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Context-independent essential 
regulatory interactions for 
apoptosis and hypertrophy in the 
cardiac signaling network
Jun Hyuk Kang1, Ho-Sung Lee1,2, Daebeom Park2, Yun-Won Kang2, Seon Myeong Kim2, 
Jeong-Ryeol Gong2 & Kwang-Hyun Cho1,2

Apoptosis and hypertrophy of cardiomyocytes are the primary causes of heart failure and are known 
to be regulated by complex interactions in the underlying intracellular signaling network. Previous 
experimental studies were successful in identifying some key signaling components, but most of the 
findings were confined to particular experimental conditions corresponding to specific cellular contexts. 
A question then arises as to whether there might be essential regulatory interactions that prevail 
across diverse cellular contexts. To address this question, we have constructed a large-scale cardiac 
signaling network by integrating previous experimental results and developed a mathematical model 
using normalized ordinary differential equations. Specific cellular contexts were reflected to different 
kinetic parameters sampled from random distributions. Through extensive computer simulations with 
various parameter distributions, we revealed the five most essential context-independent regulatory 
interactions (between: (1) αAR and Gαq, (2) IP3 and calcium, (3) epac and CaMK, (4) JNK and NFAT, and 
(5) p38 and NFAT) for hypertrophy and apoptosis that were consistently found over all our perturbation 
analyses. These essential interactions are expected to be the most promising therapeutic targets across 
a broad spectrum of individual conditions of heart failure patients.

Heart failure is a typical complex disease that is often accompanied by apoptosis and hypertrophy of cardiomyo-
cytes. Loss of cardiomyocytes owing to apoptosis causes a permanent reduction in myocardial function leading 
to the development of heart failure1–4. Hypertrophy of cardiomyocytes (i.e., increased length and width) impairs 
the coordination of myocardial contraction, predisposing individuals to heart failure and sudden death. Both 
apoptosis and hypertrophy are regulated by complex interactions in the intracellular signaling pathways (e.g., 
for apoptosis: β-adrenergic receptor (AR) pathway, mitogen associated protein kinase (MAPK) pathway, and 
phosphoinositide-3-kinase (PI3K)-Akt pathway; for hypertrophy: calcineurin-nuclear factor of activated T cells 
(CaN-NFAT) pathway, PI3K-Akt pathway, and MAPK pathways)5.

Many experimental studies have sought to identify key signaling components involved in the development of 
apoptosis or hypertrophy by investigating the following three relationships between signaling components and 
the phenotypes: (i) a significant association that shows a substantial difference in expression or activity of sign-
aling components between pathologic (apoptotic and/or hypertrophic) myocardium and normal myocardium6; 
(ii) inducing a relationship where a signaling component is enhanced by treatment of a stimulant or a transfection 
experiment7, 8; and (iii) suppressing a relationship where a signaling component is inhibited by treatment of an 
inhibitor or a knock-out experiment9, 10. However, these relationships can vary depending on the experimental 
conditions, thus leading to their inapplicability to other cellular contexts. For instance, CREB activation, which 
is directly involved in apoptosis and hypertrophy, was induced by phenylephrine (an α-adrenergic agonist) in 
adult rat cardiomyocytes, but not in neonatal rat cardiomyocytes11, 12. As another example, in some experimental 
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conditions, the key signaling component that mediates hypertrophy was found to be extracellular signal-related 
kinase (ERK), but in other conditions, p38 MAPK or c-Jun N-terminal kinase (JNK) fulfills this role13, 14.

Systems biology is a promising interdisciplinary research field that focuses on understanding complex bio-
logical processes at a system level to predict cellular behavior and to facilitate the drug development process15–18. 
Previous systems biology studies have attempted to identify key interactions between the signaling components 
in regulating apoptosis and/or hypertrophy from the perspective of the biological network by mathematical mod-
eling and computer simulation19–21. However, most of the mathematical models did not represent diverse cellular 
contexts, since they analyzed experimental results obtained under specific experimental conditions by adopting 
pre-defined model formulations and fixed model parameters. Therefore, their findings could not be interpreted 
as suggesting relevance to other cellular contexts.

Thus, to the best of our knowledge, there are no results in the literature showing a key interaction whose 
domain of involvement in apoptosis and/or hypertrophy is not limited to a specific cellular context. In this study, 
we aimed to investigate and identify essential interactions that constantly maintain their involvement in regulat-
ing apoptosis and/or hypertrophy at a network level irrespective of various cellular contexts.

For this purpose, we constructed a large-scale cardiac signaling network by integrating signaling pathways 
related with apoptosis or hypertrophy and developed novel systems biological methods that can identify the 
essential interactions in the network by evaluating three relationships (i.e., significant association; inducing rela-
tionship; and suppressing relationship). In the employed methods, diverse cellular contexts can be represented 
by unfixed model parameters sampled from random distributions. In addition, perturbation of those sampling 
distributions enables the investigation of inducing and suppressing relationships between the parameter and the 
phenotypes.

Our analyses revealed that five interactions (αAR–Gαq; IP3–calcium; epac–CaMK; JNK–NFAT; and p38–
NFAT) were consistently and predominantly involved in inducing or suppressing hypertrophy and/or apoptosis 
in any model formulations and model parameters. Furthermore, among them, the interaction (IP3–calcium) 
was identified to act as a primary mediator of apoptosis by inducing it synergistically in combination with other 
interactions.

