies focusing on early-life
SSRI exposure could lead to potential targets of the long-term
chronic SSRI exposure during adulthood. For example, SSRI

exposure during brain development can disturb myelin sheath
formation at adulthood40 and there is also evidence that SSRI
treatment at adulthood can cause changes in white matter
microstructure, which consists mainly of myelinated axons.53

Furthermore, both adult and developmental SSRI exposure can
affect hippocampal neurogenesis at adulthood.54,55

To more concretely elucidate the long-term effects of chronic
SSRI exposure during adulthood, we investigated the long-term
consequences of chronic fluoxetine (12 mg kg− 1) versus vehicle
treatment during adulthood (postnatal day (PND) 67–88) on gene
expression in the hippocampus, a brain region that is highly
responsive to SSRIs55,56 and implicated in psychiatric disorders
characterized by affective changes like anxiety,57,58 bipolar
affective disorder,59 aggression60 and depression.61 It has, for
example, been shown that the hippocampus is directly involved in
the mediation of unconditioned anxiety-related responses in
animals.57 We measured body weight during treatment, as
fluoxetine is known to exert anorectic effects.62,63 In addition,
we measured anxiety-like behavior in the novelty-suppressed
feeding test (NSFT), which is highly sensitive to SSRIs.42,43,64–66

We studied genome-wide gene expression using transcriptome
analysis (RNA-seq) in the hippocampal tissue of fluoxetine- and
vehicle-exposed rats 40 days after the last treatment. Differentially
regulated genes were validated by quantitative reverse transcrip-
tion PCR (qRT-PCR) analysis using independent samples. Gene
ontology analysis showed that the majority of upregulated genes
had a function in myelination. To assess whether genes involved
in myelination were also affected by early-life exposure to
fluoxetine, we performed qPCR analysis on the genes involved
in myelination in a group of rats neonatally exposed to fluoxetine
or vehicle. Finally, we performed correlational analysis between
anxiety-like behavior and messenger RNA (mRNA) expression.

MATERIALS AND METHODS
Animals
Male Wistar rats (Rattus norvegicus) were obtained from Charles River
(Cologne, Germany) and used for experiments after at least 7 days of
acclimatization. All the animals were housed per two in standard Macrolon
type 3 cages in temperature-controlled rooms (21 °C ± 1 °C) under a
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Figure 1. Schematic representation of experimental timeline. Male Wistar rats, group 1 (n= 12 per treatment) and 2 (n= 4 per treatment), were
treated with fluoxetine or vehicle from postnatal day (PND) 67 to 88. During the treatment period, body weight was measured every day. In
group 1, anxiety-like behavior was tested on PND 95 using the novelty-suppressed feeding test (NSFT). Groups 1 and 2 were killed by
decapitation on PND 120 and PND 128, respectively and used for mRNA expression analysis using hippocampal tissue. Group 3 (fluoxetine
n= 6, vehicle n= 7) was used to investigate the effect of chronic fluoxetine exposure on hippocampal mRNA expression in Sprague Dawley
rats. For neonatal exposure, dams were treated during the postpartum period from PND 1 to 21. At PND 21, pups were weaned and group-
housed for further examination (two rats per cage). Anxiety- and depression-related behavior was analyzed from PND 140 onwards (in the
order as written in the figure) and the rats were killed by decapitation at PND 196. mRNA, messenger RNA; qPCR, quantitative PCR.
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standard 12/12-h day/night cycle (lights on at 0700 h) with food (Sniff,
long-cut pellet, Bio Services, Uden, The Netherlands) and water available
ad libitum. Environmental conditions (for example, housing, light condi-
tions (80 lux), noise level) were carefully controlled as these conditions can
strongly influence stress levels in rats.67,68 Three groups of animals were
used in this study. In each group, the rats were randomly assigned to a
treatment. The investigator was not blinded to the group allocations when
performing the experiments, because effects of fluoxetine on the body
weight and behavior were clearly visible. Group 1 was treated at adulthood
with fluoxetine or vehicle (n=12 per treatment), used for body weight
measurements during treatment, tested in the NSFT and decapitated to
collect hippocampal tissue for qRT-PCR validation; group 2 was treated at
adulthood with fluoxetine or vehicle (n=4 per treatment) and used for
RNA-seq experiments. Finally, group 3 consisted of adult female Sprague
Dawley rats neonatally exposed to fluoxetine or vehicle (PND 1 to 21) via
osmotic minipumps implanted in the mothers. Their hippocampal tissue
was obtained from Maastricht University (fluoxetine n= 6, vehicle n=7)
and used for qPCR analysis. Figure 1 provides a schematic representation
of the experimental timeline for each group. For behavior experiments, 12
animals per group were used, because this is the minimum required to
achieve sufficient statistical power to establish significant differences
(α=0.05 and β= 0.20). For genome-wide gene expression analysis, we used
two biological replicates. All the experiments were carried out according to
the guidelines for the Care and Use of Mammals in Neuroscience and
Behavioral Research (National Research Council 2003), the principles of
laboratory animal care, as well as the Dutch law concerning animal welfare.