Results
Constructing a cardiac signaling network by integration of experimental results.  We collected 
information for a cardiac signaling network from 134 relevant papers and manually summarized a total of 5,463 
experimental results into five categories: (1) experimental conditions (e.g., the type of cell lines, the presence of 
genetic manipulation such as transfection or knock-out); (2) input (e.g., ligand to the receptor); (3) output (e.g., 
measured molecules); (4) effect (e.g., activation or inhibition, level of activation or inhibition); and (5) time 
(e.g., the time of peak effect). The entire data are provided in Supplementary Data Set S1. Based on the data, we 
constructed a large-scale cardiac signaling network that includes the links repeatedly validated by independent 
biochemical experiments (Fig. 1A, step 1 in Fig. 2). The constructed network includes apoptotic signaling path-
ways (e.g., β-AR signaling pathway) and hypertrophic signaling pathways (e.g., CaN-NFAT signaling pathway, 
PI3K-Akt signaling pathway, and MAPK signaling pathway) and crosstalk links between the apoptotic and hyper-
trophic signaling pathways. Detailed information of each node and each link is provided in Supplementary Data 
Set S2 (hereinafter, each node will be denoted by an abbreviation as defined in Supplementary Data Set S2).

Formulating the constructed network as a normalized equation model.  Normalized equation 
modeling was adopted to formulate the cardiac signaling network as a mathematical model. This modeling allows 
easy comparison of the simulation results under various conditions by standardizing the values of state variables 
and parameters between 0 and 1. The model has 59 state variables and 37 parameters (all equations for the model 
are provided in Supplementary Table S1 and the representation of regulatory processes by parameters is provided 
in Supplementary Table S2; hereinafter, each parameter will be denoted by ‘pm’ with n, one of the natural numbers 
from 1 to 37, as defined in Supplementary Tables S2–3).

To represent diverse cellular contexts, four types of response functions (i.e., Linear (Lin), Hill, Saturating 
(Sat), and Accelerating (Acc)) were used and one million parameter sets (each parameter set has 37 parameter 
values) were generated by random sampling from the standard uniform distribution between 0 and 1, resulting 
in four million models in total (step 2 and step 3 in Fig. 2) (see Methods for details). Numerical simulations were 
then conducted in the absence of catecholamines, important biochemical stimuli for the regulation of cellular 
functions in cardiomyocytes22, for each parameter set. After stabilization, the simulation was carried out in the 
presence of catecholamine stimulation (step 4 in Fig. 2).

To verify whether the constructed models are consistent with the published experimental results, we inves-
tigated the changes in the activity of each signaling component under the catecholamine treatment (the results 
obtained with the function type Lin is shown in Fig. 1B). Previous studies have shown that the catecholamine 
treatment induces an increase of 15 signaling components (i.e., RGS4, Calcium, PDE34, Raf1, CaN, JNK, p38, 
CaMK, ERK12, NFAT, MSK1, CREB, MEF2, GATA4, and cJun) and a decrease of one signaling component (i.e., 
HDAC) that are included in the model (Supplementary Table S4). From extensive simulation analyses, we found 
that the mathematical model successfully captures the qualitative features of known biological activities of 14 
signaling components in response to catecholamine stimulation for more than 80% of 1 million randomly sam-
pled parameter sets when Lin, Sat, Acc, or a combination of four different response function types was applied. 
In the case when function type Hill was applied, more than half of the parameter sets successfully reproduced 
the previous known activities of 15 signaling components (Supplementary Table S5). Thus, we can confirm that 
the cardiac signaling network model can reasonably reproduce previous experimental results irrespective of the 
specific biochemical response functions (i.e., Lin, Acc, Sat, and Hill) employed to the mathematical model.
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In addition, changes in the distributions of the activity of apoptosis and hypertrophy induced by catechola-
mine were investigated. Apoptosis and hypertrophy were determined as following algebraic eqs (i) and (ii) that 
are derived based on the activities of pro-apoptotic proteins (CaMK, JNK, and p38), anti-apoptotic proteins 
(CREB and ERK12), and hypertrophy–related proteins (NFATact, MEF2, and GATA4) (step 5 in Fig. 2, see also 
Supplementary Table S1).

=
+ + − −Apoptosis CaMK JNK p CREB ERK[ ] [ ] [ 38] [ ] [ 12]

5 (i)

Figure 1.  Cardiac signaling network. (A) The network consists of 59 signaling components. (B) The model 
is verified by observing the distribution of the activity of 17 signaling components after the treatment of 
catecholamine.
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=
+ +Hypertrophy NFATact MEF GATA[ ] [ 2] [ 4]

5 (ii)

Distributions of these two phenotypes were used as a control to compare them with the phenotype distribu-
tions obtained by subsequent distribution perturbation analyses.

Evaluating associations between interactions and phenotypes by observation of marginal dis-
tributions of parameters.  The control phenotype distributions were used to investigate the parameters 
that are closely associated with apoptosis and hypertrophy (step 6 in Fig. 2). We used ‘top 10%’ as a threshold 
value to determine the parameter sets that highly induce apoptosis or hypertrophy in the mathematical model. 

Figure 2.  Analysis workflows for the cardiac signaling network. Step 1. Construct a large-scale cardiac 
signaling network; Step 2. Formulate the network as a mathematical model using the normalized equation 
modeling method; Step 3. Generate one million random parameter sets from standard uniform distributions; 
Step 4. Conduct the numerical simulation using ode15s function in MATLAB and verify the model by 
comparing the simulation results with experimental data; Step 5. Define apoptotic and hypertrophic 
phenotypes; Step 6. Calculate marginal distributions of parameters that are associated with apoptotic or 
hypertrophic phenotypes (plot A and plot B represent non-uniform marginal distributions and plot C 
represents a near-uniform marginal distribution; the lines colored in red denote a marginal distribution and 
dotted lines denote a uniform distribution); Step 7. Perform one distribution perturbation analyses; Step 8. 
Perform two distribution perturbation analyses; Step 9. Observe the change of phenotype distributions by 
distribution perturbation analyses.
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The distributions of parameters that resulted in top 10% of apoptosis and top 10% of hypertrophy were named 
marginal distributions for apoptosis and marginal distributions for hypertrophy, respectively. We calculated a 
marginal distribution and compared it with the uniform distributions of each parameter (Fig. 3). The association 
of a parameter with a phenotype was explored by observation of the shape of its marginal distribution for the 
phenotype. If a marginal distribution of parameter p1 for apoptosis displays a high density in the low range of p1, 
a low p1 can be interpreted as indicating its association with apoptosis (step 6, plot A in Fig. 2). Accordingly, if a 
marginal distribution of parameter p2 for apoptosis displays a high density in the middle range of p2, neither high 
nor low p2 can be regarded as being associated with apoptosis (step 6, plot B in Fig. 2).

However, the small difference between the marginal distribution of a parameter from the uniform distribu-
tion (near-uniform distribution) suggests the absence of association of the parameter with the phenotypes (step 
6, plot C in Fig. 2). For instance, pm22 (Ras/(PKC, PKA) → Raf1), pm25 (MEKK1/MEKK234 → MEK4), pm26 
(MEKK234/MEKK11 → cJun), and pm36 (JNK/p38 → MSK1) may not be associated with the regulation of 
apoptosis or hypertrophy since the difference between their marginal distribution and uniform distribution was 
relatively very small when compared with the cases of other parameters (panel 22, 25, 26, and 36 in Fig. 3).

Figure 3.  Marginal distribution for apoptosis (red) and hypertrophy (blue). A green dotted line marks the same 
level of density between the marginal distribution and the uniform distribution. In the area above the green line, 
the density is higher than that of the uniform distribution, whereas in the area below the green line, the density 
is lower than that of the uniform distribution.
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For some parameter distributions, different distribution patterns were observed depending on the applied 
function types (incoherent distributions), whereas, for the others, similar distribution patterns were observed 
regardless of the applied function types (coherent distributions). Incoherent distributions indicate an inconsist-
ent association with the phenotype. Therefore, only those parameters that exhibit non-uniform and coherent 
marginal distributions were considered to be closely associated with the phenotypes. The characteristics of the 
marginal distributions for apoptosis and hypertrophy of 37 parameters are summarized in Table 1.

Identifying essential regulatory interactions.  To identify essential regulatory interactions that main-
tain a constant role as a regulator of apoptosis and/or hypertrophy irrespective of model formulations and model 
parameters, we established the following three criteria: criterion 1–a non-inverse association between a parameter 
and a phenotype; criterion 2–an inducing relationship between them; and criterion 3–a suppressing relationship 
between them. The interactions that satisfy all these criteria were determined as essential regulatory interactions.

Criterion 1: Investigating a non-inverse association.  Eighteen parameters provided in Table 1 show 
non-uniform, coherent marginal distributions. Among them, three parameters (pm1, pm28, and pm30) are 
significantly associated with both apoptosis and hypertrophy; however, the marginal distribution for apoptosis 
showed a pattern resembling a reversed shape of the marginal distribution for hypertrophy. For instance, when 
ERK12 is activated by Gbg and MEK12 (pm28), in comparison with the influence of MEK12 on ERK12, the 
relatively small influence of Gbg on ERK12 is associated with apoptosis and its relatively large influence is associ-
ated with hypertrophy. In this case, the weakening or strengthening of the influence will only result in switching 
between the phenotypes (i.e., apoptosis to hypertrophy or hypertrophy to apoptosis) rather than eliminating the 
phenotype completely, thus showing an inverse association with apoptosis and hypertrophy. This observation 
suggests unsuitability of these three interactions as a therapeutic target for apoptosis and/or hypertrophy.

The remaining 15 parameters have a non-inverse association with apoptosis and/or hypertrophy: nine param-
eters (pm8, pm11, pm12, pm13, pm14, pm15, pm 16, pm17, and pm23) with either apoptosis or hypertrophy; 
six parameters (pm7, pm9, pm10, pm27, pm29 and pm31) with both apoptosis and hypertrophy (Supplementary 
Fig. S1 and Table 1).

Criterion 2: Investigating an inducing relationship by one-distribution perturbation analyses.  
The significant association between a parameter and a phenotype does not indicate that the phenotype is induced 
by the specific distribution of the parameter. The parameters may be distributed coincidentally in such a way that 
they appear to be related with the phenotypes in the course of complex interactions between network compo-
nents. To investigate the inducing relationship, we conducted a one-distribution perturbation analysis (step 7 in 
Fig. 2). One parameter out of 37 was sampled from its marginal distribution and the remaining 36 parameters 
were sampled from standard uniform distributions until one million random parameter sets were generated. This 
sampling process was repeated to allow every possible parameter (i.e., 37 parameters) to be sampled in combina-
tion with each phenotype (i.e., apoptosis and hypertrophy) and each function type (i.e., Lin, Hill, Sat, and Acc) 
to obtain a total of 296 combinations. A numerical simulation was performed for each parameter set, and the 
distribution of the obtained phenotypes was compared with the control phenotype distribution. The above math-
ematical analysis was all repeated for 10 times using different random seeds of one million parameter sets while 
following the same procedure. The differences between the two distributions provide a basis for determining the 
inducing relationship.