Drug treatment
Rats from group 1 and 2 received fluoxetine (12 mg kg− 1 per day, as used
by Olivier et al.42) or vehicle by oral gavage from PND 67 to 88 in a volume
of 5 ml kg− 1. Fluoxetine was purchased from the Pharmacy of the
Radboud University Nijmegen Medical Centre, The Netherlands and
dissolved in distilled water. As a vehicle, 1% methylcellulose (Genfarma,
Maarssen, The Netherlands) was used, which was the constituent of the
fluoxetine pills. Body weight was monitored daily throughout the
treatment. Rats from group 3 received fluoxetine via the milk of the
dams. Minipumps were implanted subcutaneously in the dorsal region of
the dams on PND 1 and filled with either fluoxetine–HCl (Fagron,
Waregem, Belgium) dissolved in vehicle (50% propylenediol in saline;
5 mg kg− 1 per day), or with vehicle, as previously described.69

Novelty-suppressed feeding test
The NSFT was performed as described before.42 In short, after food
deprivation, male rats (PND 95) of group 1 were placed in one corner of an
open arena (50 × 50 cm) containing clean wood chip bedding at the center
of which was a filter paper containing a food pellet. The latency (s) to start
an eating episode was recorded (maximum time was 900 s). After each rat,
the arena was cleaned with ethanol (70%) and dried thoroughly to prevent
transmission of olfactory cues.

Transcriptome sequencing
Rats within group 2 were killed at PND 128, brains were removed and
stored at − 80 °C. The hippocampus was dissected by punching from 300-
micron frozen brain slices, and tissue from two rats was pooled for total
RNA isolation and cDNA synthesis. DNA samples were prepared for RNA-
seq by end repair, adaptor ligation, size selection and amplification. After
quality control of DNA libraries, the samples were sequenced (36 bp, single
read) with the Illumina Genome Analyzer IIx platform. Sequences were
aligned to the rat rn4 reference genome70 and further analyzed using
Genomatix software (www.genomatix.de). DAVID (Database for Annota-
tion, Visualization and Integrated Discovery; http://david.abcc.ncifcrf.gov/)
was used for gene ontology (GO) analysis. RNA-seq validation was
performed by qRT-PCR analysis in an independent group of rats (group 1).
See Supplementary Information for detailed information about the
transcriptome analysis and primer sequences (Supplementary Table S1).

Quantitative reverse transcription PCR
Hippocampal tissue of rats within group 3 was crunched in liquid nitrogen.
RNA was isolated (RNeasy lipid tissue kit; QIAGEN, Venlo, The Netherlands)
and cDNA was synthesized using iScript cDNA Synthesis Kit (Bio-Rad,
Veenendaal, The Netherlands) according to the manufacturer’s protocols.
The qPCR reactions were performed in 7500 Fast Real Time PCR System

(Applied Biosystems, Foster City, CA, USA) using the SYBR Green
fluorescence quantification system (GoTaq qPCR Master Mix, Promega,
Leiden, The Netherlands). See Supplementary Information for detailed
information about the qRT-PCR method.