We defined the inducing relationship as follows: the phenotype should be observed more frequently in all 
function types with statistical significance (p < 0.05) in comparison with respective control phenotypes. Eight 

Apoptosis Hypertrophy

Coherent and 
non-uniform

Low

pm1: maximal degree of β-AR phosphorylation pm9a: 
(PKA & PI3K)/PKA → activated PKA for Ca pm11a: 
(epac& PKC)/epac → activated epac for CaMK 
pm12a,b,c: (CaM& activated epac)/CaM → CaMK 
pm23c: PKC/(Ras, PKA) → Raf1 pm28b,c: Gbg/MEK12 
→ ERK12 pm30: MEK4/(CaN, MEK7) → JNK

pm9a: (PKA & PI3K)/PKA → activated PKA for Ca 
pm16a,b,c: JNK/(CaN, p38) → NFATnuc pm17a,b,c: p38/
(CaN, JNK) → NFATnuc pm29a: CaN/(MEK4, MEK7) 
→ JNK

High
pm7a,b,c: αAR/RGS4 → Gq pm10a,b,c: IP3/activated PKA 
→ Ca pm27a: TAK1/MEKK11 → MEK36 pm29a: CaN/
(MEK4, MEK7) → JNK pm31a: MEK36/MEK4 → p38

pm1: maximal degree of β-AR phosphorylation 
pm7a,b,c: αAR/RGS4 → Gq pm8: (DAG &Ca)/(DAG 
&Ca&CaN) → PKC pm10a,b,c: IP3/activated PKA → 
Ca pm13a: CaMK/(PKC, PKA) → HDAC pm14a: PKC/
(CaMK, PKA) → HDAC pm15a,b: CaN/(JNK, p38) → 
NFATnuc pm27a: TAK1/MEKK11 → MEK36 pm28b,c: 
Gbg/MEK12 → ERK12 pm30: MEK4/(CaN, MEK7) → 
JNK pm31a: MEK36/MEK4 → p38

Incoherent or near-
uniform

pm2, pm3, pm4, pm5, pm6, pm8, pm13, pm14, pm15, 
pm16, pm17, pm18, pm19, pm20, pm21b, pm22, pm24, 
pm25, pm26, pm32, pm34, pm35, pm36, pm37

pm2, pm3, pm4, pm5, pm6, pm11, pm12, pm18, pm19, 
pm20, pm21b, pm22, pm23, pm24, pm25,pm 26, pm32, 
pm33, pm34, pm35c, pm36, pm37

Table 1.  Characteristics of marginal distributions of 37 parameters. This table outlines the biological role of 
parameters that showed coherent and non-uniform marginal distributions. aThe marginal distributions indicate 
a non-inverse association of the parameters with apoptosis and/or hypertrophy. bThe marginal distributions 
indicate an inducing relationship of the parameters with apoptosis and/or hypertrophy. cThe marginal 
distributions indicate a suppressing relationship of the parameters with apoptosis and/or hypertrophy.
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parameters met the definition: three parameters (pm7, pm10 and pm21) with both apoptosis and hypertrophy; 
two parameters (pm12 and pm28) with apoptosis; and three parameters (pm15, pm16 and pm17) with hypertro-
phy (Fig. 4, Supplementary Fig. S1 and Tables 1 and 2). Among 15 parameters that have a non-inverse association, 
six parameters (i.e. pm7: αAR/RGS4 → Gq, pm10: IP3/activated PKA → Ca, pm12: (CaM& activated epac)/CaM 
→ CaMK, pm15: CaN/(JNK, p38) → NFATnuc, pm16: JNK/(CaN, p38) → NFATnuc, and pm17: p38/(CaN, 
JNK) → NFATnuc) showed an inducing relationship. These results were consistent even when different threshold 
values (i.e. top 5% or 20%) for determining the marginal distributions were used or when a combination of four 
different response function types were applied to the model during the mathematical analysis (Supplementary 
Table S6).

Criterion 3: Investigating a suppressing relationship by reverse one-distribution perturbation 
analyses.  An inducing relationship does not support sufficiently that the phenotypes will be suppressed by 
regulating the parameters. To investigate the suppressing relationship, we conducted reverse one-distribution 
perturbation analyses. One parameter out of 37 was sampled from its reverse marginal distribution (bilater-
ally symmetrical to the marginal distribution). If in a marginal distribution of parameter p1, a high density is 
observed in the low range of p1, a high density should be observed in the high range of p1 in its reverse marginal 
distribution. The remaining processes are same as employed for one-distribution perturbation analyses.

The suppressing relationship was defined as follows: the phenotype should be observed less frequently in all 
function types with statistical significance (p < 0.05) in comparison with respective control phenotypes. Nine 
parameters met the definition: two parameters (pm7 and pm10) with both apoptosis and hypertrophy; four 
parameters (pm12, pm23, pm28, and pm30) with apoptosis; and three parameters (pm16, pm17, and pm35) with 
hypertrophy (Figs 4 and S1, Tables 1 and 2). Among six parameters that showed both a non-inverse association 
and an inducing relationship, five parameters (i.e. pm7: αAR/RGS4 → Gq, pm10: IP3/activated PKA → Ca, 
pm12: (CaM& activated epac)/CaM → CaMK, pm16: JNK/(CaN, p38) → NFATnuc, and pm17: p38/(CaN, JNK) 
→ NFATnuc) have a suppressing relationship that implicates promising therapeutic targets. The results were also 
consistent even when different threshold values (i.e. top 5% or 20%) for determining the marginal distributions 
were used or when a combination of four different response function types were applied to the model during the 
mathematical analysis (Supplementary Table S6).