Statistical analysis
Statistical analysis of the data was carried out using the IBM Statistical
Package for the Social Sciences (SPSS) version 20.0 (IBM, Armonk, NY, USA).
The Shapiro–Wilk test was used to check for normal distributions.
Independent samples t-tests were used for normally distributed data
(corrected P-value was used when equal variance was not assumed) and
Mann–Whitney U-tests for non-normal distributions. Body weight was
analyzed by repeated measures analysis of variance and further analyzed
per day using independent samples t-tests. Spearman correlations were
performed for the correlational analysis between behavior tests and mRNA
expression. Outliers (data points further than three interquartile ranges
from the nearer edge of the box plot) were excluded from the analysis.
Independent samples t-tests and correlations were performed two-sided.
No adjustments for multiple comparison was applied for the RNA-seq. We
performed qPCR validations afterwards to validate the RNA-seq results. The
level of statistical significance was set at Po0.05 in all the tests.

RESULTS
Body weight and anxiety-like behavior in response to adult
fluoxetine exposure
Body weight was measured daily during the treatment period. All
the rats received a daily oral administration of fluoxetine or vehicle
from PND 67 to 88 (Figure 1). As shown in Figure 2a, starting
weight in group 1 was not different between fluoxetine and
vehicle groups (t(1,22) = 0.26; P= 0.796). Repeated measures

Figure 2. Fluoxetine in adult exposed Wistar rats reduces body
weight and latency to start eating in a novel environment. (a) Body
weight in fluoxetine- and vehicle-treated (postnatal day (PND) 67 to
88) adult male rats (n= 12/group) measured during the treatment
period. Data are presented as mean± s.e.m. of body weight (g). (b)
Latency to start eating in a novel environment tested in fluoxetine-
and vehicle-treated adult male rats on PND 95. Data are presented
as mean+s.e.m. of latency (s) to start eating. *Po0.05.
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analysis of variance revealed that fluoxetine significantly reduced
adult body weight gain (F(1,22) = 43.37; Po0.01). Independent
samples t-tests indicated that the reduction in body weight gain
was significant (Po0.05) from day 4 of the treatment and further
on. Vehicle-exposed rats grew on average from 295.5 g on the first
day of treatment to 350.3 g on the last day of treatment, while
fluoxetine-exposed rats grew on average from 294.8 g on the first
day of treatment to 320.2 g on the last day of treatment (see
Supplementary Table S2 for all body weight values). Similar results
were obtained for group 2 (data not shown). Anxiety-like behavior
was measured 1 week after treatment using the NSFT. We found
that adult fluoxetine-exposed rats exhibited a shorter latency to
start eating compared with vehicle-exposed animals (t(1,19) = 2.32;
Po0.05; Figure 2b, Supplementary Table S2). Both decreased
weight gain during chronic fluoxetine exposure71 and a shorter
latency to start eating in the NSFT after chronic fluoxetine
exposure64–66,72 are consistent with previous findings in stressed
and unstressed rats.

Long-term consequences of adult chronic fluoxetine exposure on
genome-wide mRNA expression patterns in the hippocampus
To investigate which genetic pathways have a role in the long-
term effects of chronic SSRI exposure, RNA-seq analysis was
performed using hippocampal tissue of fluoxetine- and vehicle-
exposed rats (two rats pooled per sample, two samples per
treatment group). Genes with a fold change 41.5-fold and a
P-value o0.05 were considered as differentially regulated genes.
Analysis of the samples resulted in 258 genes that were
significantly upregulated and 218 genes that were significantly
downregulated by fluoxetine treatment (Figure 3a, Supplementary
Table S3). Some genes show overlap with a study in mice
chronically treated with fluoxetine (see green marked genes in
Supplementary Table S3).73

To functionally categorize the differentially expressed genes,
GO analysis was performed. The most significantly enriched GO
terms in the list of upregulated genes induced by adult fluoxetine
treatment are all involved in glia cell development and myelina-
tion (Table 1). Examples of upregulated genes involved in glia cell
development are zinc finger protein 488 (Znf488), proteolipid
protein 1 (Plp1), ciliary neurotrophic factor (Cntf), NK6 homeobox 2
(Nkx6-2) and POU class 3 homeobox 1 (Pou3f1). For the genes
downregulated after adult fluoxetine treatment, the most signifi-
cantly enriched GO term was ‘response to abiotic (non-living)
stimulus’. An underlying and more specific GO term that was also
significantly enriched is ‘response to temperature stimulus (an
abiotic stimulus)’, including genes such as adrenoceptor beta 2
(Adrb2), nitric oxide synthase 1 (Nos1), caspase 8 (Casp8), transient
receptor potential cation channel, subfamily V, member 3 (Trpv3),
interleukin 1 beta (Il1b), chemokine (C-X-C motif) ligand 12 (Cxcl12)
and protein kinase C, delta (Prkcd). See Supplementary Table S4 for
a complete list of significantly enriched GO terms, including the
genes linked to these terms.
Validation of the adult RNA-seq data was performed by qRT-PCR

analysis in independent biological replicates (n= 11–12 per
treatment). For validation, we selected 12 differentially regulated
genes (five up- and seven downregulated) on the basis of P-value
(Po0.05), fold change (41.5) and expression profile using the
WIG files. Five genes, olfactomedin 1 (Olfm1, U = 31.00, Po0.05;
downregulated), adenylate cyclase 1 (Adcy1, U= 33.00, Po0.05;
downregulated), neurotensin (Nts,U= 25.00, Po0.05; upregulated),
Cntf (U= 26.00; Po0.05; upregulated) and claudin 11 (Cldn11,
U= 25.00, Po0.05; upregulated), showed a significant change in
mRNA expression in the same direction as in the RNA-seq data
(Figure 3b). Interestingly, three out of the five significantly
upregulated genes in RNA-seq were significantly upregulated in
qRT-PCR analysis and the other two genes also showed a change
in the right direction, that is, upregulation in the fluoxetine-

exposed rats. However, the majority of the genes downregulated
in the RNA-seq were not changed in the qRT-PCR analyses,
indicating that the upregulated genes were more consistent
among independent experiments. Of the upregulated genes, Cntf,
Cldn11 and Tspan2 (P= 0.17) are involved in myelination,74–76

indicating that myelination is one mechanism involved in the
long-term effects of SSRI exposure.

Long-term consequences of neonatal chronic fluoxetine exposure
on hippocampal mRNA expression
As GO analysis showed that upregulated genes are enriched
for genes involved in myelination, we investigated whether

Figure 3. Gene expression in adult fluoxetine-exposed male Wistar
rats. (a) RNA-seq analysis was performed using hippocampal tissue
of fluoxetine- and vehicle-exposed rats, two rats pooled per sample,
two samples per treatment group. Fold change scatter plot showing
fold change in expression (base mean) in fluoxetine-treated versus
vehicle-treated (y axis) against expression level (x axis). Differentially
regulated genes are genes with fold change threshold 41.5 (log2
fold change 40.58, blue dashed line) and P-value o0.05 (colored in
red). Red dots above the upper blue dashed line are upregulated
genes (258 genes) and red dots below the lower blue dashed line
are downregulated genes (218 genes). (b) Validation of RNA-seq
results by quantitative RT-PCR (qRT-PCR) analysis in independent
biological replicates. Quantitative RT-PCR was performed on
hippocampal RNA of adult fluoxetine- and vehicle-treated (postnatal
(PND) day 67 to 88) rats (n= 12 per treatment). On the basis of RNA-
seq data, seven genes downregulated (left side in figure) and five
genes upregulated (right side in figure) by fluoxetine exposure were
selected for qRT-PCR validation. Data are normalized for Ywhaz and
Hprt mRNA levels and are presented as mean+s.e.m. of relative gene
expression (% of vehicle group). *Po0.05 indicate genes differen-
tially expressed in qRT-PCR. mRNA, messenger RNA.
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myelin-linked genes were also affected in adult rats neonatally
exposed to fluoxetine. We had access to the hippocampal tissue of
adult rats exposed to fluoxetine or vehicle from PND 1 to 21 and
performed qRT-PCR analysis for several genes involved in
myelination (based on Aston et al.77). Expression of Cntf, a gene
also detected and validated in the RNA-seq experiment, was
significantly reduced in response to neonatal fluoxetine exposure
compared with vehicle (U= 6.00, Po0.05). In addition, a signifi-
cant reduction after fluoxetine exposure was found for transferrin
(Tf, U= 4.00, Po0.05; Figure 4). Consistent with the long-term
effects on gene expression after chronic fluoxetine treatment
during adulthood, these data show that genes associated with
myelination are also involved in the long-term effects of neonatal
SSRI exposure, but in the opposite direction.