To validate the predictions made by the mathematical analysis, we used a pharmacological inhibitor of epac 
or CaMKII to suppress the epac-CaMK interaction, which is found to be important in the regulation of apop-
tosis from the distribution perturbation analysis, and monitored the cellular response (Supplementary Fig. S2). 
Note that the marginal distribution of epac-CaMK interaction for apoptosis tends to have higher values and 
therefore inhibition of this interaction would reduce cardiomyocytes apoptosis. Inhibition of epac or CaMKII 
by treating HL-1 cells (a mouse cardiomyocyte cell line) or H9C2 cells (a rat cardiac cell line) with the chemical 
ESI-09 (an epac inhibitor) or KN93 (a CaMKII inhibitor) suppressed CaMKII activity in the presence of iso-
proterenol (ISO, a synthetic catecholamine that stimulates beta-adrenergic receptor signaling) (Supplementary 
Fig. S2A). Moreover, treatment with ESI-09 or KN93 significantly reduced the cell death but increased viability 
in ISO-treated cardiac cells (Supplementary Fig. S2B,C). These results suggest that the epac-CaMK interaction 
plays a crucial role in the regulation of apoptosis of cardiomyocytes as predicted by the mathematical analysis.

Identifying synergistic effects by two-distribution perturbation analysis.  Although a marginal 
distribution of a certain parameter has no inducing relationship with the phenotypes, it may acquire an inducing 
relationship if another marginal distribution is applied simultaneously. To investigate such a synergistic effect, we 
conducted two-distribution perturbation analyses (step 8 in Fig. 2). Two out of 37 parameters were selected to be 
sampled from their marginal distributions and the remaining 35 parameters were sampled from standard uni-
form distributions until 1 million random parameter sets were generated (see Methods for details). This sampling 
process was repeated to obtain all possible pairs of two parameters (i.e., 666), for each phenotype (i.e., apoptosis 
and hypertrophy), and for each function type (i.e., Lin, Hill, Sat, and Acc) (total 5,328 combinations). After per-
forming the numerical simulation for each parameter set, the distribution of the phenotypes was compared with 
that obtained from the one-distribution perturbation analysis to determine the synergistic effects (step 9 in Fig. 2, 
see Methods for details). The above mathematical analysis was all repeated for 10 times using different random 
seeds of 1, 10, or 100 million parameter sets while following the same procedure.

The analysis results for apoptosis showed a synergistic effect with significance (p < 0.05) in 24 parameter 
combinations (Table 3). pm10 appeared 22 times out of 24 (91.7%) combinations, implying that the regulation 
of calcium by IP3 and PKA is overwhelmingly involved in exerting a synergistic effect for inducing apopto-
sis. These results were consistent when four different response functions were applied in a combined manner 
(Supplementary Table S7).

In the analysis results for hypertrophy, a synergistic effect with significance (p < 0.05) was observed in seven 
parameter combinations (Table 3). pm7 and pm14 appeared in six combinations, indicating a close involve-
ment of αAR/RGS4 → Gq and IP3/activated PKA → Ca in inducing hypertrophy synergistically. In particular, 
although a marginal distribution of pm14 did not show an inducing relationship with hypertrophy in one dis-
tribution perturbation analysis, it acquired the relationship when the marginal distribution of pm7 or pm10 was 
applied simultaneously. These results were also consistent when four different response functions were applied in 
a combined manner (Supplementary Table S7).

Discussion
Molecular targets for the treatment of apoptosis and hypertrophy have been suggested by experimental studies 
(e.g., β-AR, AngII-R1, PDE5, PDE3, HDAC, MEK12, MEK4, MEK36, and TAK1). However, since these sugges-
tions were based on biochemical experiments performed under specific experimental conditions, their validity in 
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other various cellular contexts is questionable. Furthermore, a plethora of possible combinations of experimental 
conditions makes it inconceivable to conduct experiments under each combination.

In this study, we identified five essential regulatory interactions: two interactions (i.e., αAR/RGS → Gq (pm7) 
and IP3/PKA → calcium (pm10)) for both apoptosis and hypertrophy; one interaction (i.e., pm12: (CaM& acti-
vated epac)/CaM → CaMK) for apoptosis; and two interactions (i.e., pm16: JNK/(CaN, p38) → NFATnuc and 
pm17: p38/(CaN, JNK) → NFATnuc) for hypertrophy (Fig. S1). Marginal distributions of these interactions sig-
nificantly increased apoptosis or hypertrophy over numerous randomly sampled parameter sets (representing the 
diversity of experimental conditions or cellular contexts), whereas their reverse marginal distributions decreased 
it. This indicates that the five regulatory interactions may be responsible for inducing apoptosis or hypertro-
phy in a context-independent manner. Thus, these essential interactions may have the potential to be promising 
therapeutic targets that can overcome drug resistance caused by heterogeneous physiological environment and 
therefore can be effective across a broad spectrum of heart failure patients.

A non-inverse association of a phenotype with parameters does not necessarily imply an inducing relation-
ship between them. For instance, the marginal distribution of pm29 (CaN/(MEK4, MEK7) → JNK) had no such 
relationship with apoptosis although they exhibited a non-inverse association. In order to ascertain an inducing 
relationship, we performed a distribution perturbation analysis to verify that a phenotype is generated more often 
in marginal distributions than in uniform distributions.

Because a suppressing relationship is not always derived from an inducing relationship, a reverse distribu-
tion perturbation analysis should be performed to verify the suppressing relationship. For instance, the marginal 

Figure 4.  Results of one-distribution perturbation analysis for apoptosis and hypertrophy. The effect is 
represented as the ratio between the degree of appearance of phenotypes in one-distribution perturbation 
analysis and that in the control distributions. Parameters of which the marginal distributions significantly 
(p < 0.05) changed apoptosis or hypertrophy in all response function types are shown. Data represent 
means + S.E.M of 10 repetitive simulation results using different seeds of parameter sets. *p < 0.05; **p < 0.01; 
***p < 0.001; Student’s t test.
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distribution of pm15 (CaN/(JNK, p38) → NFATnuc), despite its inducing relationship with hypertrophy, had no 
suppressing relationship with the phenotype. This was corroborated by the result that a weak effect of CaN on 
NFATnuc can induce hypertrophy, whereas its effect, irrespective of the intensity, cannot suppress hypertrophy. In 
contrast, pm16 (JNK/(CaN, p38) → NFATnuc) and pm17 (p38/(JNK, p38) → NFATnuc) showed both inducing 
and suppressing relationships, suggesting them a more efficacious target for hypertrophy than pm15.