Correlation between behavior and expression of
myelination-related genes
To investigate whether the anxiolytic effect of chronic SSRI
exposure (see section ‘Body weight and anxiety-like behavior in
response to adult fluoxetine exposure’) is related to the altered
expression of myelination-related genes, we performed a correla-
tional analysis. Group 1 was used for both the NSFT and qPCR

validations, which enables correlational analysis between latency
to start eating and mRNA expression (Supplementary Figure S1).
Interestingly, we found a negative correlation (r(18) =− 0.529,
Po0.05) between Cldn11 mRNA expression and the latency to
start eating in the NSFT. In addition, we found a trend for a
negative correlation between Tspan2 mRNA expression and
latency to start eating (r(18) =− 0.412, Po0.1).
We also performed a correlational analysis using data (anxiety-

like behavior in an open-field test (OFT, results see Boulle and
colleagues78) and expression analysis of myelination-related
genes) derived from the neonatally fluoxetine-exposed rats (group
3). In the OFT, time spent in the corner (OFC) and time spent in the
center of the open field were measured, in which OFC is a
measure for anxiety-like behavior and time spent in the center of
the open field is a measure for anxiolytic-like behavior. We found
that OFC correlated negatively with mRNA expression of Cldn11
(r(11) =− 0.736, Po0.05), Cnp (r(11) =− 0.682, Po0.05), Plp1 (ex3–5)
(r(11) =− 0.827, Po0.05) and Plp1 (ex2–3) (r(11) =− 0.800, Po0.05).
In addition, Mag mRNA expression showed a trend for a negative
correlation with OFC (r(11) =− 0.555, Po0.1). Finally, a trend for a
positive correlation with time spent in the center of the open field
was found for mRNA expression of Cldn11 (r(11) = 0.582, Po0.1),
Plp1 (ex3–5) (r(11) = 0.527, Po0.1) and Plp1 (ex2–3) (r(11) = 0.536,
Po0.1) and Mog (r(11) = 0.573, Po0.1). See Supplementary
Figure S1–S3 for a complete overview of the correlation data.
Taken together, these data indicate that a higher expression of

myelination-related genes is linked to anxiolytic-like behavior in
both the NSFT in adult fluoxetine-exposed rats and the OFT in the
neonatally fluoxetine-exposed rats.

DISCUSSION
In this study, we demonstrate, using a genome-wide approach,
that 40 days after chronic fluoxetine treatment in adult rats mRNA
levels of myelination-related genes were significantly upregulated
in the hippocampus. Interestingly, in an independent group of
rats, we observed that chronic neonatal fluoxetine exposure
downregulated myelination-related genes. We specifically
observed that the myelination-related Cntf gene was upregulated
in adult fluoxetine-exposed rats and downregulated in neonatally
fluoxetine-exposed rats. In addition, we observed a negative
correlation between expression of myelination-related genes and
anxiety-like behavior in both the adult and neonatally fluoxetine-
exposed rats. These data suggest that chronic SSRI exposure