Although a non-inverse association does not necessarily indicate an inducing relationship and an inducing 
relationship does not always lead to a suppressing relationship, the three relationships overlap to a large extent. 
Eighty percent of parameters that had an inducing relationship with apoptosis and 71% of parameters with hyper-
trophy showed a non-inverse association. Sixty-seven percent of parameters that had a suppressing relationship 
with apoptosis and 80% of parameters with hypertrophy showed an inducing relationship between them.

To date, several studies have investigated the cardiac signaling pathway through systems biological 
approaches19, 23. Despite their usefulness in analyzing cardiac signaling network, key interactions that consistently 
maintain a regulatory role under different cellular contexts have remained unexplored since most previous studies 
focused on the interpretation of experimental results under a specific cellular context.

To investigate this untrodden area of research, we developed a method using normalized equation modeling 
and distribution perturbation analyses. In the normalized equation model, the required number of parameters is 
smaller than the number required in conventional modeling. Since a parameter in the normalized equation mod-
eling directly denotes a link in the network, the results are easily interpreted. In addition, the use of four function 
types (i.e., Lin, Hill, Sat, and Acc) with random parameter sets for the formulation of the models leads to a result 
that is not biased by a particular model setting.

Lin Hill Sat Acc

Effect p-value Effect p-value Effect p-value Effect p-value

One-distribution perturbation analysis

Apoptosis

 pm7 2.034 <0.001 1.582 <0.001 2.310 <0.001 1.690 <0.001

 pm10 2.130 <0.001 1.769 <0.001 1.906 <0.001 2.271 <0.001

 pm12 1.123 0.046 1.206 <0.001 1.122 0.045 1.282 <0.001

 pm21 1.147 0.022 1.315 <0.001 1.428 <0.001 1.151 0.024

 pm28 1.319 <0.001 1.137 0.042 1.143 0.027 1.422 <0.001

Hypertrophy

 pm7 2.920 <0.001 2.081 <0.001 2.798 <0.001 2.387 <0.001

 pm10 1.448 <0.001 1.565 <0.001 1.286 <0.001 1.532 <0.001

 pm15 1.126 0.033 1.260 <0.001 1.125 0.033 1.144 0.021

 pm16 1.151 0.020 1.171 0.011 1.207 <0.001 1.101 0.043

 pm17 1.156 0.021 1.185 <0.001 1.221 <0.001 1.142 0.022

 pm21 1.574 <0.001 1.129 0.036 1.831 <0.001 1.183 0.012

Reverse one-distribution perturbation analysis

Apoptosis

 pm7 0.116 <0.001 0.412 <0.001 0.139 <0.001 0.242 <0.001

 pm10 0.158 <0.001 0.376 <0.001 0.180 <0.001 0.150 <0.001

 pm12 0.854 0.010 0.806 0.006 0.814 0.008 0.746 <0.001

 pm23 0.876 0.032 0.670 <0.001 0.817 0.009 0.837 0.011

 pm28 0.728 <0.001 0.811 0.011 0.822 0.013 0.605 <0.001

 pm30 0.749 <0.001 0.565 <0.001 0.886 0.038 0.661 <0.001

Hypertrophy

 pm7 0.048 <0.001 0.156 <0.001 0.178 <0.001 0.149 <0.001

 pm10 0.610 <0.001 0.466 <0.001 0.737 <0.001 0.477 <0.001

 pm16 0.526 <0.001 0.385 <0.001 0.543 <0.001 0.551 <0.001

 pm17 0.613 <0.001 0.395 <0.001 0.500 <0.001 0.714 <0.001

 pm35 0.872 0.016 0.918 0.041 0.898 0.031 0.726 <0.001

Table 2.  Result of one-distribution or reverse one-distribution perturbation analysis for apoptosis or 
hypertrophy. Results of one-distribution or reverse one-perturbation analysis for apoptosis and hypertrophy. 
The threshold for determining the marginal distribution is set to top 10%. The effect is represented as the ratio 
between the degree of appearance of phenotypes in the one-distribution perturbation analysis and that in the 
control distributions. Parameters of which the marginal distributions significantly (p<0.05) increased (in one-
distribution perturbation analysis) or decreased (in reverse one-distribution perturbation analysis) apoptosis/
hypertrophy in all response function types are shown. The mathematical analysis was all repeated for 10 times 
using different random seeds of 1 million parameter sets for each case. P-values were determined by comparison 
with the control distributions using Student’s t test. See Supplementary Data Sets for full data.
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A model ensemble instead of a one-parameter-specified model was established for a network topology by 
allowing a parameter in the normalized equation to take multiple values sampled from a distribution. Since these 
results in a sensitivity analysis being inapplicable to the normalized equation model, we developed a distribution 
perturbation analysis in which one or two selected parameters are sampled from marginal distributions related 
with a phenotype and remaining parameters are sampled from uniform distributions. Based on the results of 
the distribution perturbation analysis, we can determine an inducing relationship between the parameters and 
phenotype distributions.