Table 1. Significantly enriched GO terms (biological process) affected by adult fluoxetine treatment

Factor DAVID ID GO term No. of genes P-value Fold enrichment

Upregulated by fluoxetine GO:0021782 Glial cell development 5 4.4E− 4 13.7
GO:0010001 Glial cell differentiation 6 7.1E− 4 8.4
GO:0042063 Gliogenesis 6 2.0E− 3 6.7
GO:0042391 Regulation of membrane potential 8 2.5E− 3 4.3
GO:0008366 Axon ensheathment 5 2.6E− 3 8.6
GO:0007272 Ensheathment of neurons 5 2.6E− 3 8.6
GO:0001508 Regulation of action potential 6 3.1E− 3 6.0
GO:0033205 Cytokinesis during cell cycle 3 3.9E− 3 30.8

Downregulated by fluoxetine GO:0009628 Response to abiotic stimulus 15 8.2E− 5 3.5
GO:0051931 Regulation of sensory perception 4 7.1E− 4 22.1
GO:0051930 Regulation of sensory perception of pain 4 7.1E− 4 22.1
GO:0009266 Response to temperature stimulus 7 7.7E− 4 6.4
GO:0035239 Tube morphogenesis 8 1.3E− 3 4.8
GO:0043044 ATP-dependent chromatin remodeling 3 2.3E− 3 40.2
GO:0044236 Multicellular organismal metabolic process 4 2.8E− 3 13.9
GO:0060562 Epithelial tube morphogenesis 6 4.0E− 3 5.7

Abbreviations: DAVID, Database for Annotation, Visualization and Integrated Discovery; GO, gene ontology.

Figure 4. Hippocampal mRNA expression levels in neonatally
fluoxetine-exposed female Sprague Dawley rats. Quantitative RT-
PCR analysis was performed on hippocampal RNA of adult rats
(fluoxetine n= 6, vehicle n= 7) neonatally exposed (postnatal day
(PND) 1 to 21) to fluoxetine or vehicle. Data are normalized for
Ywhaz and Hprt mRNA levels and are presented as mean+s.e.m. of
relative gene expression (% of vehicle group). *Po0.05. mRNA,
messenger RNA.
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exerts its long-term effects, among others, by affecting myelina-
tion processes.
There are other studies in rodents showing genome-wide gene

expression differences after adult fluoxetine treatment, but so far
they all focused on short-term effects by investigating gene
expression 1 day after the last fluoxetine administration.73,79–81

The present finding that myelination-related genes were affected
more than 40 days after chronic SSRI exposure, both in early life
and adulthood, is important given that it elucidates the
neurobiological mechanisms contributing to the development of
(early-life exposure) and recovery from (adult exposure) psychia-
tric disorders. Interestingly, there is overlap in differentially
regulated genes between studies focusing on short-term effects
and our study about long-term effects. For instance, Samuels
et al.73 performed a microarray study using dentate gyrus tissue
from 24 h after treatment cessation of adult mice chronically
treated with fluoxetine and identified eight upregulated and 20
downregulated genes that overlap with our findings (see green
marked genes in Supplementary Table S3). Genes affected in both
short- and long-term studies might have a crucial role in inducing
and maintaining the antidepressant state. It is not likely that
effects of fluoxetine withdrawal are seen in our expression data,
because these effects occur shortly after withdrawal and will not
last for 40 days.
RNA-seq validation by qPCR showed that the upregulated

genes were more consistent among independent experiments.
We were unable to validate five out of the seven downregulated
genes, therefore, we focused on the upregulated genes. The GO
analysis of genes upregulated by chronic fluoxetine exposure in
adulthood revealed that the majority of these genes have a
function in myelination. In addition, we found a correlation
between the latency to start eating in the SSRI-sensitive NSFT and
gene expression of myelination-related genes (Cldn11, and a trend
for Tspan2), which strengthens our findings. Interestingly, a wide
range of psychiatric disorders responsive to SSRI treatment,
including depression, bipolar affective disorder, obsessive com-
pulsive disorder, post-traumatic stress disorder and autism
spectrum disorder have been associated with defects in white
matter, which consists mainly of myelinated axons.82,83 A first link
between mood disorders and myelin was shown by Aston et al.77

They studied gene expression in the temporal cortex of major
depressive disorder patients and found a decreased expression of
genes encoding structural components of myelin (for example,
2',3'-cyclic nucleotide 3' phosphodiesterase (CNP), myelin-associated
glycoprotein (MAG), myelin oligodendrocyte glycoprotein (MOG),
PLP1) and genes involved in myelin formation (for example, TF,
SRY (sex determining region Y)-box 10 (SOX10)). We showed in our
RNA-seq experiment that the SSRI fluoxetine increases the
expression of genes linked to myelination in the hippocampus.
Interestingly, we did not find the same genes as Aston et al. found
in the temporal cortex (gene expression might be brain region
dependent), but we did find genes (Cntf, Cldn11) influencing the
same process. Genes interacting with each other (SOX10 and
Cntf84) and genes with similar functions regarding myelination
(PLP1 and Cldn11 (ref. 85) are found in the study by Aston et al.
and our RNA-seq experiment. Moreover, in obsessive compulsive
disorder patients, abnormalities of myelin integrity have been
found that were partially reversed by SSRI treatment.53 Taken
together, these findings suggest that myelination is dysregulated
in several psychiatric disorders and can be regulated by
antidepressants, like fluoxetine.
In hippocampal tissue of neonatally fluoxetine-exposed rats, we

found that Cntf was downregulated, which directly opposed the
finding that adult fluoxetine exposure upregulated this very same
gene. Thus, the same gene, Cntf, was affected in the opposite
direction by chronic fluoxetine exposure in early life and
adulthood. This is consistent with the growing amount of
experimental evidence that early-life SSRI exposure leads to

‘paradoxical’ autism-, anxiety- and depression-like symptoms in
later life.1,42–44 In agreement, our neonatally fluoxetine-exposed
rats showed increased depression-like behavior (forced-swim test)
at adulthood compared with the neonatally vehicle-exposed
rats.78 Furthermore, Boulle et al.,78 showed that neonatal
fluoxetine exposure decreased Bdnf IV expression in hippocampus,
whereas others observed increased Bdnf expression in hippocam-
pus of adult fluoxetine-exposed rats 24 h after treatment
cessation.86 Cldn11 expression, which was upregulated in the
adult fluoxetine-exposed group, was not found to be regulated in
the opposite direction (downregulated) in the neonatally
fluoxetine-exposed group.
The decrease in expression of the two myelin-linked genes after

early-life fluoxetine exposure is in line with the findings of
Simpson et al.40 They showed that early-life SSRI exposure
(citalopram) disturbs myelin sheath formation and decreases
interhemispheric connectivity by 50%. In addition, high levels of
serotonin can lead to aberrant oligodendrocyte development and
myelination deficits in vitro.87 Our results of the qRT-PCR in
hippocampus tissue of early-life fluoxetine-exposed rats suggest
that gene expression of myelination-related genes was also
affected by SSRIs. Notably, our adult and neonatally fluoxetine-
exposed groups differed in fluoxetine dose, strain and gender,
making it possible that the opposite finding was driven by these
factors rather than neonatal versus adult fluoxetine exposure.
However, our finding that expression of the myelination-related
Cldn11 gene and anxiety correlated negatively in both the adult
and neonatally fluoxetine-exposed rats does not support this.
Given that changes in myelination have been reported by others
after both neonatal40 and adult53 SSRI exposure, it is more likely
that our findings are the result of fluoxetine exposure at
different ages.
The Cntf gene, coding for ciliary neurotrophic factor, is the only