Furthermore, the two-distribution perturbation analysis enabled the exploration of a synergistic effect from 
the network. Calcium regulation is known to play an important role in the development of apoptosis because cal-
cium acts upon apoptosis-related pathways. Our analysis demonstrated that an interaction between the regulation 
of calcium and that of other molecules generates a synergistic effect in the process of apoptosis of cardiomyocytes, 
providing a fresh perspective on the underlying mechanism of apoptosis.

In summary, we identified essential interactions involved in the regulation of apoptosis and hypertrophy 
of cardiomyocytes through a novel computational method based on systems biology. Our analyses will help to 

Pair of 
perturbed 
parameter 
distributions

1 million parameter sets 10 million parameter sets
100 million parameter 
sets

Synergistic 
effect p-value

Synergistic 
effect p-value

Synergistic 
effect p-value

Apoptosis

 pm1-pm10 0.078 0.012 0.082 0.012 0.076 0.018

 pm2-pm10 0.15 0.009 0.132 0.009 0.139 0.009

 pm3-pm10 0.155 0.002 0.17 0.002 0.156 0.004

 pm6-pm10 0.161 0.004 0.167 0.002 0.17 0.005

 pm7-pm10 0.528 <0.001 0.514 <0.001 0.527 <0.001

 pm7-pm30 0.086 0.015 0.085 0.015 0.091 0.012

 pm8-pm10 0.102 0.008 0.099 0.01 0.089 0.014

 pm9-pm10 0.089 0.017 0.088 0.013 0.1 0.016

 pm10-pm11 0.096 0.014 0.106 0.007 0.107 0.007

 pm10-pm13 0.08 0.016 0.086 0.018 0.093 0.013

 pm10-pm14 0.081 0.018 0.08 0.014 0.069 0.03

 pm10-pm15 0.067 0.03 0.063 0.028 0.065 0.040

 pm10-pm17 0.092 0.014 0.087 0.019 0.079 0.011

 pm10-pm19 0.083 0.013 0.082 0.017 0.085 0.011

 pm10-pm20 0.107 0.009 0.108 0.008 0.115 0.005

 pm10-pm26 0.104 0.009 0.099 0.018 0.105 0.008

 pm10-pm30 0.076 0.013 0.119 0.008 0.094 0.018

 pm10-pm32 0.074 0.017 0.085 0.011 0.08 0.02

 pm10-pm33 0.079 0.017 0.089 0.015 0.074 0.015

 pm10-pm34 0.108 0.009 0.108 0.01 0.096 0.011

 pm10-pm35 0.089 0.019 0.084 0.01 0.085 0.016

 pm10-pm36 0.096 0.013 0.083 0.016 0.098 0.012

 pm10-pm37 0.1 0.008 0.1 0.02 0.086 0.019

 pm22-pm23 0.145 0.009 0.138 0.008 0.143 0.009

Hypertrophy

 pm7-pm10 0.354 <0.001 0.355 <0.001 0.359 <0.001

 pm7-pm13 0.132 0.007 0.134 0.01 0.137 0.006

 pm7-pm14 0.169 0.003 0.166 0.002 0.172 0.002

 pm7-pm21 0.414 <0.001 0.418 <0.001 0.417 <0.001

 pm10-pm14 0.124 0.008 0.115 0.008 0.131 0.007

 pm16-pm17 0.155 0.002 0.149 0.006 0.143 0.007

Table 3.  Result of two-distribution perturbation analysis for apoptosis or hypertrophy. Results of two-
distribution perturbation analysis for apoptosis and hypertrophy. The synergistic effect was calculated as the 
difference between the effect of simultaneous perturbation of marginal distributions of two parameters on  
the phenotype and the sum of that obtained from perturbing either individual marginal distribution. The 
data represent average synergistic effect of simulation analysis using each response function separately. 
Higher values indicate stronger synergistic effect. Parameter pairs exhibiting synergistic effect for apoptosis or 
hypertrophy with significance (p < 0.05) are shown. The mathematical analysis was all repeated for 10 times 
using different random seeds of 1, 10, or 100 million parameter sets for each case. p-values were determined 
using Student’s t test. See Supplementary Data Sets for full data.
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estimate the potential usefulness of therapeutic targets suggested in experimental research. The applicability of 
the methods can be extended to analyses of other general large-scale networks.

Methods
Normalized equation modeling.  Based on the network topology, a normalized equation model describes 
the dynamics of each network component, the activity of which is constrained between 0 (minimum activity) and 
1 (maximum activity). The configuration of differential equations differs depending on the number of incoming 
links to the node and the nature of the links (i.e., activation or inhibition) (Fig. 5A). If one node (Y) is regulated 
by another node (X), the instantaneous rate of change in Y (dY/dt) is determined by X (Fig. 5A(i),(ii)). When one 
node (Y) is regulated by the other two nodes (X and Z), the instantaneous rate of change in Y (dY/dt) is deter-
mined by the sum of the three influences: the individual influence of X on Y, the individual influence of Z on Y, 
and the combined influence of X and Z on Y (Fig. 5A(iii),(iv),(v)). The equation includes two free parameters, 
p1 and p2: p1 represents the combined influence of X and Z on Y and p2 represents the individual influence of 
X on Y. The individual influence of Z on Y is then determined by 1 minus p1 minus p2. For example, if p1 is 0.2 
and p2 is 0.3, the value of the individual influence of Z on Y is automatically determined as 0.5 (i.e., 1–0.2–0.3). 
Therefore, in this parameter set (i.e., p1 and p2), Y is influenced in the following descending order of strength: the 
individual influence of Z on Y (i.e., 0.5), the individual influence of X on Y (i.e., 0.3), and the combined influence 
of Z and X on Y (i.e., 0.2). When one node is regulated by the other three nodes, the formula for the instantaneous 
rate of the change in Y (dY/dt) becomes more complicated, requiring three free parameters (see Supplementary 
Text S1–S3 for details and exact formulation of equations).

We adopted four function types to describe activation or inhibition in a biologically plausible manner 
(Fig. 5B): the function type Lin represents a linear response of activation or inhibition; the function type Hill rep-
resents a sigmoidal response in a cooperative system; the function type Sat represents a response curve reacting to 
a low level of stimulus; and the function type Acc represents a response curve reacting to a high level of stimulus. 
Accordingly, four mathematical models with the four function types are established for one network topology.

Figure 5.  Normalized equation modeling. (A) Different forms of the differential equations according to the 
network structure are presented. (B) Four function types for the activation and the inhibition are presented.
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Distribution perturbation analysis.  A distribution perturbation analysis was performed to investigate the 
causal relationship between marginal distributions of parameters and phenotype distributions. First, all param-
eters were randomly sampled from standard uniform distributions and a numerical simulation was conducted 
for each parameter set. Based on the results, distributions of phenotypes (control phenotype distributions) and 
the marginal distribution of each parameter were calculated (Fig. 6A). One-distribution perturbation analyses 
were performed for each of 37 parameters and two-distribution perturbation analyses were performed for each 
of 666 pairs of 37 parameters (37C2 = 37 × 36 ÷ 2 = 666). When each of the total 703 distribution perturbation 
analyses was conducted, the parameter or parameter pairs to be perturbed were sampled from marginal distri-
butions and the remaining parameters were sampled from standard uniform distributions until one million ran-
dom parameter sets were generated. These samplings were repeated for every phenotype, and for every function 
type. After a numerical simulation was performed for each parameter set, the distributions of the phenotypes 
were observed. These large-scale numerical simulations were performed using the parallel computing toolbox of 
MATLAB R2009a.

The resultant phenotype distributions were compared with the control phenotype distributions to determine 
which parameter or parameter pairs have an inducing or suppressing relationship with the phenotypes. In addi-
tion, phenotype distributions from two distribution perturbation analyses were compared with those from the 
one distribution perturbation analysis to identify which combination of parameters has a synergistic effect on 
generating either of the phenotypes (Fig. 6B).

Figure 6.  Distribution perturbation analysis. (A) After an initial simulation with random parameters sampled 
from a uniform distribution, the marginal distribution associated with a specific phenotype is calculated.  
(B) After one-distribution and two-distribution perturbation analyses, the resulting phenotype distributions are 
compared to the control phenotype distributions.
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The level of the synergistic effect for a phenotype was defined as the difference between (1) the degree of how 
much more frequently the phenotype appears in a two-distribution perturbation analysis and (2) the sum of the 
degrees of how much more frequently the phenotype appears in each one-distribution perturbation analysis with 
significance (p < 0.05). For instance, for apoptosis, if the degree for parameter 1 combined with parameter 2 is 0.5 
in the two-distribution perturbation analysis and the degrees for parameters 1 and 2 are 0.1 and 0.15, respectively, 
in the one-distribution perturbation analyses, then the synergistic effect for apoptosis is expressed as 0.25 (i.e. 
0.5–0.1–0.15).

Validation of the developed method.  To validate whether the normalized equation modeling can 
properly represent network dynamics, we constructed normalized equation models for the 16 network motifs 
(Supplementary Fig. S3). From the simulation analysis of those models, we found that well-known dynamical 
features of the network motifs could be successfully reproduced (Supplementary Fig. S4)24, 25. Next, to validate 
whether the distribution perturbation analyses are effective in identifying essential regulatory processes for the 
phenotypes, we applied the methods to the EGFR signaling network (Supplementary Fig. S5). As a result, the 
regulation of GAB1 was found to be an essential process for generating resistance to MEK inhibitors, which is 
consistent with published experimental results26. Detailed explanations of the validation processes are provided 
in Supplementary Text S1 and Supplementary Text S2.

Cell culture.  HL-1 (mouse cardiomyocytes) and H9C2 (rat cardiac cells) cell lines are commonly used as 
in vitro models of cardiomyocyte biology because they exhibit similar hypertrophic and apoptotic properties as 
those seen in primary adult and neonatal cardiomyocytes27–29. HL-1 and H9C2 cells were cultured in Dulbecco’s 
modified Eagle’s medium (WelGENE Inc.) with 10% fetal bovine serum (FBS) and antibiotics (1% penicillin/
streptomycin/Fungizone) (Life Technologies Corp.) at 37 °C in a humidified atmosphere containing 5% CO2.

Reagents.  Isoproterenol, KN93, and ESI-09 were purchased from Sigma.

CaMKII activity assay.  CaMKII activity was determined by using a CaMKII assay kit (Upstate) accord-
ing to the manufacturer’s instructions, which is based on the phosphorylation of a specific substrate peptide 
autocamtide-3 (KKALRRQETVDAL) by the CAMKII-induced transfer of [γ-32P] from [γ-32P]ATP.

Analysis of cell death by ELISA.  Cell apoptotic death was evaluated by using a Cell Death Detection 
ELISA PLUS kit (Roche Diagnostics) according to the manufacturer’s instructions, which measures cytoplasmic 
accumulation of histone-associated DNA fragments (mono- and oligonucleosomes) of apoptotic cells.

Cell viability assay.  Cell viability was measured using a cell counting kit-8 (CCK-8, Dojindo) by following 
the manufacturer’s instructions. In brief, CCK-8 solution was added to cells grown in 96 well plates for one to two 
hours and absorbance at 450 nm was measured using a VICTORTMX3 Multilabel Plate Reader (PerkinElmer 
Inc.).
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