gene differentially regulated in all our experimental groups. CNTF
is a neurotrophic factor produced by astrocytes, which supports
the proliferation88 and survival89–91 of oligodendrocyte precursors
and regulates myelination.74 Studies have shown that CNTF can
mediate stroke-induced adult central nervous system
neurogenesis92 and that CNTF injection can increase remyelina-
tion in cuprizone-induced multiple sclerosis mice,93 supporting
the role of CNTF as a neurotrophic factor and as a myelin
regulator. In the hippocampus, Cntf is strongest expressed in the
dentate gyrus and CA1 regions.94 The dentate gyrus is important
for adult neurogenesis and therefore Cntf expression in this region
fits well with its role in neurogenesis. Studies have shown that
CNTF is essential for the formation and/or maintenance of the
neurogenic subgranular zone in the adult dentate gyrus.95 How
fluoxetine targets myelination-related genes is still unclear. On the
basis of literature, we propose a potential pathway, but this is
highly speculative (see Supplementary Figure S4). In short,
fluoxetine stimulates the 5-HT2B receptor on astrocytes resulting
in activation of its downstream signaling cascades,96 which
potentially can lead to release of CNTF. The released CNTF can
activate astrocytes and these astrocytes then release an astrocyte-
specific factor (430 kDa), which promotes proliferation and
survival of oligodendrocyte precursor cells97 and maturation of
oligodendrocytes.90,98 Of further interest, Cntf− /− mice display
increased anxiety- and depression-like behavior.99 These findings
are in line with the reduced Cntf expression that we found in the
group of rats exposed to fluoxetine at early life, which also
showed increased depression-like behavior.78 Cldn11 expression is
upregulated by adult chronic fluoxetine exposure and showed a
negative correlation with anxiety-like behavior in the NSFT. In the
neonatally fluoxetine-exposed rats, Cldn11 expression also showed
a negative correlation with anxiety-like behavior (OFC) in the OFT,
despite the absence of significant differences between the
treatment groups in the OFT and the expression analysis. Cldn11
codes for Claudin-11, which is a major component of myelin and
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forms tight junctions within myelin sheaths.100 Downregulation of
Cldn11 has been found in bipolar affective disorder patients.101

Also Plp1 and Cnp showed a negative correlation with anxiety-like
behavior (OFC) in the OFT. Taken together, the correlations
indicate that a higher expression of myelination-related genes
results in anxiolytic-like behavior.
In this study, we found that fluoxetine can cause long-term

changes in the expression of myelination-related genes. However,
a potential limitation of the present study is that we used a
homogenate of hippocampus cells and there are different cell
types in the hippocampus tissue. Selecting a specific cell type
using fluorescence-activated cell sorting might give more insights
in the gene expression per cell type, although it is notable that
mRNA levels correlated with behavior. Another limitation of this
study is that the fluoxetine dose differs between the prenatally
(5 mg kg− 1 per day) and adult (12 mg kg− 1 per day) exposed
groups. However, studies have shown that exposure to higher
doses of fluoxetine early in life (10–20mg kg− 1 per day) affects
anxiety-like behavior (for example, OFT) in the same way as seen
for 5 mg kg− 1.102,103 Furthermore, studies using a lower dose of
fluoxetine in adulthood (5 mg kg− 1 per day) showed a similar
effect on anxiety-like behavior in the NSFT as shown in this study
for 12mg kg− 1 per day.65 In the future, it is relevant to explore
whether fluoxetine exposure will give similar results in models for
psychiatric disorders responsive to SSRIs. Given that the effect of
SSRIs in the NSFT is the same in healthy64,65 and stressed66,72

animals it is likely that also gene expression patterns will be
similar. Finally, we measured gene expression, and it remains to be
established whether our findings translate to changes in protein
levels and myelination. As a next step in biology, evidence of
changes in myelination will further support our findings. As such,
it has already been demonstrated that SSRI treatment can have
consequences for myelination.40,53,104

In conclusion, we show that adult and neonatal chronic
fluoxetine exposure cause long-term changes in hippocampal
expression of ciliary neurotrophic factor and other genes linked to
myelination, a process that shapes brain connectivity and could
contribute to the remediation of symptoms of psychiatric
disorders, like anxiety.
